Using optical microscope and scanning electron microscopy (SEM), revealed the content of pyrite and the microscopic or sub-microscopic occurrence features of pyrite in coal of Huainan. The samples of this study are ...Using optical microscope and scanning electron microscopy (SEM), revealed the content of pyrite and the microscopic or sub-microscopic occurrence features of pyrite in coal of Huainan. The samples of this study are from four different mines in Huainan coal field. The results show that, in general, the coal of Huainan is low sulfur coal, but the con- tent of pyrite in Guqiao mine is relatively higher. The occurrence types of pyrite in coal mainly include: strawberry ball pyrites, massive pyrites, tuberculoid pyrite and pyrite filling in cracks or joints. After analysis based on three indicating facies parameters IAA, IS and/R, the reason for the higher level of pyrite component is that the deoxidization of swamp wa- ter is stronger, salinity is greater and the hydrodynamic is bad. The strawberry ball pyrites found in Guqiao mostly formed in the syngenesis stage. The spherical raspberry pyrites symbiotic with clay minerals was formed due to the reaction of H2S with Fe in the grid of silicate crystal.展开更多
The utilization of coal derived pyrite by electrolysis was studied. It is obvious that the sulfur and Fe in pyrite can be electrolyzed into Fe 3+ and SO 2- 4, and the no pollutant is drained off. In this paper, the in...The utilization of coal derived pyrite by electrolysis was studied. It is obvious that the sulfur and Fe in pyrite can be electrolyzed into Fe 3+ and SO 2- 4, and the no pollutant is drained off. In this paper, the influence of conditions, including electrolysis potential, time, temperature, the acidity of electrolysis solutions, the concentration of adding agent, the concentration of pyrite, and the rate of conversion of pyrite (Cr) was investigated. Cr increases with the rise of potential, time, temperature, acidity and the concentration of additive agent, but decreases with the rise of concentration of pyrite. At the certain conditions (at the potential of 3 0 V, temperature of 298 K, time of 12 h, the concentration of MnSO 4 of 6%, concentration of pyrite of 4%, and concentration of acid of 10%), Cr is high to 93%. In the same time, the mechanism of electrolysis of pyrite was provided. The electrolysis of pyrite is actually the recycle of Mn ion between anodic surface and pyrite. At last, the production of FeSO 4·7H 2O through electrolysis of pyrite was introduced.展开更多
基金Supported by the National Natural Science Foundation of China(40772092,40972106)
文摘Using optical microscope and scanning electron microscopy (SEM), revealed the content of pyrite and the microscopic or sub-microscopic occurrence features of pyrite in coal of Huainan. The samples of this study are from four different mines in Huainan coal field. The results show that, in general, the coal of Huainan is low sulfur coal, but the con- tent of pyrite in Guqiao mine is relatively higher. The occurrence types of pyrite in coal mainly include: strawberry ball pyrites, massive pyrites, tuberculoid pyrite and pyrite filling in cracks or joints. After analysis based on three indicating facies parameters IAA, IS and/R, the reason for the higher level of pyrite component is that the deoxidization of swamp wa- ter is stronger, salinity is greater and the hydrodynamic is bad. The strawberry ball pyrites found in Guqiao mostly formed in the syngenesis stage. The spherical raspberry pyrites symbiotic with clay minerals was formed due to the reaction of H2S with Fe in the grid of silicate crystal.
文摘The utilization of coal derived pyrite by electrolysis was studied. It is obvious that the sulfur and Fe in pyrite can be electrolyzed into Fe 3+ and SO 2- 4, and the no pollutant is drained off. In this paper, the influence of conditions, including electrolysis potential, time, temperature, the acidity of electrolysis solutions, the concentration of adding agent, the concentration of pyrite, and the rate of conversion of pyrite (Cr) was investigated. Cr increases with the rise of potential, time, temperature, acidity and the concentration of additive agent, but decreases with the rise of concentration of pyrite. At the certain conditions (at the potential of 3 0 V, temperature of 298 K, time of 12 h, the concentration of MnSO 4 of 6%, concentration of pyrite of 4%, and concentration of acid of 10%), Cr is high to 93%. In the same time, the mechanism of electrolysis of pyrite was provided. The electrolysis of pyrite is actually the recycle of Mn ion between anodic surface and pyrite. At last, the production of FeSO 4·7H 2O through electrolysis of pyrite was introduced.