The benefits of using cryogenic liquid nitrogen shock to enhance coal permeability have been confirmed from experimental perspectives.In this paper,we develop a fully coupled thermo-elastic model in combination with t...The benefits of using cryogenic liquid nitrogen shock to enhance coal permeability have been confirmed from experimental perspectives.In this paper,we develop a fully coupled thermo-elastic model in combination with the strain-based isotropic damage theory to uncover the cooling-dominated cracking behaviors through three typical cases,i.e.coal reservoirs containing a wellbore,a primary fracture,and a natural fracture network,respectively.The progressive cracking processes,from thermal fracture initiation,propagation or cessation,deflection,bifurcation to multi-fracture interactions,can be well captured by the numerical model.It is observed that two hierarchical levels of thermal fractures are formed,in which the number of shorter thermal fractures consistently exceeds that of the longer ones.The effects of coal properties related to thermal stress levels and thermal diffusivity on the fracture morphology are quantified by the fracture fractal dimension and the statistical fracture number.The induced fracture morphology is most sensitive to changes in the elastic modulus and thermal expansion coefficient,both of which dominate the complexity of the fracture networks.Coal reservoir candidates with preferred thermal-mechanical properties are also recommended for improving the stimulation effect.Further findings are that there exists a critical injection temperature and a critical in-situ stress difference,above which no thermal fractures would be formed.Preexisting natural fractures with higher density and preferred orientations are also essential for the formation of complex fracture networks.The obtained results can provide some theoretical support for cryogenic fracturing design in coal reservoirs.展开更多
In-situ stress is a critical factor influencing the permeability of coal reservoirs and the production capacity of coalbed methane(CBM)wells.Accurate prediction of in-situ stress and investigation of its influence on ...In-situ stress is a critical factor influencing the permeability of coal reservoirs and the production capacity of coalbed methane(CBM)wells.Accurate prediction of in-situ stress and investigation of its influence on coal reservoir permeability and production capacity are significant for CBM development.This study investigated the CBM development zone in the Zhengzhuang area of the Qinshui Basin.According to the low mechanical strength of coal reservoirs,this study derived a calculation model of the in-situ stress of coal reservoirs based on the multi-loop hydraulic fracturing method and analyzed the impacts of initial fractures on the calculated results.Moreover,by combining the data such as the in-situ stress,permeability,and drainage and recovery data of CBM wells,this study revealed the spatial distribution patterns of the current in-situ stress of the coal reservoirs and discussed the impacts of the insitu stress on the permeability and production capacity.The results are as follows.(1)Under given fracturing pressure,longer initial fractures are associated with higher calculated maximum horizontal principal stress values.Therefore,ignoring the effects of the initial fractures will cause the calculated values of the in-situ stress to be less than the actual values.(2)As the burial depth increases,the fracturing pressure,closure pressure,and the maximum and minimum horizontal principal stress of the coal reservoirs in the Zhengzhuang area constantly increase.The average gradients of the maximum and minimum horizontal principal stress are 3.17 MPa/100 m and 2.05 MPa/100 m,respectively.(3)Coal reservoir permeability is significantly controlled by the magnitude and state of the current in-situ stress.The coal reservoir permeability decreases exponentially with an increase in the effective principal stress.Moreover,a low lateral pressure coefficient(less than 1)is associated with minor horizontal compressive effects and high coal reservoir permeability.(4)Under similar conditions,such as resource endowments,CBM well capacity is higher in primary structural coal regions with moderate paleotectonic stress modification,low current in-situ stress,and lateral pressure coefficient of less than 1.展开更多
Field geological work, field engineering monitoring, laboratory experiments and numerical simulation were used to study the development characteristics of pore-fracture system and hydraulic fracture of No.3 coal reser...Field geological work, field engineering monitoring, laboratory experiments and numerical simulation were used to study the development characteristics of pore-fracture system and hydraulic fracture of No.3 coal reservoir in Southern Qinshui Basin. Flow patterns of methane and water in pore-fracture system and hydraulic fracture were discussed by using limit method and average method. Based on the structure model and flow pattern of post-fracturing high-rank coal reservoir, flow patterns of methane and water were established. Results show that seepage pattern of methane in pore-fracture system is linked with pore diameter, fracture width, coal bed pressure and flow velocity. While in hydraulic fracture, it is controlled by fracture height, pressure and flow velocity. Seepage pattern of water in pore-fracture system is linked with pore diameter, fracture width and flow velocity. While in hydraulic fracture, it is controlled by fracture height and flow velocity. Pores and fractures in different sizes are linked up by ultramicroscopic fissures, micro-fissures and hydraulic fracture. In post-fracturing high-rank coal reservoir, methane has level-three flow and gets through triple medium to the wellbore; and water passes mainly through double medium to the wellbore which is level-two flow.展开更多
The Qiwu Mine is located in the Ten Xian coal field of Shandong province.It experienced repeated volcanic activity,after the coal beds formed,where magma intrusion was significant The effect of coal reservoir porosity...The Qiwu Mine is located in the Ten Xian coal field of Shandong province.It experienced repeated volcanic activity,after the coal beds formed,where magma intrusion was significant The effect of coal reservoir porosity after magma intrusion was studied by analysis of regional and mine structure and magmatic activity.Experimental methods including maceral measurement under the microscope and mercury porosimetry were used for testing the pore structure.The authors believe that magma intrusion into low-rank bituminous coal causes reservoir porosity to gradually increase:the closer to the magmatic rock a sample is,the less the porosity.The pore size distribution also changes.In the natural coal bed the pore size is mainly in the transitive and middle pore range.However,the coal changes to anthracite next to the magmatic rock and larger pores dominate.Regional magma thermal evolution caused coal close to magmatic rock to be roasted,which reduced the volatile matter,developed larger holes,and destroyed plant tissue holes.The primary reason for a porosity decrease in the vicinity of magmatic rock is that Bituminite resulting from the roasting fills the holes that were present initially.展开更多
In the eastern Ordos basin, due to the diversity of the tectonic setting, coal rank, gas content and permeability, coal reservoirs have differing characteristics. In this paper, based on coal reservoir geometry, gas c...In the eastern Ordos basin, due to the diversity of the tectonic setting, coal rank, gas content and permeability, coal reservoirs have differing characteristics. In this paper, based on coal reservoir geometry, gas content, adsorption capacity, pores and fissures developments and permeability data, the coalbed methane(CBM) reservoir characteristics and their controlling factors in the eastern Ordos basin is discussed. The results show that, due to undergoing different paleo-temperatures in the geological history,coal rank has a higher trend from the north part to the south and from the shallow part to the inward basin, which determines CBM distribution and recoverability. In the north, although having large coal thickness and high permeability, Zhungeer-Xingxian coal rank is low, and gas content is small. In the central part, with medium rank, higher gas content and relatively high permeability, and the Wubao-Liulin area is the most favorable area in the eastern Ordos basin. In the southern part, medium and high metamorphism coal occurs, and although having the highest gas content, the permeability in the Hancheng area is low due to the development of sheared coal.展开更多
The crack volume strain method and acoustic emission(AE)method are used to analyze the anisotropy of the crack initiation strength,damage strength,the failure mode and the AE characteristics of coal reservoir.The resu...The crack volume strain method and acoustic emission(AE)method are used to analyze the anisotropy of the crack initiation strength,damage strength,the failure mode and the AE characteristics of coal reservoir.The results show that coal reservoirs show obvious anisotropic characteristics in compressive strength,cracking initiation strength and damage strength.The compressive strength of coal reservoirs decreases with the increase of bedding angle,but the reservoirs with bedding angles of 450 and 900 differ little in compressive strength.The crack initiation strength and damage strength decrease first and then increase with the increase of bedding angle.The crack initiation strength and damage strength are the highest,at the bedding angle of 0°,moderate at the bedding angle of 90°,and lowest at the bedding angle of 45°.When the bedding angle is 0°,the failure of the coal reservoirs is mainly steady propagation of large-scale fractures.When the bedding angle is 45°,one type of failure is caused by steady propagation of small-scale fractures,and the other type of failure is due to a sudden instability of large-scale fractures.When the bedding angle is 90°,the failure is mainly demonstrated by a sudden-instability of small-scale fractures.Compared with the cumulative count method of the AE,the cumulative energy method is more suitable for determining crack initiation strength and damage strength of coal reservoirs.展开更多
Objective Despite the adoption of various permeability enhancement technologies,the low permeability of coal reservoir has not been fundamentally improved for the development of coalbed methane(CBM)on the ground or ...Objective Despite the adoption of various permeability enhancement technologies,the low permeability of coal reservoir has not been fundamentally improved for the development of coalbed methane(CBM)on the ground or the control of gas underground.展开更多
Cleat system of coal reservoir is one of the main migrating passage of coalbed methane (CBM). The development of cleat system has important influence on both the preservation of CBM in geological history and surface C...Cleat system of coal reservoir is one of the main migrating passage of coalbed methane (CBM). The development of cleat system has important influence on both the preservation of CBM in geological history and surface CBM exploitation. The relationship among cleat porosity, net confine pressure, rock mechanics, coal seam’s occurrence and other factors of coal reservoir is established and simulated based on the energy conservation law. The result indicates that the net confine pressure and buried depth of coalbed are the major control factors of cleat porosity. The extensive stress and abnormal high reservoir pressure can make cleats open thus increase tbe cleat porosity; while the overburden pressure and compressive stress make cleats close and decrease the cleat porosity. The influence of occurrence (dip and dip angle) of coalbed on cleat porosity depends on the change of the above mentioned factors. It is also affected by rock mechanics parameters to some extent, while water-gas saturation and reservoir temperature have little effect on cleat porosity. The above conclusions are of great significance in geological exploration and surface exploitation region determination of CBM.展开更多
Taiyuan formation is the main exploration strata in Ordos Basin, and coals are widely developed. Due to the interference of strong reflection of coals, we cannot completely identify the effective reservoir information...Taiyuan formation is the main exploration strata in Ordos Basin, and coals are widely developed. Due to the interference of strong reflection of coals, we cannot completely identify the effective reservoir information of coal-bearing reservoir on seismic data. Previous researchers have studied the reservoir by stripping or weakening the strong reflection, but it is difficult to determine the effectiveness of the remaining reflection seismic data. In this paper, through the establishment of 2D forward model of coal-bearing strata, the corresponding geophysical characteristics of different reflection types of coal-bearing strata are analyzed, and then the favorable sedimentary facies zones for reservoir development are predicted. On this basis, combined with seismic properties, the coal-bearing reservoir is quantitatively characterized by seismic inversion. The above research shows that the Taiyuan formation in LS block of Ordos Basin is affected by coals and forms three or two peaks in different locations. The reservoir plane sedimentary facies zone is effectively characterized by seismic reflection structure. Based on the characteristics of sedimentary facies belt and petrophysical analysis, the reservoir is semi quantitatively characterized by attribute analysis and waveform indication, and quantitatively characterized by pre stack geostatistical inversion. Based on the forward analysis of coal measure strata, this technology characterizes the reservoir facies belt through seismic reflection characteristics, and describes coal measure reservoirs step by step. It effectively guides the exploration of LS block in Ordos Basin, and has achieved good practical application effect.展开更多
Pores are the main accumulation sites and migration pathways for coalbed methane(also referred to as CBM).Pore structure restricts the content and recoverability of CBM from coal reservoirs.In this study,12 representa...Pores are the main accumulation sites and migration pathways for coalbed methane(also referred to as CBM).Pore structure restricts the content and recoverability of CBM from coal reservoirs.In this study,12 representative coal samples with different ash yields that have similar tectonic characteristics and burial depths were collected from different mining areas in the Jiergalangtu and Huolinhe depressions in the Erlian Basin.These samples were used to study the restrictions of ash yield on the characteristics of coal pore structures and the recoverability of CBM through macroscopic and microscopic structure observation,scanning electron microscope observations,vitrinite reflectance tests,low-temperature N2 adsorption,nuclear magnetic resonance(NMR),and micro-computed tomography.The results show that coal reservoirs in the study area vary greatly in ash yield,based on which they can be divided into three types,i.e.,low-ash-content,ash-bearing,and high-ash-content coal reservoirs.In addition,the ash yield has a certain impact on the development of coal pores;coal samples with lower ash yields indicate the presence of well-developed medium-large pores and better connectivity.Ash yield also has a certain impact on the brittleness of coal wherein a lower ash yield implies the development of brittle coal that is more liable to fracture as compared to less brittle samples at the same pressure.Absorbed gas content also varies significantly with ash yield;a low ash yield impacts the gas saturation of coal.Overall,for coal reservoirs in the study area,their porosity,pore diameter,movable fluid porosity,adsorbed gas amount,and recoverability decrease as the ash yield increases.展开更多
The coalbed methane (CBM) resources in North China amounts up to 60% of total resources in China. North China is the most important CBM accumulation area in China. The coal beds of the Upper Paleozoic Taiyuan and Shan...The coalbed methane (CBM) resources in North China amounts up to 60% of total resources in China. North China is the most important CBM accumulation area in China. The coal beds of the Upper Paleozoic Taiyuan and Shanxi formations have a stable distribution. The coal reservoir of target areas such as Jincheng, Yanquan-Shouyang, Hancheng, Liulin, etc. have good CBM-bearing characteristics, high permeability and appropriate reservoir pressure, and these areas are the preferred target areas of CBM developing in China. The coal reservoirs of Wupu, Sanjiaobei, Lu'an, Xinmi, Anyang-Hebi, Jiaozuo, Xinggong and Huainan also have as good CBM-bearing characteristics, but the physical properties of coal reservoirs vary observably. So, further work should be taken to search for districts with high pressure, high permeability and good CBM-bearing characteristics. Crustal stresses have severe influence on the permeability of coal reservoirs in North China. From west to east, the crustal stress gradient increases, while the coal reservoirs permeability decreases.展开更多
In this paper, influences on the reservoir permeability, the reservoir architecture and the fluid flow pattern caused by hydraulic fracturing are analyzed. Based on the structure and production fluid flow model of pos...In this paper, influences on the reservoir permeability, the reservoir architecture and the fluid flow pattern caused by hydraulic fracturing are analyzed. Based on the structure and production fluid flow model of post fracturing high-rank coal reservoir, Warren-Root Model is improved. A new physical model that is more suitable for post fracturing high-rank coal reservoir is established. The results show that the width, the flow conductivity and the permeability of hydraulic fractures are much larger than natural fractures in coal bed reservoir. Hydraulic fracture changes the flow pattern of gas and flow channel to wellbore, thus should be treated as an independent medium. Warrant-Root Model has some limitations and can’t give a comprehensive interpretation of seepage mechanism in post fracturing high-rank coal reservoir. Modified Warrant-Root Model simplifies coal bed reservoir to an ideal system with hydraulic fracture, orthogonal macroscopic fracture and cuboid matrix. Hydraulic fracture is double wing, vertical and symmetric to wellbore. Coal bed reservoir is divided into cuboids by hydraulic fracture and further by macroscopic fractures. Flow behaviors in coal bed reservoir are simplified to three step flows of gas and two step flows of water. The swap mode of methane between coal matrix and macroscopic fractures is pseudo steady fluid channeling. The flow behaviors of methane to wellbore no longer follow Darcy’s Law and are mainly affected by inertia force. The flow pattern of water follows Darcy’s Law. The new physical model is more suitable for post fracturing high-rank coal reservoir.展开更多
In terms of the coal reservoir permeability of effective stress, coal matrix shrinkage and gas slippage,we conduct the tests of gas permeability under constant confining pressure and effective stress, as well as illus...In terms of the coal reservoir permeability of effective stress, coal matrix shrinkage and gas slippage,we conduct the tests of gas permeability under constant confining pressure and effective stress, as well as illustrate the cumulating method of permeability increment caused by the effects of gas slippage and coal matrix shrinkage.The results show that under the constant confining pressure, gas slippage affecting coal permeability changes to effective stress affecting it mainly. The change point increases with the increase of the confining pressure. The gas slippage effect leads to high permeability under low confining pressure, but coal matrix expansion results in the low value as confining and gas pressures increase. Combined with the drainage process of coalbed methane(CBM)well, the permeability is divided into four change stages based on the above analysis about the three effects, which can improve the change regulation understanding. Four stages are the downward phase under effective stress,the conversion phase of effective stress-coal matrix contraction effect(mainly based on effective stress), the rising stage of the effective stress-coal matrix contraction effect(mainly based on coal matrix contraction effect) and the rising phase of coal matrix contraction-slippage effect(mainly based on slippage effect). Permeability of coal reservoir during the process of drainage and production goes through four stages.展开更多
The influences of fractal pore structure in coal reservoir on coalbed methane(CBM) migration were analyzed in detail by coupling theoretical models and numerical methods.Different types of fractals were generated base...The influences of fractal pore structure in coal reservoir on coalbed methane(CBM) migration were analyzed in detail by coupling theoretical models and numerical methods.Different types of fractals were generated based on the construction thought of the standard Menger Sponge to model the 3D nonlinear coal pore structures.Then a correlation model between the permeability of fractal porous medium and its pore-size-distribution characteristics was derived using the parallel and serial modes and verified by Lattice Boltzmann Method(LBM).Based on the coupled method,porosity(ф),fractal dimension of pore structure(Db),pore size range(rmin,rmax) and other parameters were systematically analyzed for their influences on the permeability(ф) of fractal porous medium.The results indicate that:① the channels connected by pores with the maximum size(rmax) dominate the permeability,approximating in the quadratic law;② the greater the ratio of r max and r min is,the higher is;③ the relationship between D b and follows a negative power law model,and breaks into two segments at the position where Db ≌2.5.Based on the results above,a predicting model of fractal porous medium permeability was proposed,formulated as k=cfrnmax,where C and n(approximately equal to 2) are constants and f is an expression only containing parameters of fractal pore structure.In addition,the equivalence of the new proposed model for porous medium and the Kozeny-Carman model k=Crn was verified at Db =2.0.展开更多
Flowability of gas and water through low-permeability coal plays crucial roles in coalbed methane(CBM)recovery from coal reservoirs.To better understand this phenomenon,experiments examining the displacement of water ...Flowability of gas and water through low-permeability coal plays crucial roles in coalbed methane(CBM)recovery from coal reservoirs.To better understand this phenomenon,experiments examining the displacement of water by gas under different displacement pressures were systematically carried out based on nuclear magnetic resonance(NMR)technology using low-permeability coal samples of medium-high coal rank from Yunnan and Guizhou,China.The results reveal that both the residual water content(W_(r))and residual water saturation(S_(r))of coal gradually decrease as the displacement pressure(P)decreases.When P is 0-2 MPa,the decline rates of W_(r) and S_(r) are fastest,beyond which they slow down gradually.Coal samples with higher permeability exhibit higher water flowability and larger decreases in W_(r) and S_(r).Compared with medium-rank coal,high-rank coal shows weaker fluidity and a higher proportion of irreducible water.The relationship between P and the cumulative displaced water content(W_(c))can be described by a Langmuir-like equation,W_(c)=WLP/(PL+P),showing an increase in W_(c) in coal with an increase in P.In the low-pressure stage from 0 to 2 MPa,W_(c) increases most rapidly,while in the high-pressure stage(P>2 MPa),W_(c) tends to be stable.The minimum pore diameter(d′)at which water can be displaced under different displacement pressures was also calibrated.The d′value decreases as P increases in a power relationship;i.e.,d′the coal gradually decreases with the gradual increase in P.Furthermore,the d′values of most of the coal samples are close to 20 nm under a P of 10 MPa.展开更多
It is very important to determine the extent of the fractured zone through which water can flow before coal mining under the water bodies.This paper deals with methods to obtain information about overburden rock failu...It is very important to determine the extent of the fractured zone through which water can flow before coal mining under the water bodies.This paper deals with methods to obtain information about overburden rock failure and the development of the fractured zone while coal mining in Xin'an Coal Mine.The risk of water inrush in this mine is great because 40%of the mining area is under the Xiaolangdi reservoir.Numerical simulations combined with geophysical methods were used in this paper to obtain the development law of the fractured zone under different mining conditions.The comprehensive geophysical method described in this paper has been demonstrated to accurately predict the height of the water-flow fractured zone.Results from the new model, which created from the results of numerical simulations and field measurements,were successfully used for making decisions in the Xin'an Coal Mine when mining under the Xiaolangdi Reservoir.Industrial scale experiments at the number 11201,14141 and 14191 working faces were safely carried out.These achievements provide a successful background for the evaluation and application of coal mining under large reservoirs.展开更多
Using Isothermal Adsorption/Desorption System Model IS-100 and Electrohydraulic Servo Rock System Model MTS815 as the main apparatuses and collecting samples from the major coal reservoirs in the south of Qinshui Basi...Using Isothermal Adsorption/Desorption System Model IS-100 and Electrohydraulic Servo Rock System Model MTS815 as the main apparatuses and collecting samples from the major coal reservoirs in the south of Qinshui Basin, a hot point region of coalbed methane exploration, the paper carries out systematical comparisons of the isothermal adsorption experimental data for injection water coal samples, equilibrium moisture samples and dry coal samples, probes and establishes an experimental method of injection water coal sample preparation and isothermal experiment to simulate real reservoir conditions, and then summaries the experimental regulations and discusses the mechanism of liquid water influencing coal methane adsorption. Results of the experiment indicate that: The Langmuir volume of injection water coal samples is notably larger than that of equilibrium moisture samples, as well as larger than or equivalent to that of dry coal samples; the Langmuir pressure of injection water coal samples is the highest, the next is equilibrium moisture samples, while the dry samples is the lowest, of which the experimental results of injection water samples to simulate real reservoir conditions are more close to the fact. Under the conditions of in-position reservoirs, liquid water in coals has evident influence on methane adsorption ability of coal matrix, which can increase the adsorbability of coal and make the adsorption regulation fit to Langmuir model better. Its major reason is the increase of wetting coal matrix adsorbability. The above experimental results overthrow the conventional cognition that liquid water has no influence on coalbed methane adsorption, which may lead to an improvement of the coalbed methane isothermal adsorption experimental method and of the reliability of coalbed methane resource evaluation and prediction.展开更多
The Qinshui Basin in China is a major area for exploration and development of high rank coalbed methane. Due to the high rank coal and complicated pore system, no substantial breakthrough in the exploration and develo...The Qinshui Basin in China is a major area for exploration and development of high rank coalbed methane. Due to the high rank coal and complicated pore system, no substantial breakthrough in the exploration and development of coalbed methane has been made until now. Many systematic tests show that a pore system of coal reservoir has some features as follows: the porosity is relatively low; the pore system is dominated by micropores and transition pores; mesopores take the second place, and macropores are nearly absent, which is exceedingly adverse for production of coal-bed methane. However, testing data also revealed the differential development for the pore of high rank coal reservoirs in the Qinshui Basin, which necessarily led to the different physical properties of desorption, diffusion and permeability. This paper classifies the testing data using cluster analysis method and selects the typical samples to establish four pore system models, analyzes the differences of reservoir physical property, and provides a guidance for the exploration and development of coalbed methane in the Qinshui Basin.展开更多
This paper presents results of an experimental study to characterize the law of mineral change of fallen rock in coal mine groundwater reservoir ant its influence on water quality.The minerals of the underground reser...This paper presents results of an experimental study to characterize the law of mineral change of fallen rock in coal mine groundwater reservoir ant its influence on water quality.The minerals of the underground reservoir of Daliuta Coal Mine is taken as the research object.Simulation experiments were designed and conducted to simulate water–rock action in the laboratory.The mineral composition was analyzed by X-ray diffractometer(XRD),the surface morphology of the mineral was analyzed by scanning electron microscope(SEM),and the specific surface area,total pore volume and average pore diameter of the mineral were measured by fast specific surface/pore analyzer(BET).The experimental results show that the sandstone and mudstone in the groundwater reservoir of Daliuta Coal Mine account for 70%and 30%,respectively.The pore diameter is 15.62–17.55 nm,and pore volume is 0.035 cc/g.Its pore structure is a key factor in the occurrence of water–rock interaction.According to the water–rock simulation experiment,the quartz content before the water–rock action is about 34.28%,the albite is about 21.84%,the feldspar is about 17.48%,and the kaolinite is about 8.00%.After the water–rock action,they are 36.14%,17.78%,11.62%,and 16.75%,respectively.The content of albite and orthoclase is reduced while the content of kaolinite is increased,that is,the Na+content becomes higher,and the Ca2+and Mg2+contents become lower.This research builds a good theoretical foundation for revealing the role of water and rock in underground coal reservoirs.展开更多
基金funding support from the Natural Science Foundation of Sichuan,China(Grant No.2022NSFSC1227)the National Natural Science Foundation of China(Grant Nos.U1762216 and 51574270).
文摘The benefits of using cryogenic liquid nitrogen shock to enhance coal permeability have been confirmed from experimental perspectives.In this paper,we develop a fully coupled thermo-elastic model in combination with the strain-based isotropic damage theory to uncover the cooling-dominated cracking behaviors through three typical cases,i.e.coal reservoirs containing a wellbore,a primary fracture,and a natural fracture network,respectively.The progressive cracking processes,from thermal fracture initiation,propagation or cessation,deflection,bifurcation to multi-fracture interactions,can be well captured by the numerical model.It is observed that two hierarchical levels of thermal fractures are formed,in which the number of shorter thermal fractures consistently exceeds that of the longer ones.The effects of coal properties related to thermal stress levels and thermal diffusivity on the fracture morphology are quantified by the fracture fractal dimension and the statistical fracture number.The induced fracture morphology is most sensitive to changes in the elastic modulus and thermal expansion coefficient,both of which dominate the complexity of the fracture networks.Coal reservoir candidates with preferred thermal-mechanical properties are also recommended for improving the stimulation effect.Further findings are that there exists a critical injection temperature and a critical in-situ stress difference,above which no thermal fractures would be formed.Preexisting natural fractures with higher density and preferred orientations are also essential for the formation of complex fracture networks.The obtained results can provide some theoretical support for cryogenic fracturing design in coal reservoirs.
基金sponsored by the National Natural Science Foundation of China(42002181)projecta public bidding project of 2020 Shanxi Provincial Science and Technology Program(20201101002-03).
文摘In-situ stress is a critical factor influencing the permeability of coal reservoirs and the production capacity of coalbed methane(CBM)wells.Accurate prediction of in-situ stress and investigation of its influence on coal reservoir permeability and production capacity are significant for CBM development.This study investigated the CBM development zone in the Zhengzhuang area of the Qinshui Basin.According to the low mechanical strength of coal reservoirs,this study derived a calculation model of the in-situ stress of coal reservoirs based on the multi-loop hydraulic fracturing method and analyzed the impacts of initial fractures on the calculated results.Moreover,by combining the data such as the in-situ stress,permeability,and drainage and recovery data of CBM wells,this study revealed the spatial distribution patterns of the current in-situ stress of the coal reservoirs and discussed the impacts of the insitu stress on the permeability and production capacity.The results are as follows.(1)Under given fracturing pressure,longer initial fractures are associated with higher calculated maximum horizontal principal stress values.Therefore,ignoring the effects of the initial fractures will cause the calculated values of the in-situ stress to be less than the actual values.(2)As the burial depth increases,the fracturing pressure,closure pressure,and the maximum and minimum horizontal principal stress of the coal reservoirs in the Zhengzhuang area constantly increase.The average gradients of the maximum and minimum horizontal principal stress are 3.17 MPa/100 m and 2.05 MPa/100 m,respectively.(3)Coal reservoir permeability is significantly controlled by the magnitude and state of the current in-situ stress.The coal reservoir permeability decreases exponentially with an increase in the effective principal stress.Moreover,a low lateral pressure coefficient(less than 1)is associated with minor horizontal compressive effects and high coal reservoir permeability.(4)Under similar conditions,such as resource endowments,CBM well capacity is higher in primary structural coal regions with moderate paleotectonic stress modification,low current in-situ stress,and lateral pressure coefficient of less than 1.
基金Projects(41330638,41272154)supported by the National Natural Science Foundation of ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),ChinaProject(2014M551705)supported by the China Postdoctoral Science Foundation
文摘Field geological work, field engineering monitoring, laboratory experiments and numerical simulation were used to study the development characteristics of pore-fracture system and hydraulic fracture of No.3 coal reservoir in Southern Qinshui Basin. Flow patterns of methane and water in pore-fracture system and hydraulic fracture were discussed by using limit method and average method. Based on the structure model and flow pattern of post-fracturing high-rank coal reservoir, flow patterns of methane and water were established. Results show that seepage pattern of methane in pore-fracture system is linked with pore diameter, fracture width, coal bed pressure and flow velocity. While in hydraulic fracture, it is controlled by fracture height, pressure and flow velocity. Seepage pattern of water in pore-fracture system is linked with pore diameter, fracture width and flow velocity. While in hydraulic fracture, it is controlled by fracture height and flow velocity. Pores and fractures in different sizes are linked up by ultramicroscopic fissures, micro-fissures and hydraulic fracture. In post-fracturing high-rank coal reservoir, methane has level-three flow and gets through triple medium to the wellbore; and water passes mainly through double medium to the wellbore which is level-two flow.
基金the National Basic Research Program of China(No.2009CB219605)the Key Program of the National Natural Science Foundation of China(No.40730422)the National Major Project of Science and Technology(No.2008ZX05034-04)
文摘The Qiwu Mine is located in the Ten Xian coal field of Shandong province.It experienced repeated volcanic activity,after the coal beds formed,where magma intrusion was significant The effect of coal reservoir porosity after magma intrusion was studied by analysis of regional and mine structure and magmatic activity.Experimental methods including maceral measurement under the microscope and mercury porosimetry were used for testing the pore structure.The authors believe that magma intrusion into low-rank bituminous coal causes reservoir porosity to gradually increase:the closer to the magmatic rock a sample is,the less the porosity.The pore size distribution also changes.In the natural coal bed the pore size is mainly in the transitive and middle pore range.However,the coal changes to anthracite next to the magmatic rock and larger pores dominate.Regional magma thermal evolution caused coal close to magmatic rock to be roasted,which reduced the volatile matter,developed larger holes,and destroyed plant tissue holes.The primary reason for a porosity decrease in the vicinity of magmatic rock is that Bituminite resulting from the roasting fills the holes that were present initially.
基金supported by the National Natural Science Foundation of China (No.41402144)
文摘In the eastern Ordos basin, due to the diversity of the tectonic setting, coal rank, gas content and permeability, coal reservoirs have differing characteristics. In this paper, based on coal reservoir geometry, gas content, adsorption capacity, pores and fissures developments and permeability data, the coalbed methane(CBM) reservoir characteristics and their controlling factors in the eastern Ordos basin is discussed. The results show that, due to undergoing different paleo-temperatures in the geological history,coal rank has a higher trend from the north part to the south and from the shallow part to the inward basin, which determines CBM distribution and recoverability. In the north, although having large coal thickness and high permeability, Zhungeer-Xingxian coal rank is low, and gas content is small. In the central part, with medium rank, higher gas content and relatively high permeability, and the Wubao-Liulin area is the most favorable area in the eastern Ordos basin. In the southern part, medium and high metamorphism coal occurs, and although having the highest gas content, the permeability in the Hancheng area is low due to the development of sheared coal.
基金Supported by the National Natural Science Foundation of China(51804309,51861145403)State Key Laboratory of Water Resource Protection and Utilization in Coal Mining,China(SHJT-17-42.10)。
文摘The crack volume strain method and acoustic emission(AE)method are used to analyze the anisotropy of the crack initiation strength,damage strength,the failure mode and the AE characteristics of coal reservoir.The results show that coal reservoirs show obvious anisotropic characteristics in compressive strength,cracking initiation strength and damage strength.The compressive strength of coal reservoirs decreases with the increase of bedding angle,but the reservoirs with bedding angles of 450 and 900 differ little in compressive strength.The crack initiation strength and damage strength decrease first and then increase with the increase of bedding angle.The crack initiation strength and damage strength are the highest,at the bedding angle of 0°,moderate at the bedding angle of 90°,and lowest at the bedding angle of 45°.When the bedding angle is 0°,the failure of the coal reservoirs is mainly steady propagation of large-scale fractures.When the bedding angle is 45°,one type of failure is caused by steady propagation of small-scale fractures,and the other type of failure is due to a sudden instability of large-scale fractures.When the bedding angle is 90°,the failure is mainly demonstrated by a sudden-instability of small-scale fractures.Compared with the cumulative count method of the AE,the cumulative energy method is more suitable for determining crack initiation strength and damage strength of coal reservoirs.
基金financially supported by the National Natural Sciences Foundation of China(grant No.NSFC 41472127)
文摘Objective Despite the adoption of various permeability enhancement technologies,the low permeability of coal reservoir has not been fundamentally improved for the development of coalbed methane(CBM)on the ground or the control of gas underground.
文摘Cleat system of coal reservoir is one of the main migrating passage of coalbed methane (CBM). The development of cleat system has important influence on both the preservation of CBM in geological history and surface CBM exploitation. The relationship among cleat porosity, net confine pressure, rock mechanics, coal seam’s occurrence and other factors of coal reservoir is established and simulated based on the energy conservation law. The result indicates that the net confine pressure and buried depth of coalbed are the major control factors of cleat porosity. The extensive stress and abnormal high reservoir pressure can make cleats open thus increase tbe cleat porosity; while the overburden pressure and compressive stress make cleats close and decrease the cleat porosity. The influence of occurrence (dip and dip angle) of coalbed on cleat porosity depends on the change of the above mentioned factors. It is also affected by rock mechanics parameters to some extent, while water-gas saturation and reservoir temperature have little effect on cleat porosity. The above conclusions are of great significance in geological exploration and surface exploitation region determination of CBM.
文摘Taiyuan formation is the main exploration strata in Ordos Basin, and coals are widely developed. Due to the interference of strong reflection of coals, we cannot completely identify the effective reservoir information of coal-bearing reservoir on seismic data. Previous researchers have studied the reservoir by stripping or weakening the strong reflection, but it is difficult to determine the effectiveness of the remaining reflection seismic data. In this paper, through the establishment of 2D forward model of coal-bearing strata, the corresponding geophysical characteristics of different reflection types of coal-bearing strata are analyzed, and then the favorable sedimentary facies zones for reservoir development are predicted. On this basis, combined with seismic properties, the coal-bearing reservoir is quantitatively characterized by seismic inversion. The above research shows that the Taiyuan formation in LS block of Ordos Basin is affected by coals and forms three or two peaks in different locations. The reservoir plane sedimentary facies zone is effectively characterized by seismic reflection structure. Based on the characteristics of sedimentary facies belt and petrophysical analysis, the reservoir is semi quantitatively characterized by attribute analysis and waveform indication, and quantitatively characterized by pre stack geostatistical inversion. Based on the forward analysis of coal measure strata, this technology characterizes the reservoir facies belt through seismic reflection characteristics, and describes coal measure reservoirs step by step. It effectively guides the exploration of LS block in Ordos Basin, and has achieved good practical application effect.
基金This study was financially supported by the National Natural Science Foundation of China(Grant No.42072162)the Natural Science Foundation of Shandong Province(No.ZR2020MD036)a forward-looking and basic technology research project of PetroChina(No.2021DJ2301).
文摘Pores are the main accumulation sites and migration pathways for coalbed methane(also referred to as CBM).Pore structure restricts the content and recoverability of CBM from coal reservoirs.In this study,12 representative coal samples with different ash yields that have similar tectonic characteristics and burial depths were collected from different mining areas in the Jiergalangtu and Huolinhe depressions in the Erlian Basin.These samples were used to study the restrictions of ash yield on the characteristics of coal pore structures and the recoverability of CBM through macroscopic and microscopic structure observation,scanning electron microscope observations,vitrinite reflectance tests,low-temperature N2 adsorption,nuclear magnetic resonance(NMR),and micro-computed tomography.The results show that coal reservoirs in the study area vary greatly in ash yield,based on which they can be divided into three types,i.e.,low-ash-content,ash-bearing,and high-ash-content coal reservoirs.In addition,the ash yield has a certain impact on the development of coal pores;coal samples with lower ash yields indicate the presence of well-developed medium-large pores and better connectivity.Ash yield also has a certain impact on the brittleness of coal wherein a lower ash yield implies the development of brittle coal that is more liable to fracture as compared to less brittle samples at the same pressure.Absorbed gas content also varies significantly with ash yield;a low ash yield impacts the gas saturation of coal.Overall,for coal reservoirs in the study area,their porosity,pore diameter,movable fluid porosity,adsorbed gas amount,and recoverability decrease as the ash yield increases.
基金These research results are a part of the National Key Foundation Research Development an d Plan ning Program of China(No.2002CB2ll702)National Natural Science Foundation of China(No.40272069)
文摘The coalbed methane (CBM) resources in North China amounts up to 60% of total resources in China. North China is the most important CBM accumulation area in China. The coal beds of the Upper Paleozoic Taiyuan and Shanxi formations have a stable distribution. The coal reservoir of target areas such as Jincheng, Yanquan-Shouyang, Hancheng, Liulin, etc. have good CBM-bearing characteristics, high permeability and appropriate reservoir pressure, and these areas are the preferred target areas of CBM developing in China. The coal reservoirs of Wupu, Sanjiaobei, Lu'an, Xinmi, Anyang-Hebi, Jiaozuo, Xinggong and Huainan also have as good CBM-bearing characteristics, but the physical properties of coal reservoirs vary observably. So, further work should be taken to search for districts with high pressure, high permeability and good CBM-bearing characteristics. Crustal stresses have severe influence on the permeability of coal reservoirs in North China. From west to east, the crustal stress gradient increases, while the coal reservoirs permeability decreases.
基金supported by the National Natural Science Foundation of China (Nos. 41330638, 41272154, 51325403, 51104148, and 51204162)the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)Jiangsu Planned Projects for Postdoctoral Research Funds (No. 1302049B)
文摘In this paper, influences on the reservoir permeability, the reservoir architecture and the fluid flow pattern caused by hydraulic fracturing are analyzed. Based on the structure and production fluid flow model of post fracturing high-rank coal reservoir, Warren-Root Model is improved. A new physical model that is more suitable for post fracturing high-rank coal reservoir is established. The results show that the width, the flow conductivity and the permeability of hydraulic fractures are much larger than natural fractures in coal bed reservoir. Hydraulic fracture changes the flow pattern of gas and flow channel to wellbore, thus should be treated as an independent medium. Warrant-Root Model has some limitations and can’t give a comprehensive interpretation of seepage mechanism in post fracturing high-rank coal reservoir. Modified Warrant-Root Model simplifies coal bed reservoir to an ideal system with hydraulic fracture, orthogonal macroscopic fracture and cuboid matrix. Hydraulic fracture is double wing, vertical and symmetric to wellbore. Coal bed reservoir is divided into cuboids by hydraulic fracture and further by macroscopic fractures. Flow behaviors in coal bed reservoir are simplified to three step flows of gas and two step flows of water. The swap mode of methane between coal matrix and macroscopic fractures is pseudo steady fluid channeling. The flow behaviors of methane to wellbore no longer follow Darcy’s Law and are mainly affected by inertia force. The flow pattern of water follows Darcy’s Law. The new physical model is more suitable for post fracturing high-rank coal reservoir.
基金the National Basic Research Program(973)of China(No.2009cb219605)
文摘In terms of the coal reservoir permeability of effective stress, coal matrix shrinkage and gas slippage,we conduct the tests of gas permeability under constant confining pressure and effective stress, as well as illustrate the cumulating method of permeability increment caused by the effects of gas slippage and coal matrix shrinkage.The results show that under the constant confining pressure, gas slippage affecting coal permeability changes to effective stress affecting it mainly. The change point increases with the increase of the confining pressure. The gas slippage effect leads to high permeability under low confining pressure, but coal matrix expansion results in the low value as confining and gas pressures increase. Combined with the drainage process of coalbed methane(CBM)well, the permeability is divided into four change stages based on the above analysis about the three effects, which can improve the change regulation understanding. Four stages are the downward phase under effective stress,the conversion phase of effective stress-coal matrix contraction effect(mainly based on effective stress), the rising stage of the effective stress-coal matrix contraction effect(mainly based on coal matrix contraction effect) and the rising phase of coal matrix contraction-slippage effect(mainly based on slippage effect). Permeability of coal reservoir during the process of drainage and production goes through four stages.
基金supported by National Natural Science Foundation of China(Grant Nos.41102093&41072153)CBM Union Foundation of Shanxi Province (Grant No.2012012002)Doctoral Scientific Foundation of Henan Polytechnic University(Grant No.648706)
文摘The influences of fractal pore structure in coal reservoir on coalbed methane(CBM) migration were analyzed in detail by coupling theoretical models and numerical methods.Different types of fractals were generated based on the construction thought of the standard Menger Sponge to model the 3D nonlinear coal pore structures.Then a correlation model between the permeability of fractal porous medium and its pore-size-distribution characteristics was derived using the parallel and serial modes and verified by Lattice Boltzmann Method(LBM).Based on the coupled method,porosity(ф),fractal dimension of pore structure(Db),pore size range(rmin,rmax) and other parameters were systematically analyzed for their influences on the permeability(ф) of fractal porous medium.The results indicate that:① the channels connected by pores with the maximum size(rmax) dominate the permeability,approximating in the quadratic law;② the greater the ratio of r max and r min is,the higher is;③ the relationship between D b and follows a negative power law model,and breaks into two segments at the position where Db ≌2.5.Based on the results above,a predicting model of fractal porous medium permeability was proposed,formulated as k=cfrnmax,where C and n(approximately equal to 2) are constants and f is an expression only containing parameters of fractal pore structure.In addition,the equivalence of the new proposed model for porous medium and the Kozeny-Carman model k=Crn was verified at Db =2.0.
基金Financial support for this work was provided by the National Natural Science Foundation of China(Grant No.41772155)the Advanced Basic Research Projects of China National Petroleum Corporation(2019B-4910).
文摘Flowability of gas and water through low-permeability coal plays crucial roles in coalbed methane(CBM)recovery from coal reservoirs.To better understand this phenomenon,experiments examining the displacement of water by gas under different displacement pressures were systematically carried out based on nuclear magnetic resonance(NMR)technology using low-permeability coal samples of medium-high coal rank from Yunnan and Guizhou,China.The results reveal that both the residual water content(W_(r))and residual water saturation(S_(r))of coal gradually decrease as the displacement pressure(P)decreases.When P is 0-2 MPa,the decline rates of W_(r) and S_(r) are fastest,beyond which they slow down gradually.Coal samples with higher permeability exhibit higher water flowability and larger decreases in W_(r) and S_(r).Compared with medium-rank coal,high-rank coal shows weaker fluidity and a higher proportion of irreducible water.The relationship between P and the cumulative displaced water content(W_(c))can be described by a Langmuir-like equation,W_(c)=WLP/(PL+P),showing an increase in W_(c) in coal with an increase in P.In the low-pressure stage from 0 to 2 MPa,W_(c) increases most rapidly,while in the high-pressure stage(P>2 MPa),W_(c) tends to be stable.The minimum pore diameter(d′)at which water can be displaced under different displacement pressures was also calibrated.The d′value decreases as P increases in a power relationship;i.e.,d′the coal gradually decreases with the gradual increase in P.Furthermore,the d′values of most of the coal samples are close to 20 nm under a P of 10 MPa.
基金the National Basic Research Program of China(No.2007CB209401) for its financial support
文摘It is very important to determine the extent of the fractured zone through which water can flow before coal mining under the water bodies.This paper deals with methods to obtain information about overburden rock failure and the development of the fractured zone while coal mining in Xin'an Coal Mine.The risk of water inrush in this mine is great because 40%of the mining area is under the Xiaolangdi reservoir.Numerical simulations combined with geophysical methods were used in this paper to obtain the development law of the fractured zone under different mining conditions.The comprehensive geophysical method described in this paper has been demonstrated to accurately predict the height of the water-flow fractured zone.Results from the new model, which created from the results of numerical simulations and field measurements,were successfully used for making decisions in the Xin'an Coal Mine when mining under the Xiaolangdi Reservoir.Industrial scale experiments at the number 11201,14141 and 14191 working faces were safely carried out.These achievements provide a successful background for the evaluation and application of coal mining under large reservoirs.
文摘Using Isothermal Adsorption/Desorption System Model IS-100 and Electrohydraulic Servo Rock System Model MTS815 as the main apparatuses and collecting samples from the major coal reservoirs in the south of Qinshui Basin, a hot point region of coalbed methane exploration, the paper carries out systematical comparisons of the isothermal adsorption experimental data for injection water coal samples, equilibrium moisture samples and dry coal samples, probes and establishes an experimental method of injection water coal sample preparation and isothermal experiment to simulate real reservoir conditions, and then summaries the experimental regulations and discusses the mechanism of liquid water influencing coal methane adsorption. Results of the experiment indicate that: The Langmuir volume of injection water coal samples is notably larger than that of equilibrium moisture samples, as well as larger than or equivalent to that of dry coal samples; the Langmuir pressure of injection water coal samples is the highest, the next is equilibrium moisture samples, while the dry samples is the lowest, of which the experimental results of injection water samples to simulate real reservoir conditions are more close to the fact. Under the conditions of in-position reservoirs, liquid water in coals has evident influence on methane adsorption ability of coal matrix, which can increase the adsorbability of coal and make the adsorption regulation fit to Langmuir model better. Its major reason is the increase of wetting coal matrix adsorbability. The above experimental results overthrow the conventional cognition that liquid water has no influence on coalbed methane adsorption, which may lead to an improvement of the coalbed methane isothermal adsorption experimental method and of the reliability of coalbed methane resource evaluation and prediction.
文摘The Qinshui Basin in China is a major area for exploration and development of high rank coalbed methane. Due to the high rank coal and complicated pore system, no substantial breakthrough in the exploration and development of coalbed methane has been made until now. Many systematic tests show that a pore system of coal reservoir has some features as follows: the porosity is relatively low; the pore system is dominated by micropores and transition pores; mesopores take the second place, and macropores are nearly absent, which is exceedingly adverse for production of coal-bed methane. However, testing data also revealed the differential development for the pore of high rank coal reservoirs in the Qinshui Basin, which necessarily led to the different physical properties of desorption, diffusion and permeability. This paper classifies the testing data using cluster analysis method and selects the typical samples to establish four pore system models, analyzes the differences of reservoir physical property, and provides a guidance for the exploration and development of coalbed methane in the Qinshui Basin.
基金This work was co-supported by the Yue Qi Young Scholar Project,China University of Mining&Technology,Beijing(2019QN08)National Key Research and Development Program of China(2018YFC0406404)+2 种基金Research on Ecological Restoration and Protection of Coal Base in Arid Eco-fragile Region(GJNY2030XDXM-19-03.2)the Fundamental Research Funds for the Central Universities(2020YJSHH12)the scientific and technological innovation project of Shenhua Group(SHJT-16-28).
文摘This paper presents results of an experimental study to characterize the law of mineral change of fallen rock in coal mine groundwater reservoir ant its influence on water quality.The minerals of the underground reservoir of Daliuta Coal Mine is taken as the research object.Simulation experiments were designed and conducted to simulate water–rock action in the laboratory.The mineral composition was analyzed by X-ray diffractometer(XRD),the surface morphology of the mineral was analyzed by scanning electron microscope(SEM),and the specific surface area,total pore volume and average pore diameter of the mineral were measured by fast specific surface/pore analyzer(BET).The experimental results show that the sandstone and mudstone in the groundwater reservoir of Daliuta Coal Mine account for 70%and 30%,respectively.The pore diameter is 15.62–17.55 nm,and pore volume is 0.035 cc/g.Its pore structure is a key factor in the occurrence of water–rock interaction.According to the water–rock simulation experiment,the quartz content before the water–rock action is about 34.28%,the albite is about 21.84%,the feldspar is about 17.48%,and the kaolinite is about 8.00%.After the water–rock action,they are 36.14%,17.78%,11.62%,and 16.75%,respectively.The content of albite and orthoclase is reduced while the content of kaolinite is increased,that is,the Na+content becomes higher,and the Ca2+and Mg2+contents become lower.This research builds a good theoretical foundation for revealing the role of water and rock in underground coal reservoirs.