期刊文献+
共找到1,191篇文章
< 1 2 60 >
每页显示 20 50 100
Thermally-induced cracking behaviors of coal reservoirs subjected to cryogenic liquid nitrogen shock
1
作者 Songcai Han Qi Gao +5 位作者 Xinchuang Yan Lile Li Lei Wang Xian Shi Chuanliang Yan Daobing Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第8期2894-2908,共15页
The benefits of using cryogenic liquid nitrogen shock to enhance coal permeability have been confirmed from experimental perspectives.In this paper,we develop a fully coupled thermo-elastic model in combination with t... The benefits of using cryogenic liquid nitrogen shock to enhance coal permeability have been confirmed from experimental perspectives.In this paper,we develop a fully coupled thermo-elastic model in combination with the strain-based isotropic damage theory to uncover the cooling-dominated cracking behaviors through three typical cases,i.e.coal reservoirs containing a wellbore,a primary fracture,and a natural fracture network,respectively.The progressive cracking processes,from thermal fracture initiation,propagation or cessation,deflection,bifurcation to multi-fracture interactions,can be well captured by the numerical model.It is observed that two hierarchical levels of thermal fractures are formed,in which the number of shorter thermal fractures consistently exceeds that of the longer ones.The effects of coal properties related to thermal stress levels and thermal diffusivity on the fracture morphology are quantified by the fracture fractal dimension and the statistical fracture number.The induced fracture morphology is most sensitive to changes in the elastic modulus and thermal expansion coefficient,both of which dominate the complexity of the fracture networks.Coal reservoir candidates with preferred thermal-mechanical properties are also recommended for improving the stimulation effect.Further findings are that there exists a critical injection temperature and a critical in-situ stress difference,above which no thermal fractures would be formed.Preexisting natural fractures with higher density and preferred orientations are also essential for the formation of complex fracture networks.The obtained results can provide some theoretical support for cryogenic fracturing design in coal reservoirs. 展开更多
关键词 coal reservoirs Cryogenic shock Thermal cracking behaviors Fracture morphology
下载PDF
In-situ stress of coal reservoirs in the Zhengzhuang area of the southern Qinshui Basin and its effects on coalbed methane development
2
作者 Peng Zhang Ya Meng +4 位作者 Chaoying Liu Yuanling Guo Xiangbin Yan Lixue Cai Zhe Cheng 《Energy Geoscience》 2023年第2期17-27,共11页
In-situ stress is a critical factor influencing the permeability of coal reservoirs and the production capacity of coalbed methane(CBM)wells.Accurate prediction of in-situ stress and investigation of its influence on ... In-situ stress is a critical factor influencing the permeability of coal reservoirs and the production capacity of coalbed methane(CBM)wells.Accurate prediction of in-situ stress and investigation of its influence on coal reservoir permeability and production capacity are significant for CBM development.This study investigated the CBM development zone in the Zhengzhuang area of the Qinshui Basin.According to the low mechanical strength of coal reservoirs,this study derived a calculation model of the in-situ stress of coal reservoirs based on the multi-loop hydraulic fracturing method and analyzed the impacts of initial fractures on the calculated results.Moreover,by combining the data such as the in-situ stress,permeability,and drainage and recovery data of CBM wells,this study revealed the spatial distribution patterns of the current in-situ stress of the coal reservoirs and discussed the impacts of the insitu stress on the permeability and production capacity.The results are as follows.(1)Under given fracturing pressure,longer initial fractures are associated with higher calculated maximum horizontal principal stress values.Therefore,ignoring the effects of the initial fractures will cause the calculated values of the in-situ stress to be less than the actual values.(2)As the burial depth increases,the fracturing pressure,closure pressure,and the maximum and minimum horizontal principal stress of the coal reservoirs in the Zhengzhuang area constantly increase.The average gradients of the maximum and minimum horizontal principal stress are 3.17 MPa/100 m and 2.05 MPa/100 m,respectively.(3)Coal reservoir permeability is significantly controlled by the magnitude and state of the current in-situ stress.The coal reservoir permeability decreases exponentially with an increase in the effective principal stress.Moreover,a low lateral pressure coefficient(less than 1)is associated with minor horizontal compressive effects and high coal reservoir permeability.(4)Under similar conditions,such as resource endowments,CBM well capacity is higher in primary structural coal regions with moderate paleotectonic stress modification,low current in-situ stress,and lateral pressure coefficient of less than 1. 展开更多
关键词 In-situ stress coal reservoir Multi-loop hydraulic fracturing method PERMEABILITY Production capacity
下载PDF
Biological Permeability Enhancement Technology for Coal Reservoir 被引量:1
3
作者 GUO Hongyu LIU Xile +2 位作者 XIA Daping BAI Yang FU Chaoyong 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第5期1938-1939,共2页
Objective Despite the adoption of various permeability enhancement technologies,the low permeability of coal reservoir has not been fundamentally improved for the development of coalbed methane(CBM)on the ground or ... Objective Despite the adoption of various permeability enhancement technologies,the low permeability of coal reservoir has not been fundamentally improved for the development of coalbed methane(CBM)on the ground or the control of gas underground. 展开更多
关键词 Biological Permeability Enhancement Technology for coal reservoir
下载PDF
Study on Distribution Characteristics of Coal Reservoir Pressure near Normal Fault in Central Shizhuang South Block of Qinshui Basin 被引量:4
4
作者 李志恒 侃小明 李忠诚 《矿业安全与环保》 北大核心 2017年第5期21-24,29,共5页
下载PDF
Anisotropy of crack initiation strength and damage strength of coal reservoirs
5
作者 HAO Xianjie WEI Yingnan +6 位作者 YANG Ke SU Jian SUN Yingfeng ZHU Guangpei WANG Shaohua CHEN Haibo SUN Zhuowen 《Petroleum Exploration and Development》 CSCD 2021年第1期243-255,共13页
The crack volume strain method and acoustic emission(AE)method are used to analyze the anisotropy of the crack initiation strength,damage strength,the failure mode and the AE characteristics of coal reservoir.The resu... The crack volume strain method and acoustic emission(AE)method are used to analyze the anisotropy of the crack initiation strength,damage strength,the failure mode and the AE characteristics of coal reservoir.The results show that coal reservoirs show obvious anisotropic characteristics in compressive strength,cracking initiation strength and damage strength.The compressive strength of coal reservoirs decreases with the increase of bedding angle,but the reservoirs with bedding angles of 450 and 900 differ little in compressive strength.The crack initiation strength and damage strength decrease first and then increase with the increase of bedding angle.The crack initiation strength and damage strength are the highest,at the bedding angle of 0°,moderate at the bedding angle of 90°,and lowest at the bedding angle of 45°.When the bedding angle is 0°,the failure of the coal reservoirs is mainly steady propagation of large-scale fractures.When the bedding angle is 45°,one type of failure is caused by steady propagation of small-scale fractures,and the other type of failure is due to a sudden instability of large-scale fractures.When the bedding angle is 90°,the failure is mainly demonstrated by a sudden-instability of small-scale fractures.Compared with the cumulative count method of the AE,the cumulative energy method is more suitable for determining crack initiation strength and damage strength of coal reservoirs. 展开更多
关键词 coalbed methane coal reservoir crack initiation strength damage strength hydraulic fracturing BEDDING crack volume strain acoustic emission
下载PDF
Coal reservoir characteristics and their controlling factors in the eastern Ordos basin in China 被引量:8
6
作者 Li Guihong 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第6期1051-1058,共8页
In the eastern Ordos basin, due to the diversity of the tectonic setting, coal rank, gas content and permeability, coal reservoirs have differing characteristics. In this paper, based on coal reservoir geometry, gas c... In the eastern Ordos basin, due to the diversity of the tectonic setting, coal rank, gas content and permeability, coal reservoirs have differing characteristics. In this paper, based on coal reservoir geometry, gas content, adsorption capacity, pores and fissures developments and permeability data, the coalbed methane(CBM) reservoir characteristics and their controlling factors in the eastern Ordos basin is discussed. The results show that, due to undergoing different paleo-temperatures in the geological history,coal rank has a higher trend from the north part to the south and from the shallow part to the inward basin, which determines CBM distribution and recoverability. In the north, although having large coal thickness and high permeability, Zhungeer-Xingxian coal rank is low, and gas content is small. In the central part, with medium rank, higher gas content and relatively high permeability, and the Wubao-Liulin area is the most favorable area in the eastern Ordos basin. In the southern part, medium and high metamorphism coal occurs, and although having the highest gas content, the permeability in the Hancheng area is low due to the development of sheared coal. 展开更多
关键词 鄂尔多斯盆地东部 储层特征 控制因素 中国东部 煤阶 气体含量 渗透率 煤层气
下载PDF
Structure and production fluid flow pattern of post-fracturing high-rank coal reservoir in Southern Qinshui Basin 被引量:4
7
作者 刘世奇 桑树勋 +2 位作者 朱启朋 刘会虎 高贺凤 《Journal of Central South University》 SCIE EI CAS 2014年第10期3970-3982,共13页
Field geological work, field engineering monitoring, laboratory experiments and numerical simulation were used to study the development characteristics of pore-fracture system and hydraulic fracture of No.3 coal reser... Field geological work, field engineering monitoring, laboratory experiments and numerical simulation were used to study the development characteristics of pore-fracture system and hydraulic fracture of No.3 coal reservoir in Southern Qinshui Basin. Flow patterns of methane and water in pore-fracture system and hydraulic fracture were discussed by using limit method and average method. Based on the structure model and flow pattern of post-fracturing high-rank coal reservoir, flow patterns of methane and water were established. Results show that seepage pattern of methane in pore-fracture system is linked with pore diameter, fracture width, coal bed pressure and flow velocity. While in hydraulic fracture, it is controlled by fracture height, pressure and flow velocity. Seepage pattern of water in pore-fracture system is linked with pore diameter, fracture width and flow velocity. While in hydraulic fracture, it is controlled by fracture height and flow velocity. Pores and fractures in different sizes are linked up by ultramicroscopic fissures, micro-fissures and hydraulic fracture. In post-fracturing high-rank coal reservoir, methane has level-three flow and gets through triple medium to the wellbore; and water passes mainly through double medium to the wellbore which is level-two flow. 展开更多
关键词 水力压裂 沁水盆地 流体流动 结构模型 煤储层 流速控制 生产 煤级
下载PDF
Response of coal reservoir porosity to magma intrusion in the Shandong Qiwu Mine,China 被引量:4
8
作者 Li Wu Zhu Yanming +1 位作者 Chen Shangbin Wang Hui 《Mining Science and Technology》 EI CAS 2011年第2期185-190,共6页
Qiwu 矿位于山东省的十块 Xian 煤地。它经历了重复暴烈的活动,在形成的煤床以后,在岩浆侵入是重要的的地方。在岩浆侵入以后的煤水库孔的效果被分析学习地区性并且矿结构和 magmatic 活动。包括在显微镜和水银 porosimetry 下面的 ma... Qiwu 矿位于山东省的十块 Xian 煤地。它经历了重复暴烈的活动,在形成的煤床以后,在岩浆侵入是重要的的地方。在岩浆侵入以后的煤水库孔的效果被分析学习地区性并且矿结构和 magmatic 活动。包括在显微镜和水银 porosimetry 下面的 maceral 测量的试验性的方法被用于测试毛孔结构。作者相信进低等级的沥青的煤的那岩浆侵入引起水库孔逐渐地增加:到 magmatic 岩石,一件样品越靠近,越不孔。毛孔尺寸分发也变化。在自然的煤床上,毛孔尺寸主要在及物、中间的毛孔范围。然而,煤改变到白煤,靠着 magmatic,岩石和更大的毛孔统治。热进化近引起了煤到要烤的 magmatic 岩石的地区性的岩浆,减少了不稳定的事,开发了更大的洞,并且破坏了植物织物洞。为在 magmatic 岩石的附近的孔减少的主要原因是源于烤的 Bituminite 充满开始是在场的洞。 展开更多
关键词 岩浆侵入 孔隙度 煤储层 山东省 气雾 中国 孔隙结构 挥发性物质
下载PDF
Mathematical Simulation of Cleat Porosity in Coal Reservoir 被引量:1
9
作者 韦重韬 刘焕杰 《International Journal of Mining Science and Technology》 SCIE EI 1998年第1期74-79,共6页
Cleat system of coal reservoir is one of the main migrating passage of coalbed methane (CBM). The development of cleat system has important influence on both the preservation of CBM in geological history and surface C... Cleat system of coal reservoir is one of the main migrating passage of coalbed methane (CBM). The development of cleat system has important influence on both the preservation of CBM in geological history and surface CBM exploitation. The relationship among cleat porosity, net confine pressure, rock mechanics, coal seam’s occurrence and other factors of coal reservoir is established and simulated based on the energy conservation law. The result indicates that the net confine pressure and buried depth of coalbed are the major control factors of cleat porosity. The extensive stress and abnormal high reservoir pressure can make cleats open thus increase tbe cleat porosity; while the overburden pressure and compressive stress make cleats close and decrease the cleat porosity. The influence of occurrence (dip and dip angle) of coalbed on cleat porosity depends on the change of the above mentioned factors. It is also affected by rock mechanics parameters to some extent, while water-gas saturation and reservoir temperature have little effect on cleat porosity. The above conclusions are of great significance in geological exploration and surface exploitation region determination of CBM. 展开更多
关键词 coal reservoir CLEAT CLEAT POROSITY simulation NET confine PRESSURE
下载PDF
Comprehensive analysis of CBM recovery in high rank coal reservoir of Jincheng area 被引量:6
10
作者 Liu Aihua Fu Xuehai +2 位作者 Luo Bin Luo Peipei Jiao Chunlin 《International Journal of Mining Science and Technology》 SCIE EI 2013年第3期447-452,共6页
Coalbed methane (CBM) predicting recovery in high rank coal reservoir varies greatly in Jincheng area and it seriously influences efficient and economic exploitation of CBM resource. In order to predict more accurate ... Coalbed methane (CBM) predicting recovery in high rank coal reservoir varies greatly in Jincheng area and it seriously influences efficient and economic exploitation of CBM resource. In order to predict more accurate CBM recovery, we conducted history matching and productivity prediction of vertical well by using COMET 3 reservoir modeling software, innovatively adopted the gas desorption experiment of bulk coal at fixed test pressure, analyzed the recovery extent method of Daning multiple-hole horizontal well and Panzhuang well group, and calculated recovery by sorption isotherm method of 14 vertical CBM wells at the abandonment pressures 1.0, 0.7, 0.5 and 0.3 MPa, respectively. The results show that the reservoir simulation methods (numerical simulation method and the recovery extent method) is more reliable than the theoretical analysis of coal sample (sorption isotherm method and desorption experiment method). Also, desorption experiment method at fixed pressure is superior to sorption isotherm method. Through the comprehensive analysis and linear correction, CBM recovery ratios in high rank coal reservoir of Jincheng area were found to be 38.64%, 49.30%, 59.30%, and 69.20% at the abandonment pressures 1.0, 0.7, 0.5 and 0.3 MPa, respectively. The research results are of significant importance in the CBM exploration and development in Jincheng area. 展开更多
关键词 CBM RECOVERY DESORPTION at fixed PRESSURE RECOVERY extent
下载PDF
Graded and Quantitative Technology and Application of Coal-Bearing Reservoir Based on Seismic Reflection Characteristics
11
作者 Hao Zhang Huan Wan +7 位作者 Liming Lin Wenjun Xing Tiemei Yang Longgang Zhou Lijun Gao Guangchao Zhi Xin Liu Xiaowen Song 《Journal of Geoscience and Environment Protection》 2024年第6期279-290,共12页
Taiyuan formation is the main exploration strata in Ordos Basin, and coals are widely developed. Due to the interference of strong reflection of coals, we cannot completely identify the effective reservoir information... Taiyuan formation is the main exploration strata in Ordos Basin, and coals are widely developed. Due to the interference of strong reflection of coals, we cannot completely identify the effective reservoir information of coal-bearing reservoir on seismic data. Previous researchers have studied the reservoir by stripping or weakening the strong reflection, but it is difficult to determine the effectiveness of the remaining reflection seismic data. In this paper, through the establishment of 2D forward model of coal-bearing strata, the corresponding geophysical characteristics of different reflection types of coal-bearing strata are analyzed, and then the favorable sedimentary facies zones for reservoir development are predicted. On this basis, combined with seismic properties, the coal-bearing reservoir is quantitatively characterized by seismic inversion. The above research shows that the Taiyuan formation in LS block of Ordos Basin is affected by coals and forms three or two peaks in different locations. The reservoir plane sedimentary facies zone is effectively characterized by seismic reflection structure. Based on the characteristics of sedimentary facies belt and petrophysical analysis, the reservoir is semi quantitatively characterized by attribute analysis and waveform indication, and quantitatively characterized by pre stack geostatistical inversion. Based on the forward analysis of coal measure strata, this technology characterizes the reservoir facies belt through seismic reflection characteristics, and describes coal measure reservoirs step by step. It effectively guides the exploration of LS block in Ordos Basin, and has achieved good practical application effect. 展开更多
关键词 coal-Bearing reservoir Seismic Reflection Characteristics Waveform Indication Inversion Geostatistics Inversion
下载PDF
Pore structure characteristics of low-rank coal reservoirs with different ash yields and their implications for recoverability of coalbed methane—a case study from the Erlian Basin, northeastern China
12
作者 Dawei DONG Jiaosheng YANG +4 位作者 Qiujia HU Shitao CUI Fenjin SUN Jidong ZHANG Xinrui CUI 《Frontiers of Earth Science》 SCIE CSCD 2023年第1期18-29,共12页
Pores are the main accumulation sites and migration pathways for coalbed methane(also referred to as CBM).Pore structure restricts the content and recoverability of CBM from coal reservoirs.In this study,12 representa... Pores are the main accumulation sites and migration pathways for coalbed methane(also referred to as CBM).Pore structure restricts the content and recoverability of CBM from coal reservoirs.In this study,12 representative coal samples with different ash yields that have similar tectonic characteristics and burial depths were collected from different mining areas in the Jiergalangtu and Huolinhe depressions in the Erlian Basin.These samples were used to study the restrictions of ash yield on the characteristics of coal pore structures and the recoverability of CBM through macroscopic and microscopic structure observation,scanning electron microscope observations,vitrinite reflectance tests,low-temperature N2 adsorption,nuclear magnetic resonance(NMR),and micro-computed tomography.The results show that coal reservoirs in the study area vary greatly in ash yield,based on which they can be divided into three types,i.e.,low-ash-content,ash-bearing,and high-ash-content coal reservoirs.In addition,the ash yield has a certain impact on the development of coal pores;coal samples with lower ash yields indicate the presence of well-developed medium-large pores and better connectivity.Ash yield also has a certain impact on the brittleness of coal wherein a lower ash yield implies the development of brittle coal that is more liable to fracture as compared to less brittle samples at the same pressure.Absorbed gas content also varies significantly with ash yield;a low ash yield impacts the gas saturation of coal.Overall,for coal reservoirs in the study area,their porosity,pore diameter,movable fluid porosity,adsorbed gas amount,and recoverability decrease as the ash yield increases. 展开更多
关键词 coal reservoir ASH pore structure RECOVERABILITY Erlian Basin
原文传递
Coalbed Methane-bearing Characteristics and Reservoir Physical Properties of Principal Target Areas in North China 被引量:15
13
作者 TANGShuheng SUNShenglin +1 位作者 HAODuohu TANGDazhen 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2004年第3期724-728,共5页
The coalbed methane (CBM) resources in North China amounts up to 60% of total resources in China. North China is the most important CBM accumulation area in China. The coal beds of the Upper Paleozoic Taiyuan and Shan... The coalbed methane (CBM) resources in North China amounts up to 60% of total resources in China. North China is the most important CBM accumulation area in China. The coal beds of the Upper Paleozoic Taiyuan and Shanxi formations have a stable distribution. The coal reservoir of target areas such as Jincheng, Yanquan-Shouyang, Hancheng, Liulin, etc. have good CBM-bearing characteristics, high permeability and appropriate reservoir pressure, and these areas are the preferred target areas of CBM developing in China. The coal reservoirs of Wupu, Sanjiaobei, Lu'an, Xinmi, Anyang-Hebi, Jiaozuo, Xinggong and Huainan also have as good CBM-bearing characteristics, but the physical properties of coal reservoirs vary observably. So, further work should be taken to search for districts with high pressure, high permeability and good CBM-bearing characteristics. Crustal stresses have severe influence on the permeability of coal reservoirs in North China. From west to east, the crustal stress gradient increases, while the coal reservoirs permeability decreases. 展开更多
关键词 coalbed methane (CBM) coal reservoir physical property crustal stress North China
下载PDF
Triple Medium Physical Model of Post Fracturing High-Rank Coal Reservoir in Southern Qinshui Basin 被引量:4
14
作者 Shiqi Liu Shuxun Sang +4 位作者 Qipeng Zhu Jiefang Zhang Hefeng Gao Huihu Liu Lixing Lin 《Journal of Earth Science》 SCIE CAS CSCD 2015年第3期407-415,共9页
In this paper, influences on the reservoir permeability, the reservoir architecture and the fluid flow pattern caused by hydraulic fracturing are analyzed. Based on the structure and production fluid flow model of pos... In this paper, influences on the reservoir permeability, the reservoir architecture and the fluid flow pattern caused by hydraulic fracturing are analyzed. Based on the structure and production fluid flow model of post fracturing high-rank coal reservoir, Warren-Root Model is improved. A new physical model that is more suitable for post fracturing high-rank coal reservoir is established. The results show that the width, the flow conductivity and the permeability of hydraulic fractures are much larger than natural fractures in coal bed reservoir. Hydraulic fracture changes the flow pattern of gas and flow channel to wellbore, thus should be treated as an independent medium. Warrant-Root Model has some limitations and can’t give a comprehensive interpretation of seepage mechanism in post fracturing high-rank coal reservoir. Modified Warrant-Root Model simplifies coal bed reservoir to an ideal system with hydraulic fracture, orthogonal macroscopic fracture and cuboid matrix. Hydraulic fracture is double wing, vertical and symmetric to wellbore. Coal bed reservoir is divided into cuboids by hydraulic fracture and further by macroscopic fractures. Flow behaviors in coal bed reservoir are simplified to three step flows of gas and two step flows of water. The swap mode of methane between coal matrix and macroscopic fractures is pseudo steady fluid channeling. The flow behaviors of methane to wellbore no longer follow Darcy’s Law and are mainly affected by inertia force. The flow pattern of water follows Darcy’s Law. The new physical model is more suitable for post fracturing high-rank coal reservoir. 展开更多
关键词 triple medium physical model high-rank coal reservoir hydraulic fracture SEEPAGE southern Qinshui Basin
原文传递
Experimental Simulation on Dynamic Variation of the Permeability of High-Rank Coal Reservoirs 被引量:2
15
作者 何也 傅雪海 刘爱华 《Journal of Shanghai Jiaotong university(Science)》 EI 2017年第6期726-732,共7页
In terms of the coal reservoir permeability of effective stress, coal matrix shrinkage and gas slippage,we conduct the tests of gas permeability under constant confining pressure and effective stress, as well as illus... In terms of the coal reservoir permeability of effective stress, coal matrix shrinkage and gas slippage,we conduct the tests of gas permeability under constant confining pressure and effective stress, as well as illustrate the cumulating method of permeability increment caused by the effects of gas slippage and coal matrix shrinkage.The results show that under the constant confining pressure, gas slippage affecting coal permeability changes to effective stress affecting it mainly. The change point increases with the increase of the confining pressure. The gas slippage effect leads to high permeability under low confining pressure, but coal matrix expansion results in the low value as confining and gas pressures increase. Combined with the drainage process of coalbed methane(CBM)well, the permeability is divided into four change stages based on the above analysis about the three effects, which can improve the change regulation understanding. Four stages are the downward phase under effective stress,the conversion phase of effective stress-coal matrix contraction effect(mainly based on effective stress), the rising stage of the effective stress-coal matrix contraction effect(mainly based on coal matrix contraction effect) and the rising phase of coal matrix contraction-slippage effect(mainly based on slippage effect). Permeability of coal reservoir during the process of drainage and production goes through four stages. 展开更多
关键词 coalbed methane(CBM) PERMEABILITY high-rank coal reservoir dynamic variation effective stress coal matrix shrinkage gas slippage
原文传递
A study on the flowability of gas displacing water in low-permeability coal reservoir based on NMR technology
16
作者 Minfang Yang Zhaobiao Yang +3 位作者 Bin Sun Zhengguang Zhang Honglin Liu Junlong Zhao 《Frontiers of Earth Science》 SCIE CAS CSCD 2020年第4期673-683,共11页
Flowability of gas and water through low-permeability coal plays crucial roles in coalbed methane(CBM)recovery from coal reservoirs.To better understand this phenomenon,experiments examining the displacement of water ... Flowability of gas and water through low-permeability coal plays crucial roles in coalbed methane(CBM)recovery from coal reservoirs.To better understand this phenomenon,experiments examining the displacement of water by gas under different displacement pressures were systematically carried out based on nuclear magnetic resonance(NMR)technology using low-permeability coal samples of medium-high coal rank from Yunnan and Guizhou,China.The results reveal that both the residual water content(W_(r))and residual water saturation(S_(r))of coal gradually decrease as the displacement pressure(P)decreases.When P is 0-2 MPa,the decline rates of W_(r) and S_(r) are fastest,beyond which they slow down gradually.Coal samples with higher permeability exhibit higher water flowability and larger decreases in W_(r) and S_(r).Compared with medium-rank coal,high-rank coal shows weaker fluidity and a higher proportion of irreducible water.The relationship between P and the cumulative displaced water content(W_(c))can be described by a Langmuir-like equation,W_(c)=WLP/(PL+P),showing an increase in W_(c) in coal with an increase in P.In the low-pressure stage from 0 to 2 MPa,W_(c) increases most rapidly,while in the high-pressure stage(P>2 MPa),W_(c) tends to be stable.The minimum pore diameter(d′)at which water can be displaced under different displacement pressures was also calibrated.The d′value decreases as P increases in a power relationship;i.e.,d′the coal gradually decreases with the gradual increase in P.Furthermore,the d′values of most of the coal samples are close to 20 nm under a P of 10 MPa. 展开更多
关键词 coalbed methane low-permeability coal reservoir NMR gas displacing water FLOWABILITY pore size
原文传递
Lattice Boltzmann simulation of fluid flow through coal reservoir's fractal pore structure 被引量:15
17
作者 JIN Yi SONG HuiBo +2 位作者 HU Bin ZHU YiBo ZHENG JunLing 《Science China Earth Sciences》 SCIE EI CAS 2013年第9期1519-1530,共12页
The influences of fractal pore structure in coal reservoir on coalbed methane(CBM) migration were analyzed in detail by coupling theoretical models and numerical methods.Different types of fractals were generated base... The influences of fractal pore structure in coal reservoir on coalbed methane(CBM) migration were analyzed in detail by coupling theoretical models and numerical methods.Different types of fractals were generated based on the construction thought of the standard Menger Sponge to model the 3D nonlinear coal pore structures.Then a correlation model between the permeability of fractal porous medium and its pore-size-distribution characteristics was derived using the parallel and serial modes and verified by Lattice Boltzmann Method(LBM).Based on the coupled method,porosity(ф),fractal dimension of pore structure(Db),pore size range(rmin,rmax) and other parameters were systematically analyzed for their influences on the permeability(ф) of fractal porous medium.The results indicate that:① the channels connected by pores with the maximum size(rmax) dominate the permeability,approximating in the quadratic law;② the greater the ratio of r max and r min is,the higher is;③ the relationship between D b and follows a negative power law model,and breaks into two segments at the position where Db ≌2.5.Based on the results above,a predicting model of fractal porous medium permeability was proposed,formulated as k=cfrnmax,where C and n(approximately equal to 2) are constants and f is an expression only containing parameters of fractal pore structure.In addition,the equivalence of the new proposed model for porous medium and the Kozeny-Carman model k=Crn was verified at Db =2.0. 展开更多
关键词 格子BOLTZMANN 分形维数 孔隙结构 煤储层 模拟 流体流 格子玻尔兹曼方法 多孔介质
原文传递
Predicting the height of water-flow fractured zone during coal mining under the Xiaolangdi Reservoir 被引量:6
18
作者 XU Zhimin SUN Yajun +2 位作者 DONG Qinghong ZHANG Guowei LI Shi 《Mining Science and Technology》 EI CAS 2010年第3期434-438,共5页
It is very important to determine the extent of the fractured zone through which water can flow before coal mining under the water bodies.This paper deals with methods to obtain information about overburden rock failu... It is very important to determine the extent of the fractured zone through which water can flow before coal mining under the water bodies.This paper deals with methods to obtain information about overburden rock failure and the development of the fractured zone while coal mining in Xin'an Coal Mine.The risk of water inrush in this mine is great because 40%of the mining area is under the Xiaolangdi reservoir.Numerical simulations combined with geophysical methods were used in this paper to obtain the development law of the fractured zone under different mining conditions.The comprehensive geophysical method described in this paper has been demonstrated to accurately predict the height of the water-flow fractured zone.Results from the new model, which created from the results of numerical simulations and field measurements,were successfully used for making decisions in the Xin'an Coal Mine when mining under the Xiaolangdi Reservoir.Industrial scale experiments at the number 11201,14141 and 14191 working faces were safely carried out.These achievements provide a successful background for the evaluation and application of coal mining under large reservoirs. 展开更多
关键词 coal mining under reservoir water-flow fractured zone development law water inrush of mine predicting model
下载PDF
Influence of liquid water on coalbed methane adsorption:An experimental research on coal reservoirs in the south of Qinshui Basin 被引量:4
19
作者 Shuxun Sang Yanming Zhu +2 位作者 Jing Zhang Xiaodong Zhang Shiyin Zhang 《Chinese Science Bulletin》 SCIE EI CAS 2005年第S1期79-85,共7页
Using Isothermal Adsorption/Desorption System Model IS-100 and Electrohydraulic Servo Rock System Model MTS815 as the main apparatuses and collecting samples from the major coal reservoirs in the south of Qinshui Basi... Using Isothermal Adsorption/Desorption System Model IS-100 and Electrohydraulic Servo Rock System Model MTS815 as the main apparatuses and collecting samples from the major coal reservoirs in the south of Qinshui Basin, a hot point region of coalbed methane exploration, the paper carries out systematical comparisons of the isothermal adsorption experimental data for injection water coal samples, equilibrium moisture samples and dry coal samples, probes and establishes an experimental method of injection water coal sample preparation and isothermal experiment to simulate real reservoir conditions, and then summaries the experimental regulations and discusses the mechanism of liquid water influencing coal methane adsorption. Results of the experiment indicate that: The Langmuir volume of injection water coal samples is notably larger than that of equilibrium moisture samples, as well as larger than or equivalent to that of dry coal samples; the Langmuir pressure of injection water coal samples is the highest, the next is equilibrium moisture samples, while the dry samples is the lowest, of which the experimental results of injection water samples to simulate real reservoir conditions are more close to the fact. Under the conditions of in-position reservoirs, liquid water in coals has evident influence on methane adsorption ability of coal matrix, which can increase the adsorbability of coal and make the adsorption regulation fit to Langmuir model better. Its major reason is the increase of wetting coal matrix adsorbability. The above experimental results overthrow the conventional cognition that liquid water has no influence on coalbed methane adsorption, which may lead to an improvement of the coalbed methane isothermal adsorption experimental method and of the reliability of coalbed methane resource evaluation and prediction. 展开更多
关键词 coal reservoir liquid water METHANE ADSORPTION INFLUENCE mechanism.
原文传递
Analysis of pore system model and physical property of coal reservoir in the Qinshui Basin 被引量:5
20
作者 XU Hao ZHANG Shanghu +2 位作者 LENG Xue TANG Dazhen WANG Mingshou 《Chinese Science Bulletin》 SCIE EI CAS 2005年第S1期52-58,共7页
The Qinshui Basin in China is a major area for exploration and development of high rank coalbed methane. Due to the high rank coal and complicated pore system, no substantial breakthrough in the exploration and develo... The Qinshui Basin in China is a major area for exploration and development of high rank coalbed methane. Due to the high rank coal and complicated pore system, no substantial breakthrough in the exploration and development of coalbed methane has been made until now. Many systematic tests show that a pore system of coal reservoir has some features as follows: the porosity is relatively low; the pore system is dominated by micropores and transition pores; mesopores take the second place, and macropores are nearly absent, which is exceedingly adverse for production of coal-bed methane. However, testing data also revealed the differential development for the pore of high rank coal reservoirs in the Qinshui Basin, which necessarily led to the different physical properties of desorption, diffusion and permeability. This paper classifies the testing data using cluster analysis method and selects the typical samples to establish four pore system models, analyzes the differences of reservoir physical property, and provides a guidance for the exploration and development of coalbed methane in the Qinshui Basin. 展开更多
关键词 Qinshui BASIN coal reservoirS DIFFERENTIAL development PORE system model reservoir physical property.
原文传递
上一页 1 2 60 下一页 到第
使用帮助 返回顶部