Our healthcare delivery system has accumulated complexity of payment, regulation systems, expectations and requirements. Often these are not designed to align with clinical thinking process flow of patient care. As a ...Our healthcare delivery system has accumulated complexity of payment, regulation systems, expectations and requirements. Often these are not designed to align with clinical thinking process flow of patient care. As a result, clinicians are utilizing enormous mental (cognitive) resource to comply with these complexities, over and above the baseline mental effort required to give good care to the patient. Recent studies suggest a significant number of physicians, advanced practice providers and nurses no longer want to stay in healthcare due to difficult work expectations and conditions that have become unreasonable. Technology has benefitted healthcare delivery, but also is a conduit of many expectations that have been grafted upon clinician workloads, exceeding the resources provided to accomplish them. Cognitive load is a measure of mental effort and is divided into Intrinsic, Germane and Extraneous Cognitive Load. Extraneous Cognitive Load (ECL) is what is not necessary and can be removed by better design. High cognitive load is associated with increased risk of both medical error and clinician burnout. Chronic high level occupational stress occurs from dealing with this job/resource imbalance and is showing serious personal health impact upon clinicians and the quality of the work they can provide for patients. Since organizational systems have become more complex, leadership methods, clinician wellbeing and patient safety efforts need to adjust to adapt and succeed. Safety efforts have tended to predominantly follow methods of a few decades ago with predominant focus upon how things go wrong (Safety I) but are now being encouraged to include more of the study of how things go right (Safety II). Human Factors/Ergonomics (HFE) science has been used in many industries to preserve worker wellbeing and improve system performance. Patient safety is a product of good system performance. HFE science helps inform mechanisms behind Safety I and II approach. HFE concepts augment existing burnout and safety interventions by providing a conceptual roadmap to follow that can inform how to improve the multiple human/technology, human/system, and human/work environment interfaces that comprise healthcare delivery. Healthcare leaders, by their influence over culture, resource allocation, and implementation of requirements and workflows are uniquely poised to be effective mitigators of the conditions leading to clinician burnout and latent medical error. Basic knowledge of HFE science is a strategic advantage to leaders and individuals tasked with achieving quality of care, controlling costs, and improving the experiences of receiving and providing care.展开更多
The modem tramway has resurfaced as the cure to today's urban transport problems such as pollution, road congestion and uneven access to transit. However, trams at intersections often experience frequent and extended...The modem tramway has resurfaced as the cure to today's urban transport problems such as pollution, road congestion and uneven access to transit. However, trams at intersections often experience frequent and extended delays due to vehicles crossing the tram tracks. There is an increased potential for conflict between trams and vehicles at these locations and crashes are common. The question of the effects of human factors on trams crossroads safety has been little dealt with in literature. The general aim of this article is to further knowledge about the influence of tramway and surrounding environment on car's driver behavior at intersections. Understanding these influences, involve conducting a systematic review of the cognitive tasks related to driving and identifying the hazards that can arise at each task, and what factors can make these more or less likely to arise, considering the environmental design at intersections and behavioral factors. To achieve that, the HAZOP (Hazard and Operability Study) approach is conducted for this study. Concerning data collection, the methodology includes site visits to record user behavior and questionnaires to determine the opinion, concerns and knowledge of car drivers in interaction with the tram environment.展开更多
The majority of errors in healthcare are from systems factors that create the latent conditions for error to occur. The majority of occupational stressors causing burnout are also the result of systemic factors. Advan...The majority of errors in healthcare are from systems factors that create the latent conditions for error to occur. The majority of occupational stressors causing burnout are also the result of systemic factors. Advances in technology create new levels of stress and expectations on healthcare workers (HCW) with an endless infusion of requirements from multiple authoritative sources that are tracked and monitored. The quality of care and safety of patients is affected by the wellbeing of HCWs who now practice in an environment that has become more complex to navigate, often expending limited neural resource (brainpower) on classifying, organizing, constantly making decisions on how and when they can accomplish what is required(extraneous cognitive load) in addition to direct patient care. New information demonstrates profound biological impact on the brains of those who have burnout in areas that affect the quality and safety of the decisions they make-which affects risk to patients in healthcare. Healthcare administration curriculum currently does not include ways to address these stress-induced problems in healthcare delivery. The science of human factors and ergonomics (HFE) promotes system performance and worker wellbeing. Patient safety is one component of system performance. Since many requirements come without resource to accomplish them, it becomes incumbent upon health system leadership to organize the means for completion of these to minimize the needless loss of brain power diverted away from the delivery of patient care. Human Factor-Based Leadership (HFBL) is an interactive, problem solving seminar series designed for healthcare leaders. The purpose is to provide relevant human factor science to integrate into their leadership and management decisions to make HCWs occupational environment more manageable and sustainable-which makes safer conditions for clinician wellbeing and patient care. After learning the content, a cohort of healthcare leaders believed that adequately addressing HFE in healthcare delivery would significantly reduce clinician burnout and risk of latent errors from upstream leadership decisions. An overview of the content of the seminars is described. Leadership feedback on usability of these seminars is reported. Three HFBL seminars described are Human Factor Relevance in Leadership, Biopsychosocial Approach to Wellness and Burnout, Human Factor Based Leadership: Examples and Applications.展开更多
Different programming languages can be used for discrete, abstract and process-oriented programming. Depending on the application, there exist additional requirements, which are not fulfilled by every programming lang...Different programming languages can be used for discrete, abstract and process-oriented programming. Depending on the application, there exist additional requirements, which are not fulfilled by every programming language. Flexible programming and maintainability are especially important requirements for process engineers. In this paper, the programming languages Activity Diagram, State Chart Diagram and Sequential Function Chart are compared and evaluated with regard to these requirements. This evaluation is based on the principles of cognitive effectiveness and cognitive dimensions. The aim of this paper is to identify the programming language suited best for controlling sequential processes, e.g. thermomechanical or batch processes.展开更多
文摘Our healthcare delivery system has accumulated complexity of payment, regulation systems, expectations and requirements. Often these are not designed to align with clinical thinking process flow of patient care. As a result, clinicians are utilizing enormous mental (cognitive) resource to comply with these complexities, over and above the baseline mental effort required to give good care to the patient. Recent studies suggest a significant number of physicians, advanced practice providers and nurses no longer want to stay in healthcare due to difficult work expectations and conditions that have become unreasonable. Technology has benefitted healthcare delivery, but also is a conduit of many expectations that have been grafted upon clinician workloads, exceeding the resources provided to accomplish them. Cognitive load is a measure of mental effort and is divided into Intrinsic, Germane and Extraneous Cognitive Load. Extraneous Cognitive Load (ECL) is what is not necessary and can be removed by better design. High cognitive load is associated with increased risk of both medical error and clinician burnout. Chronic high level occupational stress occurs from dealing with this job/resource imbalance and is showing serious personal health impact upon clinicians and the quality of the work they can provide for patients. Since organizational systems have become more complex, leadership methods, clinician wellbeing and patient safety efforts need to adjust to adapt and succeed. Safety efforts have tended to predominantly follow methods of a few decades ago with predominant focus upon how things go wrong (Safety I) but are now being encouraged to include more of the study of how things go right (Safety II). Human Factors/Ergonomics (HFE) science has been used in many industries to preserve worker wellbeing and improve system performance. Patient safety is a product of good system performance. HFE science helps inform mechanisms behind Safety I and II approach. HFE concepts augment existing burnout and safety interventions by providing a conceptual roadmap to follow that can inform how to improve the multiple human/technology, human/system, and human/work environment interfaces that comprise healthcare delivery. Healthcare leaders, by their influence over culture, resource allocation, and implementation of requirements and workflows are uniquely poised to be effective mitigators of the conditions leading to clinician burnout and latent medical error. Basic knowledge of HFE science is a strategic advantage to leaders and individuals tasked with achieving quality of care, controlling costs, and improving the experiences of receiving and providing care.
文摘The modem tramway has resurfaced as the cure to today's urban transport problems such as pollution, road congestion and uneven access to transit. However, trams at intersections often experience frequent and extended delays due to vehicles crossing the tram tracks. There is an increased potential for conflict between trams and vehicles at these locations and crashes are common. The question of the effects of human factors on trams crossroads safety has been little dealt with in literature. The general aim of this article is to further knowledge about the influence of tramway and surrounding environment on car's driver behavior at intersections. Understanding these influences, involve conducting a systematic review of the cognitive tasks related to driving and identifying the hazards that can arise at each task, and what factors can make these more or less likely to arise, considering the environmental design at intersections and behavioral factors. To achieve that, the HAZOP (Hazard and Operability Study) approach is conducted for this study. Concerning data collection, the methodology includes site visits to record user behavior and questionnaires to determine the opinion, concerns and knowledge of car drivers in interaction with the tram environment.
文摘The majority of errors in healthcare are from systems factors that create the latent conditions for error to occur. The majority of occupational stressors causing burnout are also the result of systemic factors. Advances in technology create new levels of stress and expectations on healthcare workers (HCW) with an endless infusion of requirements from multiple authoritative sources that are tracked and monitored. The quality of care and safety of patients is affected by the wellbeing of HCWs who now practice in an environment that has become more complex to navigate, often expending limited neural resource (brainpower) on classifying, organizing, constantly making decisions on how and when they can accomplish what is required(extraneous cognitive load) in addition to direct patient care. New information demonstrates profound biological impact on the brains of those who have burnout in areas that affect the quality and safety of the decisions they make-which affects risk to patients in healthcare. Healthcare administration curriculum currently does not include ways to address these stress-induced problems in healthcare delivery. The science of human factors and ergonomics (HFE) promotes system performance and worker wellbeing. Patient safety is one component of system performance. Since many requirements come without resource to accomplish them, it becomes incumbent upon health system leadership to organize the means for completion of these to minimize the needless loss of brain power diverted away from the delivery of patient care. Human Factor-Based Leadership (HFBL) is an interactive, problem solving seminar series designed for healthcare leaders. The purpose is to provide relevant human factor science to integrate into their leadership and management decisions to make HCWs occupational environment more manageable and sustainable-which makes safer conditions for clinician wellbeing and patient care. After learning the content, a cohort of healthcare leaders believed that adequately addressing HFE in healthcare delivery would significantly reduce clinician burnout and risk of latent errors from upstream leadership decisions. An overview of the content of the seminars is described. Leadership feedback on usability of these seminars is reported. Three HFBL seminars described are Human Factor Relevance in Leadership, Biopsychosocial Approach to Wellness and Burnout, Human Factor Based Leadership: Examples and Applications.
文摘Different programming languages can be used for discrete, abstract and process-oriented programming. Depending on the application, there exist additional requirements, which are not fulfilled by every programming language. Flexible programming and maintainability are especially important requirements for process engineers. In this paper, the programming languages Activity Diagram, State Chart Diagram and Sequential Function Chart are compared and evaluated with regard to these requirements. This evaluation is based on the principles of cognitive effectiveness and cognitive dimensions. The aim of this paper is to identify the programming language suited best for controlling sequential processes, e.g. thermomechanical or batch processes.