We present an experimental demonstration of the rotation measurement using a compact cold atom gyroscope. Atom interference fringes are observed in the stationary frame and the rotating frame, respectively. The phase ...We present an experimental demonstration of the rotation measurement using a compact cold atom gyroscope. Atom interference fringes are observed in the stationary frame and the rotating frame, respectively. The phase shift and contrast of the interference fringe are experimentally investigated. The results show that the contrast of the interference fringe is well held when the platform is rotated, and the phase shift of the interference fringe is linearly proportional to the rotation rate of the platform. The long-term stability, which is evaluated by the overlapped Allan deviation, is 8.5 × 10^-6 rad/s over the integrating time of 1000s.展开更多
This paper has developed and characterized a method to produce a velocity-tunable ^87Rb cold atomic source for atomic interferometry application. Using a high speed fluorescence imaging technology, it reports that the...This paper has developed and characterized a method to produce a velocity-tunable ^87Rb cold atomic source for atomic interferometry application. Using a high speed fluorescence imaging technology, it reports that the dynamic process of the atomic source formation is observed and the source performances including the flux and the initial velocity are characterized. A tunable atomic source with the initial velocity of 1.4-2.6 m/s and the atomic source flux of 2× 10^8 - 6 × 10^9 atoms/s has been obtained with the built experimental setup.展开更多
When the cold atom clock operates in microgravity around the near-earth orbit, its performance will be affected by the fluctuation of magnetic field. A strategy is proposed to suppress the fluctuation of magnetic fiel...When the cold atom clock operates in microgravity around the near-earth orbit, its performance will be affected by the fluctuation of magnetic field. A strategy is proposed to suppress the fluctuation of magnetic field by additional coils, whose current is changed accordingly to compensate the magnetic fluctuation by the linear and incremental compensation. The flight model of the cold atom clock is tested in a simulated orbital magnetic environment and the magnetic field fluctuation in the Ramsey cavity is reduced from 17 nT to 2 nT, which implied the uncertainty due to the second order Zeeman shift is reduced to be less than 2×10^(-16). In addition, utilizing the compensation, the magnetic field in the trapping zone can be suppressed from 7.5 μT to less than 0.3 μT to meet the magnetic field requirement of polarization gradients cooling of atoms.展开更多
The scale factor of a superconducting gravimeter(SG) is usually calibrated by using simultaneous and co-located gravity measurements with the FG5-type absolute gravimeter(AG). In this paper, another new kind of absolu...The scale factor of a superconducting gravimeter(SG) is usually calibrated by using simultaneous and co-located gravity measurements with the FG5-type absolute gravimeter(AG). In this paper, another new kind of absolute gravimetercold atom gravimeter(CAG) is first reported to calibrate the SG. Five-day side-by-side gravity measurements have been carried out by using our CAG(NIM-AGRb-1) to calibrate the SG(iGrav-012) located at Changping Campus of the National Institute of Metrology(NIM) of China. A weighted least-squares method is applied to determine the scale factor and the result is given as(-928.01 ± 0.73) nm·s^(-2)·V^(-1) with a precision of 0.79‰. We have demonstrated that a calibration precision of 1‰ level can be achieved after 3 days of parallel observations at spring tide. The obtained calibration results are then compared with the previous calibration by FG5 X-249, which shows that the calibration precision obtained by using NIM-AGRb-1 was slightly higher than FG5 X-249 with the same time interval. The factors affecting the calibration precision are analyzed in the calibrations by means of different AGs. Finally, several calibration experiments for SG iGrav-012 are discussed. The final scale factor is estimated as(-927.58 ± 0.36) nm·s^(-2)·V^(-1) with an accuracy of 0.39‰. Our main results demonstrate that the CAGs can be used for high-precision calibrations of SGs.展开更多
We propose a novel scheme to guide neutral cold atoms in a nanoscale region based on surface plasmons (SPs) of one pair and two pairs of tips of metallic wedges with locally enhanced light intensity and sub-optical ...We propose a novel scheme to guide neutral cold atoms in a nanoscale region based on surface plasmons (SPs) of one pair and two pairs of tips of metallic wedges with locally enhanced light intensity and sub-optical wavelength resolution. We analyze the near-field intensity distribution of the tip of the metallic wedge by the FDTD method, and study the total intensity as well as the total potential of optical potentials and van der Waals potentials for 87 Rb atoms in the light field of one pair and two pairs of tips of metallic wedges. It shows that the total potentials of one pair and two pairs of tips of metallic wedges can generate a gravito-optical trap and a dark closed trap for nanoscale guiding of neutral cold atoms. Guided atoms can be cooled with efficient intensity-gradient Sisyphus cooling by blue-detuned light field. This provides an important step towards the generation of hybrid systems consisting of isolated atoms and solid devices.展开更多
We have established a caesium double magneto-optical trap (MOT) system for cavity-QED experiment, and demonstrated the continuous transfer of cold caesium atoms from the vapour-cell MOT with a pressure of - 1 ×...We have established a caesium double magneto-optical trap (MOT) system for cavity-QED experiment, and demonstrated the continuous transfer of cold caesium atoms from the vapour-cell MOT with a pressure of - 1 × 10^-6 Pa to the ultra-high-vacuum (UHV) MOT with a pressure of - 8 × 10^-8 Pa via a focused continuous-wave transfer laser beam. The effect of frequency detuning as well as the intensity of the transfer beam is systematically investigated, which makes the transverse cooling adequate before the atoms leak out of the vapour-cell MOT to reduce divergence of the cold atomic beam. The typical cold atomic flux got from vapour-cell MOT is - 2 × 10^7 atoms/s. About 5 × 10^6 caesium atoms are recaptured in the UHV MOT.展开更多
We report an experimental demonstration of a new scheme to split cold atoms on an atom chip. The atom chip consists of a U-wire and a Z-wire. The cold atom cloud is initially loaded and prepared in the Z-trap, which i...We report an experimental demonstration of a new scheme to split cold atoms on an atom chip. The atom chip consists of a U-wire and a Z-wire. The cold atom cloud is initially loaded and prepared in the Z-trap, which is split into two separate parts by switching on the current of the U-wire. The two separate atom clouds have a distance more than one millimeter apart from each other and show almost symmetrical profiles, corresponding to about a 50/50 splitting ratio.展开更多
This work experimentally demonstrates a new method of optimizing the transport of cold atoms via modulating the velocity profile imposed on a magnetic quadrupole trap.The trap velocity and corresponding modulation are...This work experimentally demonstrates a new method of optimizing the transport of cold atoms via modulating the velocity profile imposed on a magnetic quadrupole trap.The trap velocity and corresponding modulation are controlled by varying the currents of two pairs of anti-Helmholtz coils.Cold 87Rb atoms are transported in a non-adiabatic regime over 22 mm in 200 ms.For the transported atoms their final-vibration amplitude dependences of modulation period number,depth,and initial phase are investigated.With modulation period n = 5,modulation depth K = 0.55,and initial phase φ = 0,cold atom clouds with more atom numbers,smaller final-vibration amplitude,and lower temperature are efficiently transported.Theoretical analysis and numerical simulation are also provided,which are in good agreement with experimental results.展开更多
We present a scheme for generating a ring magnetic waveguide on a single-layer atom chip. The wire layout consists of two interleaved Archimedean spirals of the same size. The waveguide avoids the trapping perturbatio...We present a scheme for generating a ring magnetic waveguide on a single-layer atom chip. The wire layout consists of two interleaved Archimedean spirals of the same size. The waveguide avoids the trapping perturbation caused by the input and output ports, resulting in an enclosed guiding loop for neutral atoms in weak-field seeking states. Such a configuration can create a tight and deep trap potential with a small current. Taking the [F = 2, mF =2} state of 87Rb as an example, the trap frequency and depth are estimated to be 18kHz and 335 μK, respectively, with adc current of 2 A.展开更多
We implement optical pumping to prepare cold atoms in our prototype of the ST Rb space cold atom clock, which operates in the one-way mode. Several modifications are made on our previous physical and optical system. T...We implement optical pumping to prepare cold atoms in our prototype of the ST Rb space cold atom clock, which operates in the one-way mode. Several modifications are made on our previous physical and optical system. The effective atomic signal in the top detection zone is increased to 2.5 times with 87% pumping efficiency. The temperature of the cold atom cloud is increased by 1.4 μK. We study the dependences of the effective signal gain and pumping efficiency on the pumping laser intensity and detuning. The effects of σ transition are discussed. This technique may be used in the future space cold atom clocks.展开更多
Two methods of absorption imaging to detect cold atoms in a magnetic trap are implemented for a high-precision cold atom interferometer.In the first method,a probe laser which is in resonance with a cycle transition f...Two methods of absorption imaging to detect cold atoms in a magnetic trap are implemented for a high-precision cold atom interferometer.In the first method,a probe laser which is in resonance with a cycle transition frequency is used to evaluate the quantity and distribution of the atom sample.In the second method,the probe laser is tuned to an open transition frequency,which stimulates a few and constant number of photons per atom.This method has a shorter interaction time and results in absorption images which are not affected by the magnetic field and the light field.We make a comparison of performance between these two imaging methods in the sense of parameters such as pulse duration,light intensity,and magnetic field strength.The experimental results show that the second method is more reliable when detecting the quantity and density profiles of the atoms.These results fit well to the theoretical analysis.展开更多
A model has been established for the interaction between a single-mode optical field and a 2-energy-level cold atom with exact analytic solutions given. The processes of momentum and energy exchanges between the optic...A model has been established for the interaction between a single-mode optical field and a 2-energy-level cold atom with exact analytic solutions given. The processes of momentum and energy exchanges between the optical field and the cold atom due to the interaction between them are discussed in detail, and a formula has been given for the variation of momentum and energy exchange volumes with time t in dress state while both the effects of photon recoil and Doppler effect are taken into consideration.展开更多
We designed, assembled, and tested a reliable laser system for ^(87)Rb cold atom fountain clocks. The laser system is divided into four modules according to function, which are convenient for installing, adjusting, ma...We designed, assembled, and tested a reliable laser system for ^(87)Rb cold atom fountain clocks. The laser system is divided into four modules according to function, which are convenient for installing, adjusting, maintaining, and replacing of the modules. In each functional module, all optical components are fixed on a baseplate with glue and screws, ensuring the system's structural stability. Mechanical stability was verified in a 6.11g RMS randomvibration test, where the change in output power before and after vibration was less than 5%. Thermal stability was realized by optimizing of the structure and appropriate selection of component materials of the modules through thermal simulation. In the laser splitting and output module, the change in laser power was less than 20% for each fiber in thermal cycles from 5℃ to 43℃. Finally,the functionality of the laser system was verified for a rubidium fountain clock.展开更多
The evolution of two-component cold atoms on a ring with spin-orbit coupling has been studied analytically for the case with N noninteracting particles. Then, the effect of interaction is evaluated numerically via a t...The evolution of two-component cold atoms on a ring with spin-orbit coupling has been studied analytically for the case with N noninteracting particles. Then, the effect of interaction is evaluated numerically via a two-body system. Two cases are considered: (i) Starting from a ground state the evolution is induced by a sudden change of the laser field, and (ii) the evolution starting from a superposition state. Oscillating persistent spin-currents have been found. A set of formulae have been derived to describe the period and amplitude of the oscillation. Based on these formulae the oscillation can be well controlled via adjusting the parameters of the laser beams. In particular, it is predicted that movable stripes might emerge on the ring.展开更多
In this paper, ultracold atoms and molecules in a dark magneto-optical trap (MOT) are studied via depumping the cesium cold atoms into the dark hyperfine ground state. The collision rate is reduced to 0.45 s-1 and t...In this paper, ultracold atoms and molecules in a dark magneto-optical trap (MOT) are studied via depumping the cesium cold atoms into the dark hyperfine ground state. The collision rate is reduced to 0.45 s-1 and the density of the atoms is increased to 5.6 × 1011 cm-3 when the fractional population of the atoms in the bright hyperfine ground state is as low as 0.15. The vibrational spectra of the ultracold cesium molecules are also studied in a standard MOT and in a dark MOT separately. The experimental results are analyzed by using the perturbative quantum approach.展开更多
We show that it is possible to simulate an anyon by a trapped atom which possesses an induced electric dipole moment in the background of electric and magnetic fields in a specific configuration.The electric and magne...We show that it is possible to simulate an anyon by a trapped atom which possesses an induced electric dipole moment in the background of electric and magnetic fields in a specific configuration.The electric and magnetic fields we applied contain a magnetic and two electric fields.We find that when the atom is cooled down to the limit of the negligibly small kinetic energy,the atom behaves like an anyon because its angular momentum takes fractional values.The fractional part of the angular momentum is determined by both the magnetic and one of the electric fields.Roles electric and magnetic fields played are analyzed.展开更多
The Dick effect is an important factor limiting the frequency stability of sequentially-operating atomic frequency standards. Here we study the impact of the Dick effect in the integrating sphere cold atom clock (IS...The Dick effect is an important factor limiting the frequency stability of sequentially-operating atomic frequency standards. Here we study the impact of the Dick effect in the integrating sphere cold atom clock (ISCAC). To reduce the impact of the Dick effect, a 5 MHz local oscillator with ultra-low phase noise is selected and a new microwave synthesizer is built in-house. Consequently, the phase noise of microwave signal is optimized. The contribution of the Dick effect is reduced to 2.5× 10^-13τ-1/2 (3- is the integrating time). The frequency stability of 4.6 × 10-13τ-1/2 is achieved. The development of this optimization can promote the space applications of the compact ISCA C.展开更多
We present a cold atom system with a dark-line two-dimensional magneto-optical trap, to increase the atomic density by suppressing the atomic radiation pressure. Optical depth (OD) and duty cycle are used to evaluat...We present a cold atom system with a dark-line two-dimensional magneto-optical trap, to increase the atomic density by suppressing the atomic radiation pressure. Optical depth (OD) and duty cycle are used to evaluate the system performance. We demonstrate a 100% increase in OD with the dark line, and obtain an ultrahigh OD of 264 with 10% for the duty cycle. Also, with an efficient dark line region, the OD could maintain above i00 with duty cycle as high as 30%. The cold atomic ensemble with an ultrahigh OD with a 10%-30% duty cycle is particularly advantageous in quantum i^formation processing and communication.展开更多
We develop an integrated integrating sphere cold atom clock(ISCAC), which mainly consists of physical package,laser system, microwave source, and electronics.This compact system is more stable and reliable than the pr...We develop an integrated integrating sphere cold atom clock(ISCAC), which mainly consists of physical package,laser system, microwave source, and electronics.This compact system is more stable and reliable than the previous version.The experimental results show that the short term frequency stability of 5.4×10^-13τ-1/2 and 2.9× 10^-15 at 1-day integrating time are achieved.展开更多
We propose a method to directly measure phase-related noise characteristics of single-frequency lasers in the 728–980 nm band based on a 120°phase difference interferometer.Differential phase information of the ...We propose a method to directly measure phase-related noise characteristics of single-frequency lasers in the 728–980 nm band based on a 120°phase difference interferometer.Differential phase information of the laser under test is demodulated via the interferometer.Other parameters related to the phase noise characteristics such as linewidth at different observation time, phase/frequency noise, power spectrum density of phase/frequency fluctuation, and Allan deviation are further obtained.Frequency noise as low as 1 Hz^2/Hz can be measured using our system.Then the phase-related noise characteristics of two commercial lasers frequently used in cold atomic clocks are studied systematically by the method.Furthermore, several influencing factors and their relative evolution laws are also revealed, such as the pump current and frequency-locking control parameters.This would help to optimize the laser performance, select laser sources, and evaluate the system performance for cold atomic physics applications.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 11227083 and 91536221
文摘We present an experimental demonstration of the rotation measurement using a compact cold atom gyroscope. Atom interference fringes are observed in the stationary frame and the rotating frame, respectively. The phase shift and contrast of the interference fringe are experimentally investigated. The results show that the contrast of the interference fringe is well held when the platform is rotated, and the phase shift of the interference fringe is linearly proportional to the rotation rate of the platform. The long-term stability, which is evaluated by the overlapped Allan deviation, is 8.5 × 10^-6 rad/s over the integrating time of 1000s.
基金supported in part by National Natural Science Foundation of China (Grant No 50775127/E0525)National Basic Research Specialized Program of China (Grant No 2007CB306504)
文摘This paper has developed and characterized a method to produce a velocity-tunable ^87Rb cold atomic source for atomic interferometry application. Using a high speed fluorescence imaging technology, it reports that the dynamic process of the atomic source formation is observed and the source performances including the flux and the initial velocity are characterized. A tunable atomic source with the initial velocity of 1.4-2.6 m/s and the atomic source flux of 2× 10^8 - 6 × 10^9 atoms/s has been obtained with the built experimental setup.
基金Project supported by the Ministry of Science and Technology of China(Grant No.2013YQ09094304)the Youth Innovation Promotion Association,Chinese Academy of Sciencesthe National Natural Science Foundation of China(Grant Nos.11034008 and 11274324)
文摘When the cold atom clock operates in microgravity around the near-earth orbit, its performance will be affected by the fluctuation of magnetic field. A strategy is proposed to suppress the fluctuation of magnetic field by additional coils, whose current is changed accordingly to compensate the magnetic fluctuation by the linear and incremental compensation. The flight model of the cold atom clock is tested in a simulated orbital magnetic environment and the magnetic field fluctuation in the Ramsey cavity is reduced from 17 nT to 2 nT, which implied the uncertainty due to the second order Zeeman shift is reduced to be less than 2×10^(-16). In addition, utilizing the compensation, the magnetic field in the trapping zone can be suppressed from 7.5 μT to less than 0.3 μT to meet the magnetic field requirement of polarization gradients cooling of atoms.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2016YFF0200103 and 2016YFF0200200)the Fundamental Research Funds for National Institute of Metrology,China(Grant No.22-AKY1608)
文摘The scale factor of a superconducting gravimeter(SG) is usually calibrated by using simultaneous and co-located gravity measurements with the FG5-type absolute gravimeter(AG). In this paper, another new kind of absolute gravimetercold atom gravimeter(CAG) is first reported to calibrate the SG. Five-day side-by-side gravity measurements have been carried out by using our CAG(NIM-AGRb-1) to calibrate the SG(iGrav-012) located at Changping Campus of the National Institute of Metrology(NIM) of China. A weighted least-squares method is applied to determine the scale factor and the result is given as(-928.01 ± 0.73) nm·s^(-2)·V^(-1) with a precision of 0.79‰. We have demonstrated that a calibration precision of 1‰ level can be achieved after 3 days of parallel observations at spring tide. The obtained calibration results are then compared with the previous calibration by FG5 X-249, which shows that the calibration precision obtained by using NIM-AGRb-1 was slightly higher than FG5 X-249 with the same time interval. The factors affecting the calibration precision are analyzed in the calibrations by means of different AGs. Finally, several calibration experiments for SG iGrav-012 are discussed. The final scale factor is estimated as(-927.58 ± 0.36) nm·s^(-2)·V^(-1) with an accuracy of 0.39‰. Our main results demonstrate that the CAGs can be used for high-precision calibrations of SGs.
基金the National Basic Research Program of China(Grant No.2011CB013004)the National Natural Science Foundation of China(Grant No.50975128)+1 种基金the Natural Science Foundation of Jiangsu Province,China(Grant No.BK2011462)the Postdoctoral Science Foundation of China(Grant No.20100481093)
文摘We propose a novel scheme to guide neutral cold atoms in a nanoscale region based on surface plasmons (SPs) of one pair and two pairs of tips of metallic wedges with locally enhanced light intensity and sub-optical wavelength resolution. We analyze the near-field intensity distribution of the tip of the metallic wedge by the FDTD method, and study the total intensity as well as the total potential of optical potentials and van der Waals potentials for 87 Rb atoms in the light field of one pair and two pairs of tips of metallic wedges. It shows that the total potentials of one pair and two pairs of tips of metallic wedges can generate a gravito-optical trap and a dark closed trap for nanoscale guiding of neutral cold atoms. Guided atoms can be cooled with efficient intensity-gradient Sisyphus cooling by blue-detuned light field. This provides an important step towards the generation of hybrid systems consisting of isolated atoms and solid devices.
基金Project supported by the Natural Science Foundation of China (Grant Nos 60578018 10434080, and 10374062), the Sino-Russia Joint Project (NSFC-RFBR), by the Key Scientific Project of the Education Ministry of China (Grant No 204019), the Cultivation Fund of the Key Scientific and Technical Innovation Project (Grant No 705010) and the Program for Innovative Research Team in University (IRT0516) from the Education Ministry of China, and also by the Research Funds for Youth Academic Leaders of Shanxi Province.
文摘We have established a caesium double magneto-optical trap (MOT) system for cavity-QED experiment, and demonstrated the continuous transfer of cold caesium atoms from the vapour-cell MOT with a pressure of - 1 × 10^-6 Pa to the ultra-high-vacuum (UHV) MOT with a pressure of - 8 × 10^-8 Pa via a focused continuous-wave transfer laser beam. The effect of frequency detuning as well as the intensity of the transfer beam is systematically investigated, which makes the transverse cooling adequate before the atoms leak out of the vapour-cell MOT to reduce divergence of the cold atomic beam. The typical cold atomic flux got from vapour-cell MOT is - 2 × 10^7 atoms/s. About 5 × 10^6 caesium atoms are recaptured in the UHV MOT.
基金supported by the State Key Basic Research Program of China(Grant No.2011CB921504)the National Natural Science Foundation of China(Grant No.91536107)
文摘We report an experimental demonstration of a new scheme to split cold atoms on an atom chip. The atom chip consists of a U-wire and a Z-wire. The cold atom cloud is initially loaded and prepared in the Z-trap, which is split into two separate parts by switching on the current of the U-wire. The two separate atom clouds have a distance more than one millimeter apart from each other and show almost symmetrical profiles, corresponding to about a 50/50 splitting ratio.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10974210)the National Basic Research Program of China (Grant No. 2011CB921504)
文摘This work experimentally demonstrates a new method of optimizing the transport of cold atoms via modulating the velocity profile imposed on a magnetic quadrupole trap.The trap velocity and corresponding modulation are controlled by varying the currents of two pairs of anti-Helmholtz coils.Cold 87Rb atoms are transported in a non-adiabatic regime over 22 mm in 200 ms.For the transported atoms their final-vibration amplitude dependences of modulation period number,depth,and initial phase are investigated.With modulation period n = 5,modulation depth K = 0.55,and initial phase φ = 0,cold atom clouds with more atom numbers,smaller final-vibration amplitude,and lower temperature are efficiently transported.Theoretical analysis and numerical simulation are also provided,which are in good agreement with experimental results.
基金Supported by the National Basic Research Program of China under Grant No 2001CB309307the National Natural Science Foundation of China under Grant Nos 10974210 and 10474105
文摘We present a scheme for generating a ring magnetic waveguide on a single-layer atom chip. The wire layout consists of two interleaved Archimedean spirals of the same size. The waveguide avoids the trapping perturbation caused by the input and output ports, resulting in an enclosed guiding loop for neutral atoms in weak-field seeking states. Such a configuration can create a tight and deep trap potential with a small current. Taking the [F = 2, mF =2} state of 87Rb as an example, the trap frequency and depth are estimated to be 18kHz and 335 μK, respectively, with adc current of 2 A.
基金Supported by the Fund from the Ministry of Science and Technology of China under Grant No 2013YQ09094304the Youth Innovation Promotion Association of Chinese Academy of Sciences
文摘We implement optical pumping to prepare cold atoms in our prototype of the ST Rb space cold atom clock, which operates in the one-way mode. Several modifications are made on our previous physical and optical system. The effective atomic signal in the top detection zone is increased to 2.5 times with 87% pumping efficiency. The temperature of the cold atom cloud is increased by 1.4 μK. We study the dependences of the effective signal gain and pumping efficiency on the pumping laser intensity and detuning. The effects of σ transition are discussed. This technique may be used in the future space cold atom clocks.
基金supported by the National Natural Science Foundation of China(Grant Nos.61227902 and 61121003)the National Defense Basic Scientific Research Program of China(Grant No.B2120132005)
文摘Two methods of absorption imaging to detect cold atoms in a magnetic trap are implemented for a high-precision cold atom interferometer.In the first method,a probe laser which is in resonance with a cycle transition frequency is used to evaluate the quantity and distribution of the atom sample.In the second method,the probe laser is tuned to an open transition frequency,which stimulates a few and constant number of photons per atom.This method has a shorter interaction time and results in absorption images which are not affected by the magnetic field and the light field.We make a comparison of performance between these two imaging methods in the sense of parameters such as pulse duration,light intensity,and magnetic field strength.The experimental results show that the second method is more reliable when detecting the quantity and density profiles of the atoms.These results fit well to the theoretical analysis.
文摘A model has been established for the interaction between a single-mode optical field and a 2-energy-level cold atom with exact analytic solutions given. The processes of momentum and energy exchanges between the optical field and the cold atom due to the interaction between them are discussed in detail, and a formula has been given for the variation of momentum and energy exchange volumes with time t in dress state while both the effects of photon recoil and Doppler effect are taken into consideration.
文摘We designed, assembled, and tested a reliable laser system for ^(87)Rb cold atom fountain clocks. The laser system is divided into four modules according to function, which are convenient for installing, adjusting, maintaining, and replacing of the modules. In each functional module, all optical components are fixed on a baseplate with glue and screws, ensuring the system's structural stability. Mechanical stability was verified in a 6.11g RMS randomvibration test, where the change in output power before and after vibration was less than 5%. Thermal stability was realized by optimizing of the structure and appropriate selection of component materials of the modules through thermal simulation. In the laser splitting and output module, the change in laser power was less than 20% for each fiber in thermal cycles from 5℃ to 43℃. Finally,the functionality of the laser system was verified for a rubidium fountain clock.
基金Project supported by the National Natural Science Foundation of China(Grant No.10874249)
文摘The evolution of two-component cold atoms on a ring with spin-orbit coupling has been studied analytically for the case with N noninteracting particles. Then, the effect of interaction is evaluated numerically via a two-body system. Two cases are considered: (i) Starting from a ground state the evolution is induced by a sudden change of the laser field, and (ii) the evolution starting from a superposition state. Oscillating persistent spin-currents have been found. A set of formulae have been derived to describe the period and amplitude of the oscillation. Based on these formulae the oscillation can be well controlled via adjusting the parameters of the laser beams. In particular, it is predicted that movable stripes might emerge on the ring.
基金Project supported by the National Basic Research Program of China (Grant No. 2012CB921603)the International Science & Technology Cooperation Program of China (Grant No. 2011DFA12490)+1 种基金the National Natural Science Foundation of China (Grant Nos.10934004,60978001,60978018,60808009,61078001,and 61008012)the Natural Science Foundation of Shanxi Province,China (Grant No. 2011011004)
文摘In this paper, ultracold atoms and molecules in a dark magneto-optical trap (MOT) are studied via depumping the cesium cold atoms into the dark hyperfine ground state. The collision rate is reduced to 0.45 s-1 and the density of the atoms is increased to 5.6 × 1011 cm-3 when the fractional population of the atoms in the bright hyperfine ground state is as low as 0.15. The vibrational spectra of the ultracold cesium molecules are also studied in a standard MOT and in a dark MOT separately. The experimental results are analyzed by using the perturbative quantum approach.
基金the National Natural Science Foundation of China(Grant No.11465006),20200981-SIP-IPN,and the CONACyT(Grant No.288856-CB-2016).
文摘We show that it is possible to simulate an anyon by a trapped atom which possesses an induced electric dipole moment in the background of electric and magnetic fields in a specific configuration.The electric and magnetic fields we applied contain a magnetic and two electric fields.We find that when the atom is cooled down to the limit of the negligibly small kinetic energy,the atom behaves like an anyon because its angular momentum takes fractional values.The fractional part of the angular momentum is determined by both the magnetic and one of the electric fields.Roles electric and magnetic fields played are analyzed.
基金Supported by the National Natural Science Foundation of China under Grant No 11604353the Youth Innovation Promotion Association of Chinese Academy of Sciences
文摘The Dick effect is an important factor limiting the frequency stability of sequentially-operating atomic frequency standards. Here we study the impact of the Dick effect in the integrating sphere cold atom clock (ISCAC). To reduce the impact of the Dick effect, a 5 MHz local oscillator with ultra-low phase noise is selected and a new microwave synthesizer is built in-house. Consequently, the phase noise of microwave signal is optimized. The contribution of the Dick effect is reduced to 2.5× 10^-13τ-1/2 (3- is the integrating time). The frequency stability of 4.6 × 10-13τ-1/2 is achieved. The development of this optimization can promote the space applications of the compact ISCA C.
基金Supported by the National Natural Science Foundation of China under Grant Nos 91436211 and 11204086the National Basic Research Program of China under Grant No 2011CB921604the Shanghai Science and Technology Committee under Grant No 13PJ1402100
文摘We present a cold atom system with a dark-line two-dimensional magneto-optical trap, to increase the atomic density by suppressing the atomic radiation pressure. Optical depth (OD) and duty cycle are used to evaluate the system performance. We demonstrate a 100% increase in OD with the dark line, and obtain an ultrahigh OD of 264 with 10% for the duty cycle. Also, with an efficient dark line region, the OD could maintain above i00 with duty cycle as high as 30%. The cold atomic ensemble with an ultrahigh OD with a 10%-30% duty cycle is particularly advantageous in quantum i^formation processing and communication.
基金Project supported by the Youth Innovation Promotion Association of the Chinese Academy of Sciences the National Natural Science Foundation of China(Grant Nos.61875215,61727821,and 11604353)
文摘We develop an integrated integrating sphere cold atom clock(ISCAC), which mainly consists of physical package,laser system, microwave source, and electronics.This compact system is more stable and reliable than the previous version.The experimental results show that the short term frequency stability of 5.4×10^-13τ-1/2 and 2.9× 10^-15 at 1-day integrating time are achieved.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61875214,61535014,and 61775225)Scientific Innovation Fund of Chinese Academy of Sciences(Grant No.CXJJ-17S010)
文摘We propose a method to directly measure phase-related noise characteristics of single-frequency lasers in the 728–980 nm band based on a 120°phase difference interferometer.Differential phase information of the laser under test is demodulated via the interferometer.Other parameters related to the phase noise characteristics such as linewidth at different observation time, phase/frequency noise, power spectrum density of phase/frequency fluctuation, and Allan deviation are further obtained.Frequency noise as low as 1 Hz^2/Hz can be measured using our system.Then the phase-related noise characteristics of two commercial lasers frequently used in cold atomic clocks are studied systematically by the method.Furthermore, several influencing factors and their relative evolution laws are also revealed, such as the pump current and frequency-locking control parameters.This would help to optimize the laser performance, select laser sources, and evaluate the system performance for cold atomic physics applications.