期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Simulation on an optimal combustion control strategy for 3-D temperature distributions in tangentially pc-fired utility boiler furnaces
1
作者 WANGXi-fen ZHOUHuai-chun 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2005年第2期305-308,共4页
The control of 3-D temperature distribution in a utility boiler furnace is essential for the safe, economic and clean operation of pc-fired furnace with multi-burner system. The development of the visualization of 3-... The control of 3-D temperature distribution in a utility boiler furnace is essential for the safe, economic and clean operation of pc-fired furnace with multi-burner system. The development of the visualization of 3-D temperature distributions in pc-fired furnaces makes it possible for a new combustion control strategy directly with the furnace temperature as its goal to improve the control quality for the combustion processes. Studied in this paper is such a new strategy that the whole furnace is divided into several parts in the vertical direction, and the average temperature and its bias from the center in every cross section can be extracted from the visualization results of the 3-D temperature distributions. In the simulation stage, a computational fluid dynamics(CFD) code served to calculate the 3-D temperature distributions in a furnace, then a linear model was set up to relate the features of the temperature distributions with the input of the combustion processes, such as the flow rates of fuel and air fed into the furnaces through all the burners. The adaptive genetic algorithm was adopted to find the optimal combination of the whole input parameters which ensure to form an optimal 3-D temperature field in the furnace desired for the operation of boiler. Simulation results showed that the strategy could soon find the factors making the temperature distribution apart from the optimal state and give correct adjusting suggestions. 展开更多
关键词 tangentially-fired boilers combustion control three-dimensional temperature distributions adaptive genetic algorithm
下载PDF
Controllable combustion behaviors of the laser-controlled solid propellant 被引量:1
2
作者 Bu-ren Duan Hao-nan Zhang +5 位作者 Li-zhi Wu Zuo-hao Hua Zi-jing Bao Ning Guo Ying-hua Ye Rui-qi Shen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第1期38-48,共11页
Microsatellites have been widely applied in the fields of communication,remote sensing,navigation and science exploration due to its characteristics of low cost,flexible launch mode and short development period.Howeve... Microsatellites have been widely applied in the fields of communication,remote sensing,navigation and science exploration due to its characteristics of low cost,flexible launch mode and short development period.However,conventional solid-propellant have difficulties in starting and interrupting combustion because combustion is autonomously sustained after ignition Herein,we proposed a new type of solid-propellant named laser-controlled solid propellant,which is sensitive to laser irradiation and can be started or interrupted by switching on/off the continuous wave laser.To demonstrate the feasibility and investigate the controllable combustion behaviors under different laser on/off conditions,the combus tion parameters including burning rate,ignition delay time and platform pressure were tested using pressure sensor,high-speed camera and thermographic camera.The results showed that the increase of laser-on or laser-off duration both will lead to the decrease of propellant combustion performance during re-ignition and re-combustion process.This is mainly attributed to the laser attenuation caused by the accumulation of combustion residue and the change of chamber ambient temperature.Simultaneously the multiple ignition tests revealed that the increased chamber ambient temperature after combustion can make up for the energy loss of laser attenuation and expansion of chamber cavity.However,the laser-controlled combustion performance of solid propellant displayed a decrease trend with the addi-tion of ignition times.Nevertheless,the results still exchibited good laser-controlled agility of laser-controlled solid propellant and manifested its inspiring potential in many aspects of space missions. 展开更多
关键词 Laser-con trolled solid propellant Laser ablation Multiple ignition controllable combustion combustion be haviors
下载PDF
Application and practice of regenerative combustion technology on radiant-tube furnace
3
作者 WANG Lu Baosteel and Nse automotive steel sheets Co.,Ltd.,Shanghai 200941,China 《Baosteel Technical Research》 CAS 2010年第S1期111-,共1页
High Temperature Air Combustion(HTAC) based on regenerative theory has been used in developed countries in recent years,it has many advantages such as efficient recovery of waste heat,high temperature preheating air,l... High Temperature Air Combustion(HTAC) based on regenerative theory has been used in developed countries in recent years,it has many advantages such as efficient recovery of waste heat,high temperature preheating air,low pollution discharge,and so on.This Technology can be used in various furnaces in mechanical,petroleum,chemical industry.To rebuild traditional radiant-tube combustion system with HTAC technology has become important.In the transformation process,The biggest difficulty encountered is that the stability of burner combustion and control system. Because the exhaust gas heat is absorbed by the regenerator,exhaust gas discharge can be controlled at a very low temperature to realize maximum waste heat recovery.At the same time,it improves the temperature uniformity and improve the heating intensity.Thermal efficiency of the device can reach more than 80%.And compared to the traditional air preheating,21.55%energy can be saved. Revamping on traditional radiant-tube combustion system is technically feasible,but a lot of problems will be involved since the rebuild work is on the old system,this article discusses on the main problem encountered in rebuild process in site. to optimize temperature control and obtain not so high exhaust gas temperature,digital combustion control system is necessary.This control loop consists of big loop and small loop,Big loop controls the load distribution of all burners in each heating zone.Small loop controls each heating zone burner's burning time. Compared performance of tradition radiant-tube heater with regenerative radiant-tube heater,result that regenerative radiant-tube heater have many advantage in consume fuel.Accordance with experience of replacing tradition radiant-tube heater with regenerative type,give a proposition in combustion control system, pilot burner,flame detection and prevent trouble to rebuild work of CAPL and CGL. It is recommended to use regenerative combustion technology in new annealing Line.Although the investment is 1/3 much more than the traditional combustion system,the energy saving effect is obvious and operating costs decreases.Revamping can be taken step by step according to different heating zones.Although taking a long time,it is safer and it influences the production less. Regenerative combustion burner revamping has become successful.However,the revamping work on different furnaces,particular on continuous annealing furnace with high request for temperature control,need further exploration and research. 展开更多
关键词 REGENERATIVE radiant-tube energy saving combustion control annealing furnace rebuild
下载PDF
The application of the regenerative combustion technology to a radiant-tube furnace and its practice
4
作者 WANG Lu 《Baosteel Technical Research》 CAS 2009年第3期41-46,共6页
This study compares the regenerative radiant-tube heater with the traditional radiant-tube heater, showing the regenerative radiant-tube heaters have many advantages in fuel consumption. Based on the experience of cha... This study compares the regenerative radiant-tube heater with the traditional radiant-tube heater, showing the regenerative radiant-tube heaters have many advantages in fuel consumption. Based on the experience of changing a heating system with traditional radiant-tube burners to a heating system with regenerative combustion, propositions are given for the combustion control system, pilot burner, flame detection and for trouble prevention in rebuilding the continuous annealing production line(CAPL) and the continuous galvanizing line(CGL). 展开更多
关键词 regenerative combustion technology radiant-tube ENERGY-SAVING combustion control annealing furnace revamping
下载PDF
Two-degree-of-freedom H-infinity control of combustion in diesel engine using a discrete dynamics model 被引量:2
5
作者 Mitsuo HIRATA Sota ISHIZUKI Masasyasu SUZUKI 《Control Theory and Technology》 EI CSCD 2017年第2期109-116,共8页
This paper proposes an H-infinity combustion control method for diesel engines. The plant model is the discrete dynamics model developed by Yasuda et al., which is implementable on a real engine control unit. We intro... This paper proposes an H-infinity combustion control method for diesel engines. The plant model is the discrete dynamics model developed by Yasuda et al., which is implementable on a real engine control unit. We introduce a two-degree-of-freedom control scheme with a feedback controller and a feedforward controller. This scheme achieves both good feedback properties, such as disturbance suppression and robust stability, and a good transient response. The feedforward controller is designed by taking the inverse of the static plant model, and the feedback controller is designed by the H-infinity control method, which reduces the effect of the trubocharger lag. The effectiveness of the proposed method is evaluated in simulations using the nonlinear discrete dynamics model. 展开更多
关键词 combustion control diesel engines H-infinity control two-degree-of-freedom control
原文传递
A Numerical Investigation on the Effects of Intake Swirl and Mixture Stratification on Combustion Characteristics in a Natural-Gas/Diesel Dual-Fuel Marine Engine
6
作者 YE Ying LIU Haifeng +6 位作者 LI Jingrui LIU Teng DONG Jingjin LIU Bo WU Chaohui YUE Zongyu YAO Mingfa 《Journal of Thermal Science》 SCIE EI CAS CSCD 2023年第1期414-426,共13页
Natural gas/diesel dual-fuel combustion strategy has a great potential to reduce emissions for marine engines while the high fuel consumption is the major problem.Pre-chamber system is commonly employed as the ignitio... Natural gas/diesel dual-fuel combustion strategy has a great potential to reduce emissions for marine engines while the high fuel consumption is the major problem.Pre-chamber system is commonly employed as the ignition system on large-bore dual-fuel marine engines especially under lean-burn condition,due to its advanced ignition stability and engine efficiency.However,the ignition and combustion mechanism in such dual-fuel pre-chamber engine is still unclear and the effects of in-cylinder swirl flow and mixture stratification on combustion require further investigation specifically.This paper numerically studied the detailed ignition mechanism and combustion process in a marine engine equipped with a pre-chamber ignition system,and revealed the flame development process in main chamber.Moreover,the effects of mixture stratification and swirl ratio on the combustion rate and further engine thermal efficiency are investigated under decoupled condition.The results mainly show that the jet flame develops along the pre-chamber orifice centerline at the initial stage and premixed combustion play an important role,while after that,heat release zone only exist at flame surface,and premixed flame propagation controls the combustion process.In addition,with higher swirl ratio the combustion rate increases significantly due to the wider ignition area.Mixture stratification degree plays a role in accelerating the combustion,either too high or too low stratification degree reduce the combustion rate,while a moderate stratification increases the combustion rate.And appropriate stratification degree by verifying the gas injection parameters can reduce fuel consumption in 0.3%. 展开更多
关键词 natural-gas/diesel dual fuel marine engine swirl ratio mixture stratification combustion control
原文传递
Reduction of Transient Engine-Out NO_(x)-Emissions by Advanced Digital Combustion Rate Shaping 被引量:1
7
作者 Daniel Neumann Lukas Schäfers +2 位作者 Paul Muthyala Jakob Andert Stefan Pischinger 《Automotive Innovation》 EI CSCD 2020年第2期181-190,共10页
Modern diesel passenger cars already fulfill high demands regarding the reduction in NOx emissions through complex exhaust aftertreatment systems.With the consideration of real driving emissions,the reduction in NOx e... Modern diesel passenger cars already fulfill high demands regarding the reduction in NOx emissions through complex exhaust aftertreatment systems.With the consideration of real driving emissions,the reduction in NOx emissions in high transient engine operation becomes even more challenging.Apart from increasing the complexity of exhaust aftertreatment systems,internal engine measures play a major role.The approach to reducing NOx emissions described in this paper uses the precise control of the combustion.For this purpose,the method of digital combustion rate shaping control is applied,which allows the realization of a predefined combustion by automatically adapting the injection profile during operation.Within this work,this controller is extended in order to control the predefined combustion trace based on target NOx values.First,the working principal of the state-of-the-art digital combusting rate shaping controller is explained.In the next step,the design and strategy of the extended control approach are explained and validated.Finally,its potential to reduce engine-out NOx emissions during transient driving situations is evaluated based on simulations of the WLTC.It is shown that the control concept fulfills the requirements and is able to effectively reduce high NOx peaks during transient operation. 展开更多
关键词 Diesel engine Emission control combustion rate shaping Closed loop combustion control NO_(x)control
原文传递
Simplified procedure for controlling pressure distribution of a scramjet combustor 被引量:2
8
作者 Cui Tao 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2014年第5期1137-1141,共5页
Scramjet engines are used at extreme temperatures and velocity. New control problems involving distributed parameter control have been found concerning investigations of the control of scramjet engines whose physical ... Scramjet engines are used at extreme temperatures and velocity. New control problems involving distributed parameter control have been found concerning investigations of the control of scramjet engines whose physical states are spatially interacted. Succeeding the existing theoretical studies on the distributed parameter control for scramjet engines, this paper puts forward a simplified distributed parameter control approach for scramjet engines aimed at engineering application. The simplified control procedure uses the classical proportional-integral(PI) compensation to control the target pressure distribution of scramjet engines, which is effective and applicable for practical implements. Simulation results show the validation of the simplified distributed parameter control procedure. 展开更多
关键词 Aeroengine control Modeling Scramjet engine Supersonic combustion
原文传递
Estimation and feedback control of air-fuel ratio for gasoline engines 被引量:3
9
作者 Madan KUMAR Tielong SHEN 《Control Theory and Technology》 EI CSCD 2015年第2期151-159,共3页
In 4-stroke internal combustion engines, air-fuel ratio control is a challenging task due to the rapid changes of engine throttle,especially during transient operation. To improve the transient performance, managing t... In 4-stroke internal combustion engines, air-fuel ratio control is a challenging task due to the rapid changes of engine throttle,especially during transient operation. To improve the transient performance, managing the cycle-to-cycle transient behavior of the mass of the air, the fuel and the burnt gas is a key issue due to the imbalance of cyclic combustion process. This paper address the model-based estimation and control problem for cyclic air-fuel ratio of spark-ignition engines. A discrete-time model of air-fuel ratio is proposed, which represents the cycle-to-cycle transient behavior of in-cylinder state variables under the assumptions of cyclic measurability of the total in-cylinder charge mass, combustion efficiency and the residual gas fraction. With the model,a Kalman filter-based air-fuel ratio estimation algorithm is proposed that enable us to perform a feedback control of air-fuel ratio without using lambda sensor. Finally, experimental validation result is demonstrated to show the effectiveness of proposed estimation and control scheme that is conducted on a full-scaled gasoline engine test bench. 展开更多
关键词 Discrete-time model AFR estimation using Kalman filter in-cylinder charge combustion efficiency PI controller
全文增补中
上一页 1 下一页 到第
使用帮助 返回顶部