A theoretical analysis of upward deflection and midspan deflection of prestressed bamboo-steel composite beams is presented in this study.The deflection analysis considers the influences of interface slippage and shea...A theoretical analysis of upward deflection and midspan deflection of prestressed bamboo-steel composite beams is presented in this study.The deflection analysis considers the influences of interface slippage and shear deformation.Furthermore,the calculation model for flexural capacity is proposed considering the two stages of loading.The theoretical results are verified with 8 specimens considering different prestressed load levels,load schemes,and prestress schemes.The results indicate that the proposed theoretical analysis provides a feasible prediction of the deflection and bearing capacity of bamboo-steel composite beams.For deflection analysis,the method considering the slippage and shear deformation provides better accuracy.The theoretical method for bearing capacity matches well with the test results,and the relative errors in the serviceability limit state and ultimate limit state are 4.95%and 5.85%,respectively,which meet the accuracy requirements of the engineered application.展开更多
Based on the experimental study and inelastic theory, the ultimate flexuralcapacity of steel encased concrete composite beams are derived. The difference between steel encasedconcrete composite beams with full shear c...Based on the experimental study and inelastic theory, the ultimate flexuralcapacity of steel encased concrete composite beams are derived. The difference between steel encasedconcrete composite beams with full shear connection and beams with partial shear connection,together with the relationship between the inelastic neutral axis of steel parts and concrete parts,are considered in the formulae. The calculation results of the eight specimens with full shearconnection and the three specimens with partial shear connection are in good agreement with theexperimental data, which validates the effectiveness and efficiency of the proposed calculationmethods. Furthermore, the nonlinear finite element analysis of the ultimate flexural capacity of thesteel encased concrete composite beams is performed. Nonlinear material properties and nonlinearcontact properties are considered in the finite element analysis. The finite element analyticalresults also correlate well with the experimental data.展开更多
Static load tests and bearing capacity analyses are carried out for two outer-plated steel-concrete continuous composite beams. The load-deflection curve and the load-strain curve of specimens are obtained and analyze...Static load tests and bearing capacity analyses are carried out for two outer-plated steel-concrete continuous composite beams. The load-deflection curve and the load-strain curve of specimens are obtained and analyzed. The test results indicate that effective cooperation can be achieved by the shearresistant connection between the reinforcement in the negative moment area and the outer-plated steel beam, and the overall working performance of the composite beams is favorable. At the load-bearing limiting state, the plastic strain on the maximum negative and positive moment section becomes fully developed so as to form relatively ideal plastic hinges. With the increase in the reinforcement ratio, the moment-carrying capacity of the composite beams improves significantly, but the ductility of the beams and the rotation ability of the plastic hinges decrease. The formulae for calculating the limit bending capacity in the negative moment area of outer-plated steel-concrete composite beams are proposed based on the test data. The calculated results agree well with the test results.展开更多
In order to establish the relationship between the measured dynamic response and the health status of long-span bridges, a double-layer model updating method for steel-concrete composite beam cable-stayed bridges is p...In order to establish the relationship between the measured dynamic response and the health status of long-span bridges, a double-layer model updating method for steel-concrete composite beam cable-stayed bridges is proposed. Measured frequencies are selected as the first-layer reference data, and the mass of the bridge deck, the grid density, the modulus of concrete and the ballast on the side span are modified by using a manual tuning technique. Measured global positioning system (GPS) data is selected as the second-layer reference data, and the degradation of the integral structure stiffness EI of the whole bridge is taken into account for the second-layer model updating by using the finite element iteration algorithm. The Nanpu Bridge in Shanghai is taken as a case to verify the applicability of the proposed model updating method. After the first-layer model updating, the standard deviation of modal frequencies is smaller than 7%. After the second-layer model updating, the error of the deflection of the mid-span is smaller than 10%. The integral structure stiffness of the whole bridge decreases about 20%. The research results show a good agreement between the calculated response and the measured response.展开更多
An engineered cementitious composite (ECC) is introduced to partially substitute concrete in the tension zone of a reinforced concrete beam to form an ECC/reinforced concrete (RC) composite beam, which can increas...An engineered cementitious composite (ECC) is introduced to partially substitute concrete in the tension zone of a reinforced concrete beam to form an ECC/reinforced concrete (RC) composite beam, which can increase the ductility and crack resisting ability of the beam. Based on the assumption of the plane remaining plane and the simplified constitutive models of materials, the stress and strain distributions along the depth of the composite beam in different loading stages are comprehensively investigated to obtain calculation methods of the load-carrying capacities for different stages. Also, a simplified formula for the ultimate load carrying capacity is proposed according to the Chinese code for the design of concrete structures. The relationship between the moment and curvature for the composite beam is also proposed together with a simplified calculation method for ductility of the ECC/RC composite beam. Finally, the calculation method is demonstrated with the test results of a composite beam. Comparison results show that the calculation results have good consistency with the test results, proving that the proposed calculation methods are reliable with a certain theoretical significance and reference value.展开更多
This paper describes an experimental study of the hysteretic behavior of prestressed truss concrete composite beams (PTCCBs) under cyclic loading. Five beam models were designed and tested, in which the testing para...This paper describes an experimental study of the hysteretic behavior of prestressed truss concrete composite beams (PTCCBs) under cyclic loading. Five beam models were designed and tested, in which the testing parameters include the global reinforcement index β0, the prestress level 2 and the ratio of stirrup ρsv in the potential plastic hinge zones. Based on the test results, the failure mode and hysteretic behavior of the tested models are obtained. In addition, the P-△ and sectional M-φ hysteretic models for the PTCCBs at the midspan are established. The P-△ hysteretic model shows good agreement with the test results.展开更多
Delaminations in composite laminates may de-velop from small cracks due to fabrication and impact load-ing,or from places of high stress concentration.The locationsof the delaminations are not determinate.In this rese...Delaminations in composite laminates may de-velop from small cracks due to fabrication and impact load-ing,or from places of high stress concentration.The locationsof the delaminations are not determinate.In this research,ananalytical solution for the free vibration of a composite beamwith two overlapping delaminations is presented.The dela-minated beam is analyzed as seven interconnected beamsusing the delaminations as their boundaries.The continuityand equilibrium conditions are satisfied between the adjoin-ing regions of the beams.Classical beam theory is applied toeach of the beams.Complex vibration behaviors emerge fordifferent sizes and locations of the delaminations.Compar-ison with analytical results reported in the literature verifiesthe validity of the present solution.展开更多
In order to enhance the durability of steel encased concrete beams, a new type of steel reinforced engineered cementitious composite(SRECC) beam composed of steel shapes, steel bars and ECC is proposed. The theoretica...In order to enhance the durability of steel encased concrete beams, a new type of steel reinforced engineered cementitious composite(SRECC) beam composed of steel shapes, steel bars and ECC is proposed. The theoretical analyses of the SRECC beam including crack propagation and stress-strain distributions along the depth of the composite beam in different loading stages are conducted. A theoretical model and simplified design method are proposed to calculate the load carrying capacity. Based on the proposed theoretical model, the relationship between the moment and corresponding curvature is derived. The theoretical results are verified with the finite element analysis. Finally, an extensive parametric study is performed to study the effect of the matrix type, steel shape ratio, reinforced bar ratio, ECC compressive strength and ECC tensile ductility on the mechanical behavior of SRECC beams. The results show that substitution concrete with ECC can effectively improve the bearing capacity and ductility of composite beams. The steel shape and longitudinal reinforcement can enhance the loading carrying capacity, while the ductility decreases with the increase of steel shape ratio. ECC compressive strength has significant effects on both load carrying capacity and ductility, and changing the ultimate strain of ECC results in a very limited variation in the mechanical behavior of SRECC beams.展开更多
Present investigation is concerned with the free vibration property of a beam with periodically variable cross-sections.For the special geometry characteristic,the beam was modelled as the combination of long equal-le...Present investigation is concerned with the free vibration property of a beam with periodically variable cross-sections.For the special geometry characteristic,the beam was modelled as the combination of long equal-length uniform Euler-Bernoulli beam segments and short equal-length uniform Timoshenko beam segments alternately.By using continuity conditions,the hybrid beam unit(ETE-B) consisting of Euler-Bernoulli beam,Timoshenko beam and Euler-Bernoulli beam in sequence was developed.Classical boundary conditions of pinned-pinned,clamped-clamped and clamped-free were considered to obtain the natural frequencies.Numerical examples of the equal-length composite beam with 1,2 and 3 ETE-B units were presented and compared with the equal-length and equal-cross-section Euler-Bernoulli beam,respectively.The work demonstrates that natural frequencies of the composite beam are larger than those of the Euler-Bernoulli beam,which in practice,is the interpretation that the inner-welded plate can strengthen a hollow beam.In this work,comparisons with the finite element calculation were presented to validate the ETE-B model.展开更多
Tests of 4 simply supported unbonded prestressed truss concrete composite beams encased with circular steel tube were carried out. It is found that the ratio of the stress increment of the unbonded tendon to that of t...Tests of 4 simply supported unbonded prestressed truss concrete composite beams encased with circular steel tube were carried out. It is found that the ratio of the stress increment of the unbonded tendon to that of the tensile steel tube is 0.252 during the using stage,and the average crack space of beams depends on the ratio of the sum of the bottom chord steel tube's outside diameter and the secondary bottom chord steel tube's section area to the effective tensile concrete area. The coefficient of uneven crack distribution is 1.68 and the formula for the calculation of crack width is established. Test results indicate that the ultimate stress increment of unbonded tendon in the beams decreases in linearity with the increase of the composite reinforcement index β0. The pure bending region of beams accords with the plane section assumption from loading to failure. The calculation formula of ultimate stress increment of the unbonded tendon and the method to calculate the bearing capacity of normal section of beams have been presented. Besides,the method to calculate the stiffness of this sort of beams is brought forward as well.展开更多
Proposes a simplified finite element model for steel-concrete composite beams. The effects of slip can be taken into account by creating a special matrix of shear connector stiffness and using the iteration method. Me...Proposes a simplified finite element model for steel-concrete composite beams. The effects of slip can be taken into account by creating a special matrix of shear connector stiffness and using the iteration method. Meanwhile, the effect of material non-linearity of steel and concrete on rigidity and strength of composite beams is considered. With the age-adjusted effective modulus method, the analysis for the whole process of shrinkage and creep under long-term load can be performed. The ultimate load, deflection, stress and slip of continuous composite beams under short-term and long-term load are computed using the proposed finite element model. The numerical results are compared with the experimental results and existing values based on other numerical methods, and are found to be in good agreement.展开更多
In this paper the alkali-activated slag cementitious materials(AASCM)which strength at 600 ℃ is larger than that of AASCM at room temperature,were prepared to paste CFRP sheets to strengthen four simply supported unb...In this paper the alkali-activated slag cementitious materials(AASCM)which strength at 600 ℃ is larger than that of AASCM at room temperature,were prepared to paste CFRP sheets to strengthen four simply supported unbonded prestressed composite beams encased circular steel tube truss after ultimate limit state.Test on flexural behavior of these four beams was performed.Moreover,normal section load-bearing capacity of these beams and the curve load-deflection at mid-span were obtained.Experimental results show that it is feasible to strengthen concrete members with CFRP sheets bonded with AASCM.Based on the experimental results and theoretical study,computational method of stiffness is proposed for calculating bending rigidity and normal section load-bearing capacity of concrete simply supported beams strengthened with CFRP sheets bonded with AASCM.Formula of bending rigidity calculation was founded which results are in good agreement with testing data.展开更多
This work experimentally investigates the effects of shear stud characteristics on the interface slippage of steel-concrete composite push-out specimens. ABAQUS is used to establish a detailed 3D finite element(FE) mo...This work experimentally investigates the effects of shear stud characteristics on the interface slippage of steel-concrete composite push-out specimens. ABAQUS is used to establish a detailed 3D finite element(FE) model and analyze the behavior of push-out specimens. The modeling results are in good agreement with the experimental results. Based on parametrical analysis using the validated FE approaches, the effects of important design parameters, such as the diameter, number, length to diameter ratio, and yield strength of studs, concrete strength and steel transverse reinforcement ratio, on the load-slip relationship at the interface of composite beams are discussed. In addition, a simplified approach to model studs is developed using virtual springs with an equivalent stiffness. This approach is demonstrated to be able to predict the load-displacement response and ultimate bearing capacity of steel-concrete composite beams. The predicted results show satisfactory agreement with experimental results from the literature.展开更多
In order to investigate shear carrying capacity of H-steel concrete beam with small shear span ratio,shear test on 5 H-steel concrete composite beams with small span ratio (from 0.7 to 1.1) are reported,including test...In order to investigate shear carrying capacity of H-steel concrete beam with small shear span ratio,shear test on 5 H-steel concrete composite beams with small span ratio (from 0.7 to 1.1) are reported,including test design,test scheme,test method,failure characteristics and test results. Influences of shear span ratio,web of H steel and concrete on shear carrying capacity of this kind of beam are investigated. The main components comprising shear bearing capacity are analyzed. The results show that with the shear span ratio increasing,the contribution of web of H steel and concrete on shear carrying capacity decrease. Based on test data,the calculation formula of shear carrying capacity for this beam is established by curve fitting.展开更多
The special reinforced concrete composite beam consists of a steel fiber reinforced self-stressing concrete composite layer and a reinforced concrete T-beam, and constructional bars are set up at their bonding interfa...The special reinforced concrete composite beam consists of a steel fiber reinforced self-stressing concrete composite layer and a reinforced concrete T-beam, and constructional bars are set up at their bonding interface. Fatigue properties of the composite beam under the action of negative moment were experimentally studied. Through inverted loading mode the load-beating state of a composite beam was simulated under the action of negative moment. With the ratios of constructional bars being 0, 0.082% and 0.164% respectively as parameters, the effects of constructional bars on the properties of composite beam, such as fatigue life, crack propagation, rigidity loss as well as damage behavior of bonding interface, were studied. The mechanism of the constructional bars on the fatigue properties of the composite beams and the restriction mechanism of crack widths and rigidity loss were analyzed. The test results show that the constructional bars can enhance the shear resistance of the bonding interface between composite layer and old concrete beam and restrict expanding of steel fiber reinforced self-stressing concrete, which are beneficial to synergistic action of composite layer and old concrete beam, to reducing the stress amplitude of bars and the crack width of composite layer, and to increasing the durability and fatigue life of the composite beam.展开更多
An experimental program was carried out to study the shear behavior of the reinforced concrete composite beam (RCCB) subjected to two-phase uniformly distributed load. A total of 12 reinforced concrete composite beams...An experimental program was carried out to study the shear behavior of the reinforced concrete composite beam (RCCB) subjected to two-phase uniformly distributed load. A total of 12 reinforced concrete composite beams were tested: 10 of them were the RCCB subjected to two-phase uniformly distributed load, the other 2 were the comparative reinforced concrete beams cast at the same time as the RCCB subjected to one-phase uniformly distributed load. The interface of precast unit and recast concrete was natural and rough. The test range of the main composite factors: the ratio of precast section depth to composite section depth was from 0.35 to 0.65, the ratio of first-phase load moment to precast section ultimate bearing moment was from 0.25 to 0.65. Based on the test results, the stresses of the longitudinal reinforcements and stirrups, the load-bearing properties of the interface, the crack state and the failure characteristics of the RCCB under uniformly distributed load are discussed. The effects of the stirrups, the concrete strength and the composite factors on the shear resistance of the RCCB are analyzed, and the method for evaluating the shear resistance of the RCCB is proposed.展开更多
A large-span steel–concrete composite beam with precast hollow core slabs(CBHCSs)is a relatively new floor structure that can be applied to various long-span structures.However,human-induced vibrations may present se...A large-span steel–concrete composite beam with precast hollow core slabs(CBHCSs)is a relatively new floor structure that can be applied to various long-span structures.However,human-induced vibrations may present serviceability issues in such structures.To alleviate vibrations,both the walking forces excited by humans and the associated floor responses must be elucidated.In this study,150 load–time histories of walking,excited by 25 test participants,are obtained using a force measuring plate.The dynamic loading factors and phase angles in the Fourier series functions for one-step walking are determined.Subsequently,walking tests are performed on seven CBHCS specimens to capture the essential dynamic properties of mode shapes,natural frequencies,damping ratios,and acceleration time histories.The CBHCS floor system generally exhibits a high frequency(>10 Hz)and low damping(damping ratio<2%).Sensitivity studies using the finite element method are conducted to investigate the vibration performance of the CBHCS floor system,where the floor thickness,steel beam type,contact time,and human weight are considered.Finally,analytical expressions derived for the fundamental frequency and peak acceleration agree well with the experimental results and are hence proposed for practical use.展开更多
The strain difference of steel and concrete under vertical concentrated load was analyzed on the basis of elastic theory, and was compared with ideal solution of steel and concrete under vertical uniform load. The res...The strain difference of steel and concrete under vertical concentrated load was analyzed on the basis of elastic theory, and was compared with ideal solution of steel and concrete under vertical uniform load. The results indicate that the computing formula concluded from the paper is believable. The practical structure usually bears concentrated load, so it can be used in the practical engineering.展开更多
The low velocity impact responses of shape memory alloy ( SMA ) reinforced composite beams were analyzed by employing the finite element method. The finite element dynamic equntion was solved by the Newmark direct i...The low velocity impact responses of shape memory alloy ( SMA ) reinforced composite beams were analyzed by employing the finite element method. The finite element dynamic equntion was solved by the Newmark direct integration method, the impact contact force was determined asing the Hertzian contact law, and the influence of SMA .fibers on stiffiwss matrix is studied. Numerical results show that the SMA fibers can effectively improve the low velocity impact response property of composite beam.展开更多
When service ducts and cables are required to pass through the structural beams,it is a common practical solution to use composite beams with rectangular or circular openings.The fire safety standards in many countrie...When service ducts and cables are required to pass through the structural beams,it is a common practical solution to use composite beams with rectangular or circular openings.The fire safety standards in many countries have recommended design methods for composite beams without openings,while the design method for composite beams with web openings is not addressed yet.Due to the complicated distribution of temperature and stress around the openings in the web of the steel beam,extra complexity has been introduced in determination of the structural capability of the beam and the failure mode in fire.These failure modes generally occur at lower limiting temperatures than the solid beam with same size.It is recognized that the thickness of a reactive coating required to provide a given fire resistance to a composite beam with web openings is affected by the beam’s web thickness,opening configuration,the degree of the beam asymmetry and the structural utilization factor,as well as the nature of the proprietary fire protection itself.Therefore it is necessary that such beams are structurally evaluated taking into account all possible modes of structural failure under both ambient and fire conditions.It is also necessary for additional thermal data to be measured around the web openings and on the web posts from fire tests.The additional thermal data will be used in conjunction with a structural model to determine limiting temperatures of beams with web openings.Steel Construction Institute(SCI)has produced a structural analysis model referenced as report RT1356,which divides a composite beam with web openings into different stress blocks,and then analyses the global bending,vertical shear,local Vierendeel bending,web-post buckling etc.The Association for Specialist Fire Protection(ASFP)recommended the test protocol in the Yellow Book,to determine the temperature distribution around the openings and web post.This paper will discuss a series of fire tests having been carried out in the laboratory of EXOVA Warringtonfire to establish temperature distribution in composite beams with web openings.Test result shows that the distribution of temperature is product specific and strongly affected by opening configuration and opening distance.EXOVA Warringtonfire has also developed a sophisticated calculator,ThermCalc,for analyzing temperature and structural following the method presented in RT1356.Using ThermCalc,parametric study has been carried out,and the effect of load utilization factor,opening size,opening distance,slab depth,decking configuration etc.was investigated.展开更多
基金supported by the National Natural Science Foundation of China(51978345,52278264).
文摘A theoretical analysis of upward deflection and midspan deflection of prestressed bamboo-steel composite beams is presented in this study.The deflection analysis considers the influences of interface slippage and shear deformation.Furthermore,the calculation model for flexural capacity is proposed considering the two stages of loading.The theoretical results are verified with 8 specimens considering different prestressed load levels,load schemes,and prestress schemes.The results indicate that the proposed theoretical analysis provides a feasible prediction of the deflection and bearing capacity of bamboo-steel composite beams.For deflection analysis,the method considering the slippage and shear deformation provides better accuracy.The theoretical method for bearing capacity matches well with the test results,and the relative errors in the serviceability limit state and ultimate limit state are 4.95%and 5.85%,respectively,which meet the accuracy requirements of the engineered application.
文摘Based on the experimental study and inelastic theory, the ultimate flexuralcapacity of steel encased concrete composite beams are derived. The difference between steel encasedconcrete composite beams with full shear connection and beams with partial shear connection,together with the relationship between the inelastic neutral axis of steel parts and concrete parts,are considered in the formulae. The calculation results of the eight specimens with full shearconnection and the three specimens with partial shear connection are in good agreement with theexperimental data, which validates the effectiveness and efficiency of the proposed calculationmethods. Furthermore, the nonlinear finite element analysis of the ultimate flexural capacity of thesteel encased concrete composite beams is performed. Nonlinear material properties and nonlinearcontact properties are considered in the finite element analysis. The finite element analyticalresults also correlate well with the experimental data.
文摘Static load tests and bearing capacity analyses are carried out for two outer-plated steel-concrete continuous composite beams. The load-deflection curve and the load-strain curve of specimens are obtained and analyzed. The test results indicate that effective cooperation can be achieved by the shearresistant connection between the reinforcement in the negative moment area and the outer-plated steel beam, and the overall working performance of the composite beams is favorable. At the load-bearing limiting state, the plastic strain on the maximum negative and positive moment section becomes fully developed so as to form relatively ideal plastic hinges. With the increase in the reinforcement ratio, the moment-carrying capacity of the composite beams improves significantly, but the ductility of the beams and the rotation ability of the plastic hinges decrease. The formulae for calculating the limit bending capacity in the negative moment area of outer-plated steel-concrete composite beams are proposed based on the test data. The calculated results agree well with the test results.
基金The Special Project of the Ministry of Construction ofChina (No.20060909).
文摘In order to establish the relationship between the measured dynamic response and the health status of long-span bridges, a double-layer model updating method for steel-concrete composite beam cable-stayed bridges is proposed. Measured frequencies are selected as the first-layer reference data, and the mass of the bridge deck, the grid density, the modulus of concrete and the ballast on the side span are modified by using a manual tuning technique. Measured global positioning system (GPS) data is selected as the second-layer reference data, and the degradation of the integral structure stiffness EI of the whole bridge is taken into account for the second-layer model updating by using the finite element iteration algorithm. The Nanpu Bridge in Shanghai is taken as a case to verify the applicability of the proposed model updating method. After the first-layer model updating, the standard deviation of modal frequencies is smaller than 7%. After the second-layer model updating, the error of the deflection of the mid-span is smaller than 10%. The integral structure stiffness of the whole bridge decreases about 20%. The research results show a good agreement between the calculated response and the measured response.
基金The National Natural Science Foundation of China(No. 50808043)the National Basic Research Program of China (973 Program) (No. 2009CB623200)Foundation of Jiangsu Key Laboratory of Construction Materials,Program for Special Talents in Six Fields of Jiangsu Province(No. 2011-JZ-010)
文摘An engineered cementitious composite (ECC) is introduced to partially substitute concrete in the tension zone of a reinforced concrete beam to form an ECC/reinforced concrete (RC) composite beam, which can increase the ductility and crack resisting ability of the beam. Based on the assumption of the plane remaining plane and the simplified constitutive models of materials, the stress and strain distributions along the depth of the composite beam in different loading stages are comprehensively investigated to obtain calculation methods of the load-carrying capacities for different stages. Also, a simplified formula for the ultimate load carrying capacity is proposed according to the Chinese code for the design of concrete structures. The relationship between the moment and curvature for the composite beam is also proposed together with a simplified calculation method for ductility of the ECC/RC composite beam. Finally, the calculation method is demonstrated with the test results of a composite beam. Comparison results show that the calculation results have good consistency with the test results, proving that the proposed calculation methods are reliable with a certain theoretical significance and reference value.
基金National Science and Technology Support Program Subtopics Under Grant No.2006BAJ03A10-07Changjiang Scholars Program of China
文摘This paper describes an experimental study of the hysteretic behavior of prestressed truss concrete composite beams (PTCCBs) under cyclic loading. Five beam models were designed and tested, in which the testing parameters include the global reinforcement index β0, the prestress level 2 and the ratio of stirrup ρsv in the potential plastic hinge zones. Based on the test results, the failure mode and hysteretic behavior of the tested models are obtained. In addition, the P-△ and sectional M-φ hysteretic models for the PTCCBs at the midspan are established. The P-△ hysteretic model shows good agreement with the test results.
文摘Delaminations in composite laminates may de-velop from small cracks due to fabrication and impact load-ing,or from places of high stress concentration.The locationsof the delaminations are not determinate.In this research,ananalytical solution for the free vibration of a composite beamwith two overlapping delaminations is presented.The dela-minated beam is analyzed as seven interconnected beamsusing the delaminations as their boundaries.The continuityand equilibrium conditions are satisfied between the adjoin-ing regions of the beams.Classical beam theory is applied toeach of the beams.Complex vibration behaviors emerge fordifferent sizes and locations of the delaminations.Compar-ison with analytical results reported in the literature verifiesthe validity of the present solution.
基金The National Natural Science Foundation of China(No.51778183)the National Key Research and Development Program of China(No.2016YFC0701907)the Distinguished Young Scholar Foundation of Jiangsu Province(No.BK20160027)
文摘In order to enhance the durability of steel encased concrete beams, a new type of steel reinforced engineered cementitious composite(SRECC) beam composed of steel shapes, steel bars and ECC is proposed. The theoretical analyses of the SRECC beam including crack propagation and stress-strain distributions along the depth of the composite beam in different loading stages are conducted. A theoretical model and simplified design method are proposed to calculate the load carrying capacity. Based on the proposed theoretical model, the relationship between the moment and corresponding curvature is derived. The theoretical results are verified with the finite element analysis. Finally, an extensive parametric study is performed to study the effect of the matrix type, steel shape ratio, reinforced bar ratio, ECC compressive strength and ECC tensile ductility on the mechanical behavior of SRECC beams. The results show that substitution concrete with ECC can effectively improve the bearing capacity and ductility of composite beams. The steel shape and longitudinal reinforcement can enhance the loading carrying capacity, while the ductility decreases with the increase of steel shape ratio. ECC compressive strength has significant effects on both load carrying capacity and ductility, and changing the ultimate strain of ECC results in a very limited variation in the mechanical behavior of SRECC beams.
基金Projects(51605138,U1508210)supported by the National Natural Science Foundation of ChinaProject(BK20160286)supported by the Natural Science Foundation of Jiangsu Province,ChinaProject(2015B30214)supported by the Fundamental Research Funds for the Central Universities,China
文摘Present investigation is concerned with the free vibration property of a beam with periodically variable cross-sections.For the special geometry characteristic,the beam was modelled as the combination of long equal-length uniform Euler-Bernoulli beam segments and short equal-length uniform Timoshenko beam segments alternately.By using continuity conditions,the hybrid beam unit(ETE-B) consisting of Euler-Bernoulli beam,Timoshenko beam and Euler-Bernoulli beam in sequence was developed.Classical boundary conditions of pinned-pinned,clamped-clamped and clamped-free were considered to obtain the natural frequencies.Numerical examples of the equal-length composite beam with 1,2 and 3 ETE-B units were presented and compared with the equal-length and equal-cross-section Euler-Bernoulli beam,respectively.The work demonstrates that natural frequencies of the composite beam are larger than those of the Euler-Bernoulli beam,which in practice,is the interpretation that the inner-welded plate can strengthen a hollow beam.In this work,comparisons with the finite element calculation were presented to validate the ETE-B model.
文摘Tests of 4 simply supported unbonded prestressed truss concrete composite beams encased with circular steel tube were carried out. It is found that the ratio of the stress increment of the unbonded tendon to that of the tensile steel tube is 0.252 during the using stage,and the average crack space of beams depends on the ratio of the sum of the bottom chord steel tube's outside diameter and the secondary bottom chord steel tube's section area to the effective tensile concrete area. The coefficient of uneven crack distribution is 1.68 and the formula for the calculation of crack width is established. Test results indicate that the ultimate stress increment of unbonded tendon in the beams decreases in linearity with the increase of the composite reinforcement index β0. The pure bending region of beams accords with the plane section assumption from loading to failure. The calculation formula of ultimate stress increment of the unbonded tendon and the method to calculate the bearing capacity of normal section of beams have been presented. Besides,the method to calculate the stiffness of this sort of beams is brought forward as well.
文摘Proposes a simplified finite element model for steel-concrete composite beams. The effects of slip can be taken into account by creating a special matrix of shear connector stiffness and using the iteration method. Meanwhile, the effect of material non-linearity of steel and concrete on rigidity and strength of composite beams is considered. With the age-adjusted effective modulus method, the analysis for the whole process of shrinkage and creep under long-term load can be performed. The ultimate load, deflection, stress and slip of continuous composite beams under short-term and long-term load are computed using the proposed finite element model. The numerical results are compared with the experimental results and existing values based on other numerical methods, and are found to be in good agreement.
基金Sponsored by the Changjiang Scholars Program of China(Grant No.2009-37)the National Natural Science Foundation of China(Grant No.50678050)
文摘In this paper the alkali-activated slag cementitious materials(AASCM)which strength at 600 ℃ is larger than that of AASCM at room temperature,were prepared to paste CFRP sheets to strengthen four simply supported unbonded prestressed composite beams encased circular steel tube truss after ultimate limit state.Test on flexural behavior of these four beams was performed.Moreover,normal section load-bearing capacity of these beams and the curve load-deflection at mid-span were obtained.Experimental results show that it is feasible to strengthen concrete members with CFRP sheets bonded with AASCM.Based on the experimental results and theoretical study,computational method of stiffness is proposed for calculating bending rigidity and normal section load-bearing capacity of concrete simply supported beams strengthened with CFRP sheets bonded with AASCM.Formula of bending rigidity calculation was founded which results are in good agreement with testing data.
基金Project(2011BAJ09B02)supported by the National Key Technology R&D Program,ChinaProjects(51578548,51378511,51678576)supported by the National Natural Science Foundation of China
文摘This work experimentally investigates the effects of shear stud characteristics on the interface slippage of steel-concrete composite push-out specimens. ABAQUS is used to establish a detailed 3D finite element(FE) model and analyze the behavior of push-out specimens. The modeling results are in good agreement with the experimental results. Based on parametrical analysis using the validated FE approaches, the effects of important design parameters, such as the diameter, number, length to diameter ratio, and yield strength of studs, concrete strength and steel transverse reinforcement ratio, on the load-slip relationship at the interface of composite beams are discussed. In addition, a simplified approach to model studs is developed using virtual springs with an equivalent stiffness. This approach is demonstrated to be able to predict the load-displacement response and ultimate bearing capacity of steel-concrete composite beams. The predicted results show satisfactory agreement with experimental results from the literature.
基金Sponsored by the National Key Technologies R&D Program of China during the 11th Five-Year Plan Period (Grant No.2006BAJ03A10)"New Century Excellent Talents in University"Scheme (Grant No.290)+2 种基金the National Natural Science Foundation of China(Grant No.50178026)the Natural Science Foundation of Heilongjiang Province-General Project (Grant No.E200806)the Foundation of Harbin Program (Grant No.2005AFXXJ017)
文摘In order to investigate shear carrying capacity of H-steel concrete beam with small shear span ratio,shear test on 5 H-steel concrete composite beams with small span ratio (from 0.7 to 1.1) are reported,including test design,test scheme,test method,failure characteristics and test results. Influences of shear span ratio,web of H steel and concrete on shear carrying capacity of this kind of beam are investigated. The main components comprising shear bearing capacity are analyzed. The results show that with the shear span ratio increasing,the contribution of web of H steel and concrete on shear carrying capacity decrease. Based on test data,the calculation formula of shear carrying capacity for this beam is established by curve fitting.
基金Project(50578027) supported by the National Natural Science Foundation of China
文摘The special reinforced concrete composite beam consists of a steel fiber reinforced self-stressing concrete composite layer and a reinforced concrete T-beam, and constructional bars are set up at their bonding interface. Fatigue properties of the composite beam under the action of negative moment were experimentally studied. Through inverted loading mode the load-beating state of a composite beam was simulated under the action of negative moment. With the ratios of constructional bars being 0, 0.082% and 0.164% respectively as parameters, the effects of constructional bars on the properties of composite beam, such as fatigue life, crack propagation, rigidity loss as well as damage behavior of bonding interface, were studied. The mechanism of the constructional bars on the fatigue properties of the composite beams and the restriction mechanism of crack widths and rigidity loss were analyzed. The test results show that the constructional bars can enhance the shear resistance of the bonding interface between composite layer and old concrete beam and restrict expanding of steel fiber reinforced self-stressing concrete, which are beneficial to synergistic action of composite layer and old concrete beam, to reducing the stress amplitude of bars and the crack width of composite layer, and to increasing the durability and fatigue life of the composite beam.
基金Part of the scientific research project(No.COE9401)sponsored by the Science Foundation of the State Key Laboratory of CoastalOffshore Engineering of Dalian University of Technology
文摘An experimental program was carried out to study the shear behavior of the reinforced concrete composite beam (RCCB) subjected to two-phase uniformly distributed load. A total of 12 reinforced concrete composite beams were tested: 10 of them were the RCCB subjected to two-phase uniformly distributed load, the other 2 were the comparative reinforced concrete beams cast at the same time as the RCCB subjected to one-phase uniformly distributed load. The interface of precast unit and recast concrete was natural and rough. The test range of the main composite factors: the ratio of precast section depth to composite section depth was from 0.35 to 0.65, the ratio of first-phase load moment to precast section ultimate bearing moment was from 0.25 to 0.65. Based on the test results, the stresses of the longitudinal reinforcements and stirrups, the load-bearing properties of the interface, the crack state and the failure characteristics of the RCCB under uniformly distributed load are discussed. The effects of the stirrups, the concrete strength and the composite factors on the shear resistance of the RCCB are analyzed, and the method for evaluating the shear resistance of the RCCB is proposed.
基金The authors acknowledge the financial support provided by the National Natural Science Foundation of China(51890902 and 51708058).
文摘A large-span steel–concrete composite beam with precast hollow core slabs(CBHCSs)is a relatively new floor structure that can be applied to various long-span structures.However,human-induced vibrations may present serviceability issues in such structures.To alleviate vibrations,both the walking forces excited by humans and the associated floor responses must be elucidated.In this study,150 load–time histories of walking,excited by 25 test participants,are obtained using a force measuring plate.The dynamic loading factors and phase angles in the Fourier series functions for one-step walking are determined.Subsequently,walking tests are performed on seven CBHCS specimens to capture the essential dynamic properties of mode shapes,natural frequencies,damping ratios,and acceleration time histories.The CBHCS floor system generally exhibits a high frequency(>10 Hz)and low damping(damping ratio<2%).Sensitivity studies using the finite element method are conducted to investigate the vibration performance of the CBHCS floor system,where the floor thickness,steel beam type,contact time,and human weight are considered.Finally,analytical expressions derived for the fundamental frequency and peak acceleration agree well with the experimental results and are hence proposed for practical use.
基金Project supported by the Science and Technology Development Project of Jilin Province (No. 20020631)
文摘The strain difference of steel and concrete under vertical concentrated load was analyzed on the basis of elastic theory, and was compared with ideal solution of steel and concrete under vertical uniform load. The results indicate that the computing formula concluded from the paper is believable. The practical structure usually bears concentrated load, so it can be used in the practical engineering.
文摘The low velocity impact responses of shape memory alloy ( SMA ) reinforced composite beams were analyzed by employing the finite element method. The finite element dynamic equntion was solved by the Newmark direct integration method, the impact contact force was determined asing the Hertzian contact law, and the influence of SMA .fibers on stiffiwss matrix is studied. Numerical results show that the SMA fibers can effectively improve the low velocity impact response property of composite beam.
文摘When service ducts and cables are required to pass through the structural beams,it is a common practical solution to use composite beams with rectangular or circular openings.The fire safety standards in many countries have recommended design methods for composite beams without openings,while the design method for composite beams with web openings is not addressed yet.Due to the complicated distribution of temperature and stress around the openings in the web of the steel beam,extra complexity has been introduced in determination of the structural capability of the beam and the failure mode in fire.These failure modes generally occur at lower limiting temperatures than the solid beam with same size.It is recognized that the thickness of a reactive coating required to provide a given fire resistance to a composite beam with web openings is affected by the beam’s web thickness,opening configuration,the degree of the beam asymmetry and the structural utilization factor,as well as the nature of the proprietary fire protection itself.Therefore it is necessary that such beams are structurally evaluated taking into account all possible modes of structural failure under both ambient and fire conditions.It is also necessary for additional thermal data to be measured around the web openings and on the web posts from fire tests.The additional thermal data will be used in conjunction with a structural model to determine limiting temperatures of beams with web openings.Steel Construction Institute(SCI)has produced a structural analysis model referenced as report RT1356,which divides a composite beam with web openings into different stress blocks,and then analyses the global bending,vertical shear,local Vierendeel bending,web-post buckling etc.The Association for Specialist Fire Protection(ASFP)recommended the test protocol in the Yellow Book,to determine the temperature distribution around the openings and web post.This paper will discuss a series of fire tests having been carried out in the laboratory of EXOVA Warringtonfire to establish temperature distribution in composite beams with web openings.Test result shows that the distribution of temperature is product specific and strongly affected by opening configuration and opening distance.EXOVA Warringtonfire has also developed a sophisticated calculator,ThermCalc,for analyzing temperature and structural following the method presented in RT1356.Using ThermCalc,parametric study has been carried out,and the effect of load utilization factor,opening size,opening distance,slab depth,decking configuration etc.was investigated.