A novel combined method for the formation of composite coatings on the Mg-Mn-Ce alloy is developed.Ceramic like matrix was formed on the Mg alloy surface by the plasma electrolytic oxidation.Then the samples were subs...A novel combined method for the formation of composite coatings on the Mg-Mn-Ce alloy is developed.Ceramic like matrix was formed on the Mg alloy surface by the plasma electrolytic oxidation.Then the samples were subsequently processed by dip-coating in an alcohol suspension of superdispersed polytetrafluoroethylene and spraying with the tetrafluoroethylene telomers solution.SEM,OSP,and SPM was used to study structure of formed surfaces.It was established by measurements of CA and CAH,as well as surface free energy calculations that formed coatings demonstrate superhydrophobic properties due to the presence of an irregular hierarchical surface structure and low surface free energy of fluoropolymers.The coating preserves its hydrophobic properties after exposure to high and low temperatures,for a long time as well as being in corrosive environments.EDS and XRD data analysis confirmed the presence of organofluorine compounds in the composite layers,including in the form of crystalline polytetrafluoroethylene.Using potentiodynamic polarization test and EIS,it was found that the resulting coatings significantly increase the corrosion resistance of Mg material.These data are also confirmed by salt spray tests for 40 days.Incorporation of fluoropolymers additionally decrease coatings coefficient of friction.展开更多
Mg and its alloys have been introduced as promising biodegradable materials for biomedical implant applications due to their excellent biocompatibility, mechanical behavior, and biodegradability. However, their suscep...Mg and its alloys have been introduced as promising biodegradable materials for biomedical implant applications due to their excellent biocompatibility, mechanical behavior, and biodegradability. However, their susceptibility to rapid corrosion within the body poses a significant challenge and restricts their applications. To overcome this issue, various surface modification techniques have been developed to enhance the corrosion resistance and bioactivity of Mg-based implants. PEO is a potent technique for producing an oxide film on a surface that significantly minimizes the tendency to corrode. However, the inevitable defects due to discharges and poor biological activity during the coating process remain a concern. Therefore, adding suitable particles during the coating process is a suitable solution. Hydroxyapatite(HAp)has attracted much attention in the development of biomedical applications in the scientific community. HAp shows excellent biocompatibility due to its similarity in chemical composition to the mineral portion of bone. Therefore, its combination with Mg-based implants through PEO has shown significant improvements in their corrosion resistance and bioactivity. This review paper provides a comprehensive overview of the recent advances in the preparation, characterization, corrosion behavior and bioactivity applications of HAp particles on Mg-based implants by PEO.展开更多
Mg alloys are considered the most promising engineering materials because of their unique properties.However,the uncontrolled corrosion rate of these alloys limits their applications.Therefore,in this study,a micro-ar...Mg alloys are considered the most promising engineering materials because of their unique properties.However,the uncontrolled corrosion rate of these alloys limits their applications.Therefore,in this study,a micro-arc oxidation layer was used as a transition layer to“directly”grow a zinc-based metal-organic framework(MOF)composite coating on the surface of a Mg alloy(AZ91D).Herein,the two zeolitic imidazolate framework(ZIF-8)coatings with different morphologies were separately prepared by homologous metal oxide induction and a one-step in-situ growth method.The superhydrophobic composite coating showed strong hydrophobicity and self-cleaning properties,which could prevent the penetration of water and corrosive ions(Cl^(−))into the surface of AZ91D.Electrochemical tests demonstrated that the super-hydrophobic composite coatings greatly enhanced the corrosion resistance of AZ91D,and the corrosion current density decreased from 10^(−5)to 10^(−9)A/cm^(2).These results indicate that the ZIF-8 coatings are beneficial for improving the hydrophobicity and enhancing the corrosion resistance of Mg alloys.Therefore,MOF composite coatings provide a new strategy that can be used to prepare multifunctional anticorrosion coatings on metal substrates.展开更多
In order to reduce the friction coefficients and improve the wear resistance of mechanical parts, which work in the severe friction and wear conditions at heavy loads, the graphite/CaFg/TiC/Ni-base alloy composite coa...In order to reduce the friction coefficients and improve the wear resistance of mechanical parts, which work in the severe friction and wear conditions at heavy loads, the graphite/CaFg/TiC/Ni-base alloy composite coatings were prepared by plasma spray and their tribological behavior and mechanisms were investigated. The results show that the friction coefficients of the composite coatings are in the range of 0.22-0.288, which are reduced by 25.9% to 53% compared with those of the pure Ni-base alloy coatings, and the wear rates of the former are 18.6%-70.1% less than those of the latter. When wear against GCr15 steel balls, a transferred layer mainly composed of ferric oxides, graphite and CaF2 may gradually develop on the worn surface of the composite coatings, which made the friction and wear between GCr15 steel ball and the composite coatings change into that between the former and the transferred layer. So the friction coefficients and the wear lubrication effect of the transferred layer. The main wear layer in friction process. rates of the composite coatings are greatly reduced because of the solid mechanism of the composite coatings is delamination of the transferred展开更多
Al2O3/Au nano-laminated composite coatings were prepared by means of magnetron sputtering. The coating was compact and comprised of nano-laminated Al2O3 and Au layers. High temperature cyclic oxidation test was employ...Al2O3/Au nano-laminated composite coatings were prepared by means of magnetron sputtering. The coating was compact and comprised of nano-laminated Al2O3 and Au layers. High temperature cyclic oxidation test was employed to investigate the oxidation resistance of the composite coatings. The results revealed that the applied Al2O3/Au nano-laminated composite coatings improved the oxidation and spallation resistance of the stainless steel substrate significantly. The mechanism accounting for oxidation resistance was related with the suppression of inward oxygen diffusion and selective oxidation of Cr in the substrate. The mechanism accounting for spallation resistance was attributed to the relaxation of thermal stress by the nano-laminated structure.展开更多
YSZ/(Ni, Al) composite coatings were deposited on Inconel600 superalloy with ball peening (BP) and without (non BP)treatment using the electrophoretic deposition (EPD) technique, followed by vacuum sintering m...YSZ/(Ni, Al) composite coatings were deposited on Inconel600 superalloy with ball peening (BP) and without (non BP)treatment using the electrophoretic deposition (EPD) technique, followed by vacuum sintering method. The structures and phaseevolution of the coatings were studied with X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersivespectrometry (EDS). The relation between microstructures and properties of the BPs-coated samples was discussed. The results showthat the adhesion strength and gain mass of the BPs-coated samples with isothermal oxidation at 1100℃ for 100 h are 3.3 N and0.00817 mg/cm^2, respectively, while those of the non-BPs-coated sample are 2.6 N and 0.00559 mg/cm^2, respectively. The EDSmapping analysis indicates that an obvious outward diffusion of Cr from the substrate to BPs coated samples occurs after isothermaloxidation. The BPs-coated sample shows the superior adhesion and oxidation resistance compared with non-BPs-coated samples.展开更多
The Ni-based alloy composite coatings reinforced by nanostructured Al2O3-40%TiO2 multiphase ceramic particles were prepared on the surface of 7005 aluminum alloy by plasma spray technology. The microstructure and trib...The Ni-based alloy composite coatings reinforced by nanostructured Al2O3-40%TiO2 multiphase ceramic particles were prepared on the surface of 7005 aluminum alloy by plasma spray technology. The microstructure and tribological properties of the composite coatings were researched. The results show that the composite coatings mainly consist of γ-Ni, α-Al2O3, γ-Al2O3 and rutile-TiO2 etc, and exhibit lower friction coefficients and wear losses than the Ni-based alloy coatings at different loads and speeds. The composite coating bears low contact stress at 3 N and its wear mechanism is micro-cutting wear. As loads increase to 6-12 N, the contact stress is higher than the elastic limit stress of worn surface, and the wear mechanisms change into multi-plastic deformation wear, micro-brittle fracture wear and abrasive wear. With the increase of speeds, the contact temperature of worn surface increases. The composite coating experiences multi-plastic deformation wear, fatigue wear and adhesive wear.展开更多
Multi-walled carbon nanotubes (MWNTs) were wet-milled in the presence of ammonia and cationic surfactant and then used as reinforcements to prepare Ni-P-MWNTs composite coatings by electroless plating. The tribologi...Multi-walled carbon nanotubes (MWNTs) were wet-milled in the presence of ammonia and cationic surfactant and then used as reinforcements to prepare Ni-P-MWNTs composite coatings by electroless plating. The tribological performances of the composite coatings under dry condition were investigated in comparison with 45 steel and conventional Ni-P coating, Micrographs show that short MWNTs with uniform length and open tips were obtained through the wet-milling process. The results of wear test reveal that the Ni-P-MWNTs composite coatings posses much better friction reduction and anti-wear performances when compared with 45 steel and Ni-P coating. Within the MWNTs content range of 0.74%-1.97%, the friction coefficient and the volume wear rate of the composite coatings decrease gradually and reach the minimum values of 0.08 and 6.22x10-15 m3/(N.m), respectively. The excellent tribological performances of the composite coatings can be attributed to the introduction of MWNTs, which play both roles of reinforcements and solid lubricant during the wear process.展开更多
In order to reduce the friction coefficients and further improve the anti-wear properties of Ni-base alloy coatings reinforced by TiC particles,graphite/TiC/Ni-base alloy(GTN) coatings were prepared on the surface o...In order to reduce the friction coefficients and further improve the anti-wear properties of Ni-base alloy coatings reinforced by TiC particles,graphite/TiC/Ni-base alloy(GTN) coatings were prepared on the surface of 45 carbon steel.The effects of graphite content on the microstructure and tribological properties of the GTN coatings were investigated.The results show that the addition of graphite to the GTN coatings may greatly reduce the friction coefficients and improve their wear resistance.The 6.56GTN and 12.71GTN coatings exhibit excellent integrated properties of anti-friction and wear resistance under low and high loads,respectively.Under a low load,the wear mechanisms of the GTN coatings are mainly multi-plastic deformation with slight abrasive wear and gradually change into mixture of multi-plastic deformation,delamination and micro-cutting wear with the increase of graphite fraction.As the load increases,the main wear mechanisms gradually change from micro-cracks,micro-cutting and adhesive wear to micro-cutting and micro-fracture with the increase of graphite fraction.展开更多
TiC particles reinforced Ni-based alloy composite coatings were prepared on 7005 aluminum alloy by plasma spray. The effects of load, speed and temperature on the tribological behavior and mechanisms of the composite ...TiC particles reinforced Ni-based alloy composite coatings were prepared on 7005 aluminum alloy by plasma spray. The effects of load, speed and temperature on the tribological behavior and mechanisms of the composite coatings under dry friction were researched. The wear prediction model of the composite coatings was established based on the least square support vector machine (LS-SVM). The results show that the composite coatings exhibit smaller friction coefficients and wear losses than the Ni-based alloy coatings under different friction conditions. The predicting time of the LS-SVM model is only 12.93%of that of the BP-ANN model, and the predicting accuracies on friction coefficients and wear losses of the former are increased by 58.74%and 41.87%compared with the latter. The LS-SVM model can effectively predict the tribological behavior of the TiCP/Ni-base alloy composite coatings under dry friction.展开更多
The NiCrBSi-Y2O3 composite coatings were prepared on the surface of 45 carbon steel by plasma spray, the microstructure and tribological properties of the coatings were investigated. The results show that the NiCrBSi-...The NiCrBSi-Y2O3 composite coatings were prepared on the surface of 45 carbon steel by plasma spray, the microstructure and tribological properties of the coatings were investigated. The results show that the NiCrBSi-Y2O3 composite coatings are mainly composed of γ-Ni, CrB, Cr7C3 and Y2O3. With addition of Y2O3, hard phases such as CrB, Cr7C3 emerge in composite coating, and the density of the composite coatings also increases. The NiCrBSi-0.5Y2O3 composite coating presents excellent tribological properties. Its friction coefficient is 0.175, which is about 37% of that of the pure NiCrBSi coating. The mass wear loss is 1.2 mg, which is reduced by 43% compared with the pure NiCrBSi coating. When the loads are 6-10 N, the NiCrBSi-0.5Y2O3 composite coating suffers from slight wear and the wear mechanisms are mainly adhesive wear accompany with slight micro-cutting wear and micro-fracture wear. As the load increases to 12 N, the wear mechanisms are adhesive wear and severe micro-cutting wear.展开更多
A Ni-based composite coating reinforced by in situ synthesized TiB2 and TiC particles was fabricated on Ti6A14V by laser cladding. An attempt was made to correlate the thermodynamic predictions and experimental observ...A Ni-based composite coating reinforced by in situ synthesized TiB2 and TiC particles was fabricated on Ti6A14V by laser cladding. An attempt was made to correlate the thermodynamic predictions and experimental observation. The micro- structure and the microhardness profile across the coating were investigated by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and a hardness tester. It is found that the coating mainly consists of a large number of reinforcements (black blocky TiB2, flower-like or equiaxial TiC, and fine acicular CrB) and the 7 matrix. The hardness of TiB2, TiC, and CrB reinforcements is much higher than that of the 7 matrix. The dispersive distribu- tion of such high hardness reinforcements causes the increase in hardness of the whole coating. The average value of the hard- ness is approximately Hv0.2 700 in the coating. The hardness of the coating is obviously higher than that of the substrate due to the dispersion strengthening of reinforcements.展开更多
Titanium-based composite coatings reinforced by in situ synthesized TiB and TiC particles between titanium and B4C were successfully fabricated on Ti6Al4V by laser cladding. Phase constituents of the coatings were pre...Titanium-based composite coatings reinforced by in situ synthesized TiB and TiC particles between titanium and B4C were successfully fabricated on Ti6Al4V by laser cladding. Phase constituents of the coatings were predicted by thermodynamic calculations in the Ti-BnC-Al and Ti-B-C-Al systems, respectively, and were validated well by X-ray diffraction (XRD) analysis results. Microstructural and metallographic analyses were made by scanning electron microscopy (SEM) and electron probe micro-analysis (EPMA). The results show that the coatings are mainly composed of α-Ti cellular dendrites and the eutecticum in which a large number of needle-shaped TiB and a few equiaxial TiC particles are embedded. C is enriched in α-Ti cellular dendrites and far exceeds the theoretical maximum dissolubility, owing to the extension of saturation during laser cladding. The coatings have a good metallurgical bond with the substrate due to the existence of the dilution zone, in which a great amount of lamella β-Ti grains consisting of a thin needle-shaped martensitic microstructure are present and grow parallel to the heat flux direction; a few TiB and TiC reinforcements are observed at the boundaries of initial β-Ti grains.展开更多
A comprehensive study of the phase composition, microstructure evolution, microhardness and wear performance of WC-12 Co composite coatings fabricated by laser cladding using coaxial powder-feed mode was presented. It...A comprehensive study of the phase composition, microstructure evolution, microhardness and wear performance of WC-12 Co composite coatings fabricated by laser cladding using coaxial powder-feed mode was presented. It was shown that a combination of high scan speed and high laser energy density made WC on the edge of WC-12 Co composite powders partially melt in liquid Co and 304 stainless steel matrix, and then new carbides consisting of lamellar WC and herringbone M3 W3 C(M=Fe,Co) were formed. Meanwhile, WC-12 Co composite coatings with no porosity, cracks and drawbacks like decarburization were obtained, showing high densification and good metallurgical bonding with the substrate. Furthermore, a considerably high microhardness of HV0.3 1500-1600, low coefficient of friction of 0.55 and wear rate of(2.15±0.31)×10-7 mm3/(N·m) were achieved owing to the synergistic effect of excellent metallurgical bonding and fine microstructures of composite coating under laser power of 1500 W.展开更多
We have systematically studied the microstructure and mechanical properties of Ni-5wt%Al and Ni-20wt%Al composite coat- ings fabricated on 6061-T6 aluminum alloy sheet by twin-wire arc spraying under different experim...We have systematically studied the microstructure and mechanical properties of Ni-5wt%Al and Ni-20wt%Al composite coat- ings fabricated on 6061-T6 aluminum alloy sheet by twin-wire arc spraying under different experimental conditions. The abrasive wear be- havior and interface diffusion behavior of the composite coatings were evaluated by dry/wet rubber wheel abrasive wear tests and heat treat- ment, respectively. Experimental results indicate that the composite coatings exhibit features of adhesive wear. Besides, the Vickers micro- hardness of NiA1 and Ni3AI intermetallic compounds is relatively larger than that of the substrate, which is beneficial for enhancing the wear resistance. With the increase of annealing temperature and time, the interface diffusion area between the Ni-Al coating and the substrate gradually expands with the formation of NiAl3 and Ni2Al3 phases, and is controlled by diffusion of aluminum atoms. The grain growth ex- ponent n of diffusion kinetics of the Ni-Al coating, calculated via a high-temperature diffusion model at 400, 480, and 550℃, is between 0.28 and 0.38. This satisfies the cubic law, which is consistent with the general theoretical relationship of high-temperature diffusion.展开更多
To improve the surface properties of magnesium alloys, a study was conducted on Cu-Zr-A1 composite coatings on AZ91HP magnesium alloy by laser cladding. The influence of laser scanning speed on the microstructures and...To improve the surface properties of magnesium alloys, a study was conducted on Cu-Zr-A1 composite coatings on AZ91HP magnesium alloy by laser cladding. The influence of laser scanning speed on the microstructures and properties of the coatings was discussed. The coatings consist of amorphous phase, CusZr3, and Cul0ZrT. With the increase of laser scanning speed, the amorphous phase content of the coatings increases and reaches 60.56wt% with the laser scanning speed of 2.0 m/min. Because of the influence of laser scanning speed on the amorphous and crystal phases, the coatings show the maximum elastic modulus, hardness, and wear resistance at the laser scanning speed of 1.0 m/min. At the laser scanning speed of 2.0 m/min, the coatings have the best corrosion resistance.展开更多
TiB2 and Dy2O3 were used as codeposited particles in the preparation of Ni-TiB2-Dy2O3 composite coatings to improve its performance. Ni-TiB2-Dy2O3 composite coatings were prepared by electrodeposition method with a ni...TiB2 and Dy2O3 were used as codeposited particles in the preparation of Ni-TiB2-Dy2O3 composite coatings to improve its performance. Ni-TiB2-Dy2O3 composite coatings were prepared by electrodeposition method with a nickel cetyltrimethylammonium bromide and hexadecylpyridinium bromide solution containing TiB2 and Dy2O3 particles. The content of codeposited TiB2 and Dy2O3 in the composite coatings was controlled by adding TiB2 and Dy2O3 particles of different concentrations into the solution, respectively. The effects of TiB2 and Dy2O3 content on microhardness, wear mass loss and friction coefficients of composite coatings were investigated. The composite coatings were characterized by X-ray diffraction (XRD), inductively coupled plasma-atomic emission spectrometer (ICP-AES) and scanning electron microscopy (SEM) techniques. Ni-TiBE-Dy2O3 composite coatings showed higher microhardness, lower wear mass loss and friction coefficient compared with those of the pure Ni coating and Ni-TiB2 composite coatings. The wear mass loss of Ni-TiB2-Dy2O3 composite coatings was 9 and 1.57 times lower than that of the pure Ni coating and Ni-TiB2 composite coatings, respectively. The friction coefficient of pure Ni coating, Ni-TiB2 and Ni-TiB2-Dy2O3 composite coatings were 0.723, 0.815 and 0.619, respectively. Ni-TiBE-Dy2O3 composite coatings displayed the least friction coefficient among the three coatings. Dy2O3 particles in composite coatings might serve as a solid lubricant between contact surfaces to decrease the friction coefficient and abate the wear of the composite coatings. The loading-bearing capacity and the wear-reducing effect of the Dy2O3 particles were closely related to the content of Dy2O3 particles in the composite coatings.展开更多
The magnesium alloys attract the light-weight manufacture due to its high strength to weight ratio,however the poor corrosion resistance limits the application in automobile industry.The Micro-arc Composite Ceramic(MC...The magnesium alloys attract the light-weight manufacture due to its high strength to weight ratio,however the poor corrosion resistance limits the application in automobile industry.The Micro-arc Composite Ceramic(MCC)coatings on AZ91D magnesium alloys were prepared by Micro-arc Oxidation(MAO)and electrophoresis technologies.The microstructure,corrosion resistance,abrasion resistance,stone impact resistance and adhesion of MCC coatings were studied respectively.The cross section morphologies showed that the outer organic coating was filled into the hole on surface of MAO coating,and it acted as a shelter against corrosive products.The copper-accelerated acetic acid salt spray Test,abrasion resistance test,stone impact resistance test,thermal shock resistance test and adhesion test were used to evaluate the protective characterization by the third testing organization which approved by GM.The test results showed the composite coatings meet all the requirements.The MCC coating on Mg presents excellent properties,and it is a promising surface treatment technology on magnesium alloys for production vehicles.展开更多
Nickel/nano-A1203 composite coatings produced by the pulse electrodeposition method and the influence of pulse parameters, i.e., pulse frequency, duty cycle, and current density on the microstructure, hardness, and co...Nickel/nano-A1203 composite coatings produced by the pulse electrodeposition method and the influence of pulse parameters, i.e., pulse frequency, duty cycle, and current density on the microstructure, hardness, and corrosion resistance, were critically investigated on an AISI 1018 mild steel specimen electroplated in a Watt's type bath. The experiments were carried out with different combinations of pulse parameters using Taguchi's L27 orthogonal array, and 27 trials were conducted to study the effect of pulse parameters in view to maximize the hardness of the specimen. The assessment results clearly reveal that the specimen exhibits the maximum hardness at the pulse frequency of 20 Hz, duty cycle of 30%, and peak current density of 0.4 A/cm2, which are designated as the optimal parameters herein. Furthermore, the influences of those optimized pulse parameters over the microstructure and corrosion resistance were investigated, and some conclusions were drawn. Also, from the ANOVA examination, it is clear that duty cycle is predominant in affecting the hardness, while current density has relatively low impact.展开更多
The effect of electromagnetic stirring on the microstructure and wear behavior of coatings has been investigated. A series of iron-based coatings were fabricated by the plasma-transferred arc cladding process by apply...The effect of electromagnetic stirring on the microstructure and wear behavior of coatings has been investigated. A series of iron-based coatings were fabricated by the plasma-transferred arc cladding process by applying different magnetic field currents. The microstructure and wear resistance of the composite coatings were characterized by scanning electron microscope (SEM), en- ergy dispersive X-ray analysis (EDAX), X-ray diffraction (XRD), and wet sand rubber wheel abrasion tester. The experimental results showed that the microstructure of the coatings was mainly the γ-Fe matrix and (Cr, Fe)7C3 carbide reinforced phase. The coatings were metallurgically bonded to the substrate. With increasing magnetic field current, the amount of the block-like (Cr, Fe)TC3 carbide reinforced phase increased at first, reached a local maximum, and then decreased sharply. When the magnetic field current reached 3 A, the block-like (Cr, Fe)TC3 carbides with high volume fraction were uniformly distributed in the matrix and the coating displayed a high microhardness and an excellent wear resistance under the wear test condition.展开更多
基金The study was supported by the Russian Science Foundation grant no.22-73-10149,https://rscf.ru/project/22-73-10149/.
文摘A novel combined method for the formation of composite coatings on the Mg-Mn-Ce alloy is developed.Ceramic like matrix was formed on the Mg alloy surface by the plasma electrolytic oxidation.Then the samples were subsequently processed by dip-coating in an alcohol suspension of superdispersed polytetrafluoroethylene and spraying with the tetrafluoroethylene telomers solution.SEM,OSP,and SPM was used to study structure of formed surfaces.It was established by measurements of CA and CAH,as well as surface free energy calculations that formed coatings demonstrate superhydrophobic properties due to the presence of an irregular hierarchical surface structure and low surface free energy of fluoropolymers.The coating preserves its hydrophobic properties after exposure to high and low temperatures,for a long time as well as being in corrosive environments.EDS and XRD data analysis confirmed the presence of organofluorine compounds in the composite layers,including in the form of crystalline polytetrafluoroethylene.Using potentiodynamic polarization test and EIS,it was found that the resulting coatings significantly increase the corrosion resistance of Mg material.These data are also confirmed by salt spray tests for 40 days.Incorporation of fluoropolymers additionally decrease coatings coefficient of friction.
文摘Mg and its alloys have been introduced as promising biodegradable materials for biomedical implant applications due to their excellent biocompatibility, mechanical behavior, and biodegradability. However, their susceptibility to rapid corrosion within the body poses a significant challenge and restricts their applications. To overcome this issue, various surface modification techniques have been developed to enhance the corrosion resistance and bioactivity of Mg-based implants. PEO is a potent technique for producing an oxide film on a surface that significantly minimizes the tendency to corrode. However, the inevitable defects due to discharges and poor biological activity during the coating process remain a concern. Therefore, adding suitable particles during the coating process is a suitable solution. Hydroxyapatite(HAp)has attracted much attention in the development of biomedical applications in the scientific community. HAp shows excellent biocompatibility due to its similarity in chemical composition to the mineral portion of bone. Therefore, its combination with Mg-based implants through PEO has shown significant improvements in their corrosion resistance and bioactivity. This review paper provides a comprehensive overview of the recent advances in the preparation, characterization, corrosion behavior and bioactivity applications of HAp particles on Mg-based implants by PEO.
基金supported by Guangxi Natural Science Foundation of China(No.2020GXNSFAA159011)National Natural Science Foundation of China(No.51664011)Guangxi Key Laboratory Foundation of China(No.EMFM20211120).
文摘Mg alloys are considered the most promising engineering materials because of their unique properties.However,the uncontrolled corrosion rate of these alloys limits their applications.Therefore,in this study,a micro-arc oxidation layer was used as a transition layer to“directly”grow a zinc-based metal-organic framework(MOF)composite coating on the surface of a Mg alloy(AZ91D).Herein,the two zeolitic imidazolate framework(ZIF-8)coatings with different morphologies were separately prepared by homologous metal oxide induction and a one-step in-situ growth method.The superhydrophobic composite coating showed strong hydrophobicity and self-cleaning properties,which could prevent the penetration of water and corrosive ions(Cl^(−))into the surface of AZ91D.Electrochemical tests demonstrated that the super-hydrophobic composite coatings greatly enhanced the corrosion resistance of AZ91D,and the corrosion current density decreased from 10^(−5)to 10^(−9)A/cm^(2).These results indicate that the ZIF-8 coatings are beneficial for improving the hydrophobicity and enhancing the corrosion resistance of Mg alloys.Therefore,MOF composite coatings provide a new strategy that can be used to prepare multifunctional anticorrosion coatings on metal substrates.
文摘In order to reduce the friction coefficients and improve the wear resistance of mechanical parts, which work in the severe friction and wear conditions at heavy loads, the graphite/CaFg/TiC/Ni-base alloy composite coatings were prepared by plasma spray and their tribological behavior and mechanisms were investigated. The results show that the friction coefficients of the composite coatings are in the range of 0.22-0.288, which are reduced by 25.9% to 53% compared with those of the pure Ni-base alloy coatings, and the wear rates of the former are 18.6%-70.1% less than those of the latter. When wear against GCr15 steel balls, a transferred layer mainly composed of ferric oxides, graphite and CaF2 may gradually develop on the worn surface of the composite coatings, which made the friction and wear between GCr15 steel ball and the composite coatings change into that between the former and the transferred layer. So the friction coefficients and the wear lubrication effect of the transferred layer. The main wear layer in friction process. rates of the composite coatings are greatly reduced because of the solid mechanism of the composite coatings is delamination of the transferred
基金Project (50771021) supported by the National Natural Science Foundation of China
文摘Al2O3/Au nano-laminated composite coatings were prepared by means of magnetron sputtering. The coating was compact and comprised of nano-laminated Al2O3 and Au layers. High temperature cyclic oxidation test was employed to investigate the oxidation resistance of the composite coatings. The results revealed that the applied Al2O3/Au nano-laminated composite coatings improved the oxidation and spallation resistance of the stainless steel substrate significantly. The mechanism accounting for oxidation resistance was related with the suppression of inward oxygen diffusion and selective oxidation of Cr in the substrate. The mechanism accounting for spallation resistance was attributed to the relaxation of thermal stress by the nano-laminated structure.
基金Project(51271111)supported by the National Natural Science Foundation of ChinaProject(14KY0515)support by Graduate Research and Innovation Special Projects of Shanghai University of Engineering Science,China
文摘YSZ/(Ni, Al) composite coatings were deposited on Inconel600 superalloy with ball peening (BP) and without (non BP)treatment using the electrophoretic deposition (EPD) technique, followed by vacuum sintering method. The structures and phaseevolution of the coatings were studied with X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersivespectrometry (EDS). The relation between microstructures and properties of the BPs-coated samples was discussed. The results showthat the adhesion strength and gain mass of the BPs-coated samples with isothermal oxidation at 1100℃ for 100 h are 3.3 N and0.00817 mg/cm^2, respectively, while those of the non-BPs-coated sample are 2.6 N and 0.00559 mg/cm^2, respectively. The EDSmapping analysis indicates that an obvious outward diffusion of Cr from the substrate to BPs coated samples occurs after isothermaloxidation. The BPs-coated sample shows the superior adhesion and oxidation resistance compared with non-BPs-coated samples.
文摘The Ni-based alloy composite coatings reinforced by nanostructured Al2O3-40%TiO2 multiphase ceramic particles were prepared on the surface of 7005 aluminum alloy by plasma spray technology. The microstructure and tribological properties of the composite coatings were researched. The results show that the composite coatings mainly consist of γ-Ni, α-Al2O3, γ-Al2O3 and rutile-TiO2 etc, and exhibit lower friction coefficients and wear losses than the Ni-based alloy coatings at different loads and speeds. The composite coating bears low contact stress at 3 N and its wear mechanism is micro-cutting wear. As loads increase to 6-12 N, the contact stress is higher than the elastic limit stress of worn surface, and the wear mechanisms change into multi-plastic deformation wear, micro-brittle fracture wear and abrasive wear. With the increase of speeds, the contact temperature of worn surface increases. The composite coating experiences multi-plastic deformation wear, fatigue wear and adhesive wear.
基金Project (JPPT-115-5-1759) supported by the National Defense Science and Technology Industry Committee of China Project (20090162120080) supported by Research Fund for the Doctoral Program of Higher Education of ChinaProject (2010FJ3012) supported by the Program of Science and Technology of Hunan Province, China
文摘Multi-walled carbon nanotubes (MWNTs) were wet-milled in the presence of ammonia and cationic surfactant and then used as reinforcements to prepare Ni-P-MWNTs composite coatings by electroless plating. The tribological performances of the composite coatings under dry condition were investigated in comparison with 45 steel and conventional Ni-P coating, Micrographs show that short MWNTs with uniform length and open tips were obtained through the wet-milling process. The results of wear test reveal that the Ni-P-MWNTs composite coatings posses much better friction reduction and anti-wear performances when compared with 45 steel and Ni-P coating. Within the MWNTs content range of 0.74%-1.97%, the friction coefficient and the volume wear rate of the composite coatings decrease gradually and reach the minimum values of 0.08 and 6.22x10-15 m3/(N.m), respectively. The excellent tribological performances of the composite coatings can be attributed to the introduction of MWNTs, which play both roles of reinforcements and solid lubricant during the wear process.
文摘In order to reduce the friction coefficients and further improve the anti-wear properties of Ni-base alloy coatings reinforced by TiC particles,graphite/TiC/Ni-base alloy(GTN) coatings were prepared on the surface of 45 carbon steel.The effects of graphite content on the microstructure and tribological properties of the GTN coatings were investigated.The results show that the addition of graphite to the GTN coatings may greatly reduce the friction coefficients and improve their wear resistance.The 6.56GTN and 12.71GTN coatings exhibit excellent integrated properties of anti-friction and wear resistance under low and high loads,respectively.Under a low load,the wear mechanisms of the GTN coatings are mainly multi-plastic deformation with slight abrasive wear and gradually change into mixture of multi-plastic deformation,delamination and micro-cutting wear with the increase of graphite fraction.As the load increases,the main wear mechanisms gradually change from micro-cracks,micro-cutting and adhesive wear to micro-cutting and micro-fracture with the increase of graphite fraction.
文摘TiC particles reinforced Ni-based alloy composite coatings were prepared on 7005 aluminum alloy by plasma spray. The effects of load, speed and temperature on the tribological behavior and mechanisms of the composite coatings under dry friction were researched. The wear prediction model of the composite coatings was established based on the least square support vector machine (LS-SVM). The results show that the composite coatings exhibit smaller friction coefficients and wear losses than the Ni-based alloy coatings under different friction conditions. The predicting time of the LS-SVM model is only 12.93%of that of the BP-ANN model, and the predicting accuracies on friction coefficients and wear losses of the former are increased by 58.74%and 41.87%compared with the latter. The LS-SVM model can effectively predict the tribological behavior of the TiCP/Ni-base alloy composite coatings under dry friction.
文摘The NiCrBSi-Y2O3 composite coatings were prepared on the surface of 45 carbon steel by plasma spray, the microstructure and tribological properties of the coatings were investigated. The results show that the NiCrBSi-Y2O3 composite coatings are mainly composed of γ-Ni, CrB, Cr7C3 and Y2O3. With addition of Y2O3, hard phases such as CrB, Cr7C3 emerge in composite coating, and the density of the composite coatings also increases. The NiCrBSi-0.5Y2O3 composite coating presents excellent tribological properties. Its friction coefficient is 0.175, which is about 37% of that of the pure NiCrBSi coating. The mass wear loss is 1.2 mg, which is reduced by 43% compared with the pure NiCrBSi coating. When the loads are 6-10 N, the NiCrBSi-0.5Y2O3 composite coating suffers from slight wear and the wear mechanisms are mainly adhesive wear accompany with slight micro-cutting wear and micro-fracture wear. As the load increases to 12 N, the wear mechanisms are adhesive wear and severe micro-cutting wear.
基金supported by the National Natural Science Foundation of China (No. 51002093)Shanghai Science and Technology Development Foundation (No. 08QA14035)Shanghai Leading Academic Discipline Project (No. J51402)
文摘A Ni-based composite coating reinforced by in situ synthesized TiB2 and TiC particles was fabricated on Ti6A14V by laser cladding. An attempt was made to correlate the thermodynamic predictions and experimental observation. The micro- structure and the microhardness profile across the coating were investigated by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and a hardness tester. It is found that the coating mainly consists of a large number of reinforcements (black blocky TiB2, flower-like or equiaxial TiC, and fine acicular CrB) and the 7 matrix. The hardness of TiB2, TiC, and CrB reinforcements is much higher than that of the 7 matrix. The dispersive distribu- tion of such high hardness reinforcements causes the increase in hardness of the whole coating. The average value of the hard- ness is approximately Hv0.2 700 in the coating. The hardness of the coating is obviously higher than that of the substrate due to the dispersion strengthening of reinforcements.
基金supported by Shanghai Science and Technology Development Foundation(No.08QA14035)the Special Foundation of Shanghai Education Commission for Nano-Materials Research(No.0852nm01400)the Crucial Project of Shanghai Science and Technology Commission(No.08520513400),China
文摘Titanium-based composite coatings reinforced by in situ synthesized TiB and TiC particles between titanium and B4C were successfully fabricated on Ti6Al4V by laser cladding. Phase constituents of the coatings were predicted by thermodynamic calculations in the Ti-BnC-Al and Ti-B-C-Al systems, respectively, and were validated well by X-ray diffraction (XRD) analysis results. Microstructural and metallographic analyses were made by scanning electron microscopy (SEM) and electron probe micro-analysis (EPMA). The results show that the coatings are mainly composed of α-Ti cellular dendrites and the eutecticum in which a large number of needle-shaped TiB and a few equiaxial TiC particles are embedded. C is enriched in α-Ti cellular dendrites and far exceeds the theoretical maximum dissolubility, owing to the extension of saturation during laser cladding. The coatings have a good metallurgical bond with the substrate due to the existence of the dilution zone, in which a great amount of lamella β-Ti grains consisting of a thin needle-shaped martensitic microstructure are present and grow parallel to the heat flux direction; a few TiB and TiC reinforcements are observed at the boundaries of initial β-Ti grains.
基金Project(20171ACE50018)supported by the Key Research and Development Program of Jiangxi Province,ChinaProject(2017-YZD2-16)supported by the Key Research Project of Jiangxi Academy of Sciences,China。
文摘A comprehensive study of the phase composition, microstructure evolution, microhardness and wear performance of WC-12 Co composite coatings fabricated by laser cladding using coaxial powder-feed mode was presented. It was shown that a combination of high scan speed and high laser energy density made WC on the edge of WC-12 Co composite powders partially melt in liquid Co and 304 stainless steel matrix, and then new carbides consisting of lamellar WC and herringbone M3 W3 C(M=Fe,Co) were formed. Meanwhile, WC-12 Co composite coatings with no porosity, cracks and drawbacks like decarburization were obtained, showing high densification and good metallurgical bonding with the substrate. Furthermore, a considerably high microhardness of HV0.3 1500-1600, low coefficient of friction of 0.55 and wear rate of(2.15±0.31)×10-7 mm3/(N·m) were achieved owing to the synergistic effect of excellent metallurgical bonding and fine microstructures of composite coating under laser power of 1500 W.
基金financially supported by the International Cooperation Project of the Ministry of Science and Technology of China(ICPMSTPRC,No.2008DFR50070)
文摘We have systematically studied the microstructure and mechanical properties of Ni-5wt%Al and Ni-20wt%Al composite coat- ings fabricated on 6061-T6 aluminum alloy sheet by twin-wire arc spraying under different experimental conditions. The abrasive wear be- havior and interface diffusion behavior of the composite coatings were evaluated by dry/wet rubber wheel abrasive wear tests and heat treat- ment, respectively. Experimental results indicate that the composite coatings exhibit features of adhesive wear. Besides, the Vickers micro- hardness of NiA1 and Ni3AI intermetallic compounds is relatively larger than that of the substrate, which is beneficial for enhancing the wear resistance. With the increase of annealing temperature and time, the interface diffusion area between the Ni-Al coating and the substrate gradually expands with the formation of NiAl3 and Ni2Al3 phases, and is controlled by diffusion of aluminum atoms. The grain growth ex- ponent n of diffusion kinetics of the Ni-Al coating, calculated via a high-temperature diffusion model at 400, 480, and 550℃, is between 0.28 and 0.38. This satisfies the cubic law, which is consistent with the general theoretical relationship of high-temperature diffusion.
基金supported by the Doctoral Fund of Northeast Dianli University(No.BSJXM-201010)
文摘To improve the surface properties of magnesium alloys, a study was conducted on Cu-Zr-A1 composite coatings on AZ91HP magnesium alloy by laser cladding. The influence of laser scanning speed on the microstructures and properties of the coatings was discussed. The coatings consist of amorphous phase, CusZr3, and Cul0ZrT. With the increase of laser scanning speed, the amorphous phase content of the coatings increases and reaches 60.56wt% with the laser scanning speed of 2.0 m/min. Because of the influence of laser scanning speed on the amorphous and crystal phases, the coatings show the maximum elastic modulus, hardness, and wear resistance at the laser scanning speed of 1.0 m/min. At the laser scanning speed of 2.0 m/min, the coatings have the best corrosion resistance.
基金supported by the Science Technology Foundation of Shanghai (072305113)the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning and Science Technology Foundation of Shanghai Institute of Technology (KJ2008-07)
文摘TiB2 and Dy2O3 were used as codeposited particles in the preparation of Ni-TiB2-Dy2O3 composite coatings to improve its performance. Ni-TiB2-Dy2O3 composite coatings were prepared by electrodeposition method with a nickel cetyltrimethylammonium bromide and hexadecylpyridinium bromide solution containing TiB2 and Dy2O3 particles. The content of codeposited TiB2 and Dy2O3 in the composite coatings was controlled by adding TiB2 and Dy2O3 particles of different concentrations into the solution, respectively. The effects of TiB2 and Dy2O3 content on microhardness, wear mass loss and friction coefficients of composite coatings were investigated. The composite coatings were characterized by X-ray diffraction (XRD), inductively coupled plasma-atomic emission spectrometer (ICP-AES) and scanning electron microscopy (SEM) techniques. Ni-TiBE-Dy2O3 composite coatings showed higher microhardness, lower wear mass loss and friction coefficient compared with those of the pure Ni coating and Ni-TiB2 composite coatings. The wear mass loss of Ni-TiB2-Dy2O3 composite coatings was 9 and 1.57 times lower than that of the pure Ni coating and Ni-TiB2 composite coatings, respectively. The friction coefficient of pure Ni coating, Ni-TiB2 and Ni-TiB2-Dy2O3 composite coatings were 0.723, 0.815 and 0.619, respectively. Ni-TiBE-Dy2O3 composite coatings displayed the least friction coefficient among the three coatings. Dy2O3 particles in composite coatings might serve as a solid lubricant between contact surfaces to decrease the friction coefficient and abate the wear of the composite coatings. The loading-bearing capacity and the wear-reducing effect of the Dy2O3 particles were closely related to the content of Dy2O3 particles in the composite coatings.
基金Support from National Natural Science Foundation of China(Grant NO.51271144)as well as from the National Key Technologies Research and Development Program of China(Grant No.2011BAE22B05)is gratefully acknowledged.And thanks to General Motors research and development center for provided test equipment.
文摘The magnesium alloys attract the light-weight manufacture due to its high strength to weight ratio,however the poor corrosion resistance limits the application in automobile industry.The Micro-arc Composite Ceramic(MCC)coatings on AZ91D magnesium alloys were prepared by Micro-arc Oxidation(MAO)and electrophoresis technologies.The microstructure,corrosion resistance,abrasion resistance,stone impact resistance and adhesion of MCC coatings were studied respectively.The cross section morphologies showed that the outer organic coating was filled into the hole on surface of MAO coating,and it acted as a shelter against corrosive products.The copper-accelerated acetic acid salt spray Test,abrasion resistance test,stone impact resistance test,thermal shock resistance test and adhesion test were used to evaluate the protective characterization by the third testing organization which approved by GM.The test results showed the composite coatings meet all the requirements.The MCC coating on Mg presents excellent properties,and it is a promising surface treatment technology on magnesium alloys for production vehicles.
文摘Nickel/nano-A1203 composite coatings produced by the pulse electrodeposition method and the influence of pulse parameters, i.e., pulse frequency, duty cycle, and current density on the microstructure, hardness, and corrosion resistance, were critically investigated on an AISI 1018 mild steel specimen electroplated in a Watt's type bath. The experiments were carried out with different combinations of pulse parameters using Taguchi's L27 orthogonal array, and 27 trials were conducted to study the effect of pulse parameters in view to maximize the hardness of the specimen. The assessment results clearly reveal that the specimen exhibits the maximum hardness at the pulse frequency of 20 Hz, duty cycle of 30%, and peak current density of 0.4 A/cm2, which are designated as the optimal parameters herein. Furthermore, the influences of those optimized pulse parameters over the microstructure and corrosion resistance were investigated, and some conclusions were drawn. Also, from the ANOVA examination, it is clear that duty cycle is predominant in affecting the hardness, while current density has relatively low impact.
基金This study was financially supported by the Major State Basic Research Development Program of China (973 Program, No.2007CB607601)the National Natural Science Foundation of China (No.50735006)
文摘The effect of electromagnetic stirring on the microstructure and wear behavior of coatings has been investigated. A series of iron-based coatings were fabricated by the plasma-transferred arc cladding process by applying different magnetic field currents. The microstructure and wear resistance of the composite coatings were characterized by scanning electron microscope (SEM), en- ergy dispersive X-ray analysis (EDAX), X-ray diffraction (XRD), and wet sand rubber wheel abrasion tester. The experimental results showed that the microstructure of the coatings was mainly the γ-Fe matrix and (Cr, Fe)7C3 carbide reinforced phase. The coatings were metallurgically bonded to the substrate. With increasing magnetic field current, the amount of the block-like (Cr, Fe)TC3 carbide reinforced phase increased at first, reached a local maximum, and then decreased sharply. When the magnetic field current reached 3 A, the block-like (Cr, Fe)TC3 carbides with high volume fraction were uniformly distributed in the matrix and the coating displayed a high microhardness and an excellent wear resistance under the wear test condition.