MoS2/Zr composite films were deposited on the cemented carbide YT14 (WC+14%TiC+6%Co) by medium-frequency magnetron sputtered and coupled with multi-arc ion plated techniques.The influence of negative bias voltage ...MoS2/Zr composite films were deposited on the cemented carbide YT14 (WC+14%TiC+6%Co) by medium-frequency magnetron sputtered and coupled with multi-arc ion plated techniques.The influence of negative bias voltage on the composite film properties,including adhesion strength,micro-hardness,thickness and tribological properties were investigated.The results showed that proper negative bias voltage could significantly improve the mechanical and tribological properties of composite films.The effects of negative bias voltage on film properties were also put forward.The optimal negative bias voltage was -200 V under this experiment conditions.The obtained composite films were dense,the adhesion strength was about 60 N,the thickness was about 2.4 μm,and the micro-hardness was about 9.0 GPa.The friction coefficient and wear rate was 0.12 and 2.1×10-7 cm3/N·m respectively after 60 m sliding operation against hardened steel under a load of 20 N and a sliding speed of 200 rev·min-1.展开更多
Low thermal expansion composites are difficult to obtain by using Al with larger positive thermal expansion coefficient(TEC) and the materials with smaller negative TECs. In this investigation, Y2Mo3O12 with larger ...Low thermal expansion composites are difficult to obtain by using Al with larger positive thermal expansion coefficient(TEC) and the materials with smaller negative TECs. In this investigation, Y2Mo3O12 with larger negative TEC is used to combine with Al to obtain a low thermal expansion composite with high conductivity. The TEC of Al is reduced by 19%for a ratio Al:Y2Mo3O12 of 0.3118. When the mass ratio of Al:Y2Mo3O12 increases to 2.0000, the conductivity of the composite increases so much that a transformation from capacitance to pure resistance appears. The results suggest that Y2Mo3O12 plays a dominant role in the composite for low content of Al(presenting isolate particles), while the content of Al increases enough to contact each other, the composite presents mainly the property of Al. For the effect of high content Al, it is considered that Al is squeezed out of the cermets during the uniaxial pressure process to form a thin layer on the surface.展开更多
基金Funded by the National Natural Science Foundation of China (No.51075237)the National Basic Research Program of China (No.2009CB724402)+3 种基金the Taishan Scholar Program of Shandong Provincethe Outstanding Young Scholar Science Foundation of Shandong (No.JQ200917)the National Natural Science Foundation of Shandong (No.ZR2010EZ002)National High Technology Research and Development Program (No.2009AA044303)
文摘MoS2/Zr composite films were deposited on the cemented carbide YT14 (WC+14%TiC+6%Co) by medium-frequency magnetron sputtered and coupled with multi-arc ion plated techniques.The influence of negative bias voltage on the composite film properties,including adhesion strength,micro-hardness,thickness and tribological properties were investigated.The results showed that proper negative bias voltage could significantly improve the mechanical and tribological properties of composite films.The effects of negative bias voltage on film properties were also put forward.The optimal negative bias voltage was -200 V under this experiment conditions.The obtained composite films were dense,the adhesion strength was about 60 N,the thickness was about 2.4 μm,and the micro-hardness was about 9.0 GPa.The friction coefficient and wear rate was 0.12 and 2.1×10-7 cm3/N·m respectively after 60 m sliding operation against hardened steel under a load of 20 N and a sliding speed of 200 rev·min-1.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10974183 and 11104252)the Doctoral Fund of the Ministry of Education of China(Grant No.20114101110003)+2 种基金the Fund for Science&Technology Innovation Team of Zhengzhou,China(Grant No.112PCXTD337)the Industrial Science and Technology Research Projects of Kaifeng,Henan Province,China(Grant No.1501049)the Key Research Projects of Henan Higher Education Institutions,China(Grant No.18A140014)
文摘Low thermal expansion composites are difficult to obtain by using Al with larger positive thermal expansion coefficient(TEC) and the materials with smaller negative TECs. In this investigation, Y2Mo3O12 with larger negative TEC is used to combine with Al to obtain a low thermal expansion composite with high conductivity. The TEC of Al is reduced by 19%for a ratio Al:Y2Mo3O12 of 0.3118. When the mass ratio of Al:Y2Mo3O12 increases to 2.0000, the conductivity of the composite increases so much that a transformation from capacitance to pure resistance appears. The results suggest that Y2Mo3O12 plays a dominant role in the composite for low content of Al(presenting isolate particles), while the content of Al increases enough to contact each other, the composite presents mainly the property of Al. For the effect of high content Al, it is considered that Al is squeezed out of the cermets during the uniaxial pressure process to form a thin layer on the surface.