A direct electroless copper (Cu) coating on tungsten powders method requiring no surface treatment or stabilizing agent and using glyoxylic acid (C2H203) as a reducing agent was reported. The effects of copper sul...A direct electroless copper (Cu) coating on tungsten powders method requiring no surface treatment or stabilizing agent and using glyoxylic acid (C2H203) as a reducing agent was reported. The effects of copper sulfate concentration and the pH of the plating solution on the properties of the prepared W@Cu composite powders were assessed. The content of Cu in the composite powders was controlled by adjusting the concentration of copper sulfate in the electroless plating solution. A uniform, dense, and consistent Cu coating was obtained under the established optimum conditions (flow rate of C2H203 = 5.01 mL/min, solution pH = 12.25 and reaction temperature 45.35℃) by using central composite design method. In addition, the crystalline Cu coating was evenly dispersed within the W@Cu composite powders and Cu element in the coating existed as Cu~. The formation mechanism for the W@Cu composite powders by electroless plating in the absence of surface treatment and stabilizing agent was also proposed.展开更多
TiB2-Al2O3 composite powders were produced by self-propagating high-temperature synthesis(SHS) method with reductive process from B2O3-TiO2-AI system. X-ray diffraction(XRD) and scanning electron microscopy(SEM...TiB2-Al2O3 composite powders were produced by self-propagating high-temperature synthesis(SHS) method with reductive process from B2O3-TiO2-AI system. X-ray diffraction(XRD) and scanning electron microscopy(SEM) analyses show the presence of TiB2 and Al2O3 only in the composite powders produced by SHS. The powders are uniform and free-agglomerate. Transmission electron microscopy (TEM) and high resolution electron microscopy (HREM) observation of microstructure of the composite powders indicate that the interfaces of the TiB2-Al2O3 bond well, without any interfacial reaction products. It is proposed that the good interfacial bonding of the composite powders can be resulted from the TiB2 particles crystallizing and growing on the Al2O3 particles surface with surface defects acting as nucleation centers.展开更多
This work aims at solving the problems of difficult dispersion,easy oxidation and high cost of nano carbon during application,carbon/magnesium aluminate spinel(C/MgAl_(2)O_(4))composite powders were prepared using MgC...This work aims at solving the problems of difficult dispersion,easy oxidation and high cost of nano carbon during application,carbon/magnesium aluminate spinel(C/MgAl_(2)O_(4))composite powders were prepared using MgC2O4·2H2O,MgO2,Al2O3 powder,and Al powder as raw materials by combustion synthesis.The results indicate that with the maximum MgC2O4·2H2O addition of 33.34 mass%,the prepared powder contains 1.17 mass%of carbon and carbon distributes among spinel grains.The MgAl_(2)O_(4)spinel shows both granular and rod-like morphologies.The granular MgAl_(2)O_(4)spinel is generated from mutual diffusion between MgO and Al2O3;while the rod-like MgAl_(2)O_(4)spinel is mainly formed by the vapor-solid growth mechanism from Mg vapor and Al2O3.展开更多
Pure WC-6%Co nanosized composite powders were synthesized via a low-temperature method.The effects of carbon source on microstructure characteristic of composite powders were investigated,and the effects of heat-treat...Pure WC-6%Co nanosized composite powders were synthesized via a low-temperature method.The effects of carbon source on microstructure characteristic of composite powders were investigated,and the effects of heat-treatment parameter on carbon content of composite powders were also discussed.The results of SEM and XRD revealed that the carbon decomposing from glucose was more active than carbon black.Therefore,WC-Co nanosized composite powders could be synthesized at 900°C for 1 h under a hydrogen atmosphere.The individual WC grains were bonded together into a long strip under the action of cobalt.The results of carbon analysis revealed that the total carbon content decreased with the increase of the temperature in the range of 800-1000°C.Moreover,the total carbon content and the compounded carbon increased with the increase of the flow rate of H2 in the range of 1.1-1.9 m3/h.展开更多
Based on the characteristic of high energy milling and the micromechanics of composite material, a plastic constitutive equation is implemented for milled composite powders. To check the equation, the extrusion of Ti/...Based on the characteristic of high energy milling and the micromechanics of composite material, a plastic constitutive equation is implemented for milled composite powders. To check the equation, the extrusion of Ti/Al composite powders prepared by high energy milling was simulated. It was from the numerical analysis that the predicted extrusion pressure mounted up with milling time and extrusion ratio increasing, which was perfect agreement with experimental results.展开更多
2wt%TiB_(2)/Cu composite powders were fabricated in situ by reactive gas atomization.The fabricated composite powder exhibits high sphericity,and the powder sizes range from 5μm to 150μm.The morphology of the Cu mat...2wt%TiB_(2)/Cu composite powders were fabricated in situ by reactive gas atomization.The fabricated composite powder exhibits high sphericity,and the powder sizes range from 5μm to 150μm.The morphology of the Cu matrix and the distribution of the TiB2 particles in the composite powders vary with the powder size.The critical transitions of interface morphologies from dendritic-to-cellular and cellular-to-planar interfaces occurs when the composite powder sizes decrease to 34μm and 14μm,respectively.Compared with pure Cu droplets,the composite droplets undergo critical transition of the interface morphologies at a smaller droplet size corresponding to a higher cooling rate because the existence of TiB2 particles can cause instability in the advancing solidification front and heterogeneous nucleation.With decreasing powder size,the extent of the TiB_(2) particle interdendritic segregation decreases as the result of enhanced engulfment of TiB2 particles by the advancing solidification front.展开更多
In order to compare the spark plasma sintedng (SPS) process plus hot isostatic press (HIP) with vacuum sintedng plus HIP, an investigation was carried out on the topography, microstructure and gain size distributi...In order to compare the spark plasma sintedng (SPS) process plus hot isostatic press (HIP) with vacuum sintedng plus HIP, an investigation was carried out on the topography, microstructure and gain size distribution of nanocrystalline WC-10Co composite powder and the sintered specimens prepared by SPS plus HIP and by vacuum sintering plus HIP by means of atomic force microscopy (AFM). The mechanical properties of the sintered specimens were also investigated. It is very easy to find cobalt lakes in the specimen prepared by vacuum sintering plus HIP process. But the microstructure of the specimen prepared by SPS plus HIP is more homogeneous, and the grain size is smaller than that prepared by vacuum sintering plus HIP. The WC-10Co ultrafine cemented carbide consolidated by SPS plus HIP can reach a relative density of 99.4%, and the transverse rupture strength (TRS) is higher than 3540 MPa, the Rockwell A hardness (HRA) is higher than 92.8, the average grain size is smaller than 300 nm, and the WC-10Co ultrafine cemented carbide with excellent properties is achieved. The specimen prepared by SPS with HIP has better properties and microstructure than that prepared by vacuum sintering with HIP.展开更多
The development of multiscale fiber-reinforced composite powders is an effective way to improve the mechanical properties and functionality of additively manufactured parts.Herein,a novel thermally induced precipitati...The development of multiscale fiber-reinforced composite powders is an effective way to improve the mechanical properties and functionality of additively manufactured parts.Herein,a novel thermally induced precipitation process is proposed for preparing multiscale fiber-reinforced powders.A systematic evaluation was conducted to explore the main factors influencing powder morphology,powder flow,and microstructure.In the powder-forming mechanism,the polymer matrix is coated on the microfiber,and a film of carbon nanotubes covers the powder surface,which is promoted by heterogeneous nucleation.The composite powders comprised polyamide 12,carbon fiber(CF),and carbon nanotubes,which have been successfully applied in powder bed fusion processes including selective laser sintering(SLS).Smooth flow and powder deposition were observed,and the composite components obtained via SLS were well-fabricated using the optimized process parameters.A CF loading ratio of up to 66.7 wt%and homogeneous fiber distribution within the matrix were successfully achieved.展开更多
Nickel coated diamond composite powders were fabricated via a newly developed direct electrodeposition technique. The effects of activators on the coating of diamond were firstly investigated and diamond grinding whee...Nickel coated diamond composite powders were fabricated via a newly developed direct electrodeposition technique. The effects of activators on the coating of diamond were firstly investigated and diamond grinding wheels were then prepared from Ni-coated diamond composite powders with different activators. The microstructural characterizations of this composite powders were finally conducted by scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction, and the mechanical and tribological properties of as-prepared diamond grinding wheels were also measured. There are changes in microstructures and properties of the composite powders with activators. The activator concentration also has an influence on the morphologies and phase structures of the Ni coating on diamond particles.The composite powders with more compact coating of nickel can be prepared by adding 1 g dm^(-3) or more AgNO_3 as an activator to electrodeposit nickel on diamond. The mechanical and tribological properties of diamond grinding wheels were significantly improved when the coating phase structure of Ni crystal grew with(111) plane orientation on the surface of diamond particles. The wheels made from nickel coated diamond composite powders possessed the advantages of easy preparation and outstanding tribological properties. Therefore, Ni coated diamond composite powders exhibit a great potential to be extensively applied in diamond cutting and grinding tools.展开更多
ZrB_(2)-Al_(2)O_(3)composite powders were synthesized at 1100℃using a novel ZrB_(2)precursor and Al powders as raw materials.The final ZrB_(2)-Al_(2)O_(3)composite powders consisted of submicron Al_(2)O_(3)and nanosi...ZrB_(2)-Al_(2)O_(3)composite powders were synthesized at 1100℃using a novel ZrB_(2)precursor and Al powders as raw materials.The final ZrB_(2)-Al_(2)O_(3)composite powders consisted of submicron Al_(2)O_(3)and nanosize ZrB_(2)(50-100 nm)particles,which were homogeneously mixed in microscale.Combined with thermodynamic calculation and experiment results,the formation mechanism of ZrB_(2)-Al_(2)O_(3)composite powders was proposed as follows:ZrB_(2)precursor first decomposed into ZrO_(2)and amorphousB2O3.Aluminothermic reduction of ZrO_(2) and B_(2)O_(3) generated Zr and B atoms and the coproducts Al_(2)O_(3),and then,a series of reactions between Zr atoms,B atoms and Al took place to form ZrB_(2)and Al_(3)Zr.Then,ZrB_(2),Al_(2)O_(3)and Al were obtained through a liquid-solid reaction between Al_(3)Zr andB2O3,which is the limiting step in the conversion process.When the Al_(3)Zr was exhausted,the reaction between Al,ZrO_(2)and B became the main reaction to obtain ZrB_(2)and Al_(2)O_(3).展开更多
Effects of metal (Ni, Cu, Al) and composite metal (NiB, NiCu, NiCuB) nanopowders on the thermal decomposition of ammonium perchlorate (AP) and composite solid propellant ammonium perchlorate/hydroxyterminated polybuta...Effects of metal (Ni, Cu, Al) and composite metal (NiB, NiCu, NiCuB) nanopowders on the thermal decomposition of ammonium perchlorate (AP) and composite solid propellant ammonium perchlorate/hydroxyterminated polybutadiene (AP/HTPB) were studied by thermal analysis (DTA). The results show that metal and composite metal nanopowders all have good catalytic effects on the thermal decomposition of AP and AP/HTPB composite solid propellant. The effects of metal nanopowders on the thermal decomposition of AP are less than those of the composite metal nanopowders. The effects of metal and composite metal nanopowders on the thermal decomposition of AP are different from those on the thermal decomposition of the AP/HTPB composite solid propellant.展开更多
The development of low-carbon refractories is of great significance,but it is limited by the deteriorated properties that resulted from the decreased graphite content.Incorporating composite powders has proved to be e...The development of low-carbon refractories is of great significance,but it is limited by the deteriorated properties that resulted from the decreased graphite content.Incorporating composite powders has proved to be effective in improving the properties of low-carbon refractories.The recent progress in the synthesis of composite powders including modified graphite,nanocarbon-containing composite powders,oxide/non-oxide and non-oxide composite powders and their applications in low-carbon refractories were reviewed,and the future development of composite powder technology was prospected.展开更多
Core-shell structured cobalt coated tungsten carbide(WC/Co) composite powders were prepared by intermittent electrodeposition. The influence of process parameters such as current density, single deposition pulse, p ...Core-shell structured cobalt coated tungsten carbide(WC/Co) composite powders were prepared by intermittent electrodeposition. The influence of process parameters such as current density, single deposition pulse, p H value and surfactants on the formation of WC/Co was investigated and characterized by scanning electron microscopy(SEM), electrochemical station, acidometer and X-ray diffraction(XRD) techniques.The composite powders with 54% cobalt content were fabricated at a current density of 16 A dm-2, with a load of 10 g dm-3WC powders and a stirring speed of 600 r min-1at an operation temperature of 40 ± 2 °C,and 90% current efficiency was obtained with a single deposition pulse of 1.5 min and single stirring pulse of 2 min during 12 min efficient electrodeposition time. The uniformly distributed WC/Co powders could be obtained in the cobalt electrolyte containing 300 mg dm-3PEG-2000. The spherical cobalt grains coated WC particles were prepared in the p H 4-5 electrolyte at the Co deposition rate of 0.58 g min-1. A practical process for high efficient production of WC/Co powders by electrodeposition was developed in the present work.展开更多
The effects of microwave sintering on the properties, phases and microstructure of W-2OCu alloy, using composite powder fabricated by spray pyrolysis-continuous reduction technology, were investigated. Compared with t...The effects of microwave sintering on the properties, phases and microstructure of W-2OCu alloy, using composite powder fabricated by spray pyrolysis-continuous reduction technology, were investigated. Compared with the conventional hot-press sintering, microwave sintering to W-2OCu composites could be achieved with lower sintering temperature and shorter sintering time. Furthermore, microwave sintered W-Cu composites with high densification, homogenous microstructure and excellent properties were obtained. Microwave sintering could also result in finer microstructures. :~展开更多
Using Al Mg and Al Mg Y alloys as raw materials and nitrogen as gas reactants, AlN powders and composite AlN powders by in situ synthesis method were prepared. AlN lumps prepared by the nitriding of Al Mg and Al ...Using Al Mg and Al Mg Y alloys as raw materials and nitrogen as gas reactants, AlN powders and composite AlN powders by in situ synthesis method were prepared. AlN lumps prepared by the nitriding of Al Mg and Al Mg Y alloys have porous microstructure, which is favorable for pulverization. They have high purity, containing 1.23%(mass fraction) oxygen impurity, and consisted of AlN single phase. The average particle size of AlN powders is 6.78 μm. Composite AlN powders consist of AlN phases and rare earth oxide Y 2O 3 phase. The distribution of particle size of AlN powders shows two peaks. In view of packing factor, AlN powders with such size distribution can easily be sintered to high density.展开更多
Using zircon,boric acid and carbon black as starting materials,ZrB_(2)-ZrO_(2)-SiC composite powder was synthesized by calcining at 1500℃in flowing argon atmosphere.The effects of the soaking time(3,6 and 9 h)and the...Using zircon,boric acid and carbon black as starting materials,ZrB_(2)-ZrO_(2)-SiC composite powder was synthesized by calcining at 1500℃in flowing argon atmosphere.The effects of the soaking time(3,6 and 9 h)and the addition of additive AlF_(3)(0,0.5%,1.0%,1.5%,2.0%and 2.5%,by mass)on the phase composition and the microstructure of the synthesized products were investigated.The results show that:(1)ZrB_(2)-ZrO_(2)-SiC composite powder can be synthesized by carbothermal reduction at 1500℃in flowing argon atmosphere;ZrB_(2) and ZrO_(2) are granular-like,and SiC crystals are fiberous;(2)with the soaking time increasing,the amount of ZrB_(2) increases,the amounts of m-ZrO_(2) and SiC decrease,and the total amount of non-oxides ZrB_(2),SiC and ZrC gradually increases;the optimal soaking time is 3 h;(3)compared with the sample without AlF_(3),the sample with 0.5% AlF_(3) has decreased m-ZrO_(2)amount,noticeably increased ZrB_(2) amount but decreased SiC amount;however,when the addition of AlF_(3) increases from 0.5%to 2.5%,the m-ZrO_(2) amount increases,the ZrB_(2)amount decreases,and the SiC amount changes slightly;the optimum AlF_(3)addition is 0.5%.展开更多
Nanocrystalline WC-Co composite powder and coated tungsten diamond by using vacuum vapor deposition were consolidated by the spark plasma sintering (SPS) process to prepare diamond-enhanced WC-Co cemented carbide co...Nanocrystalline WC-Co composite powder and coated tungsten diamond by using vacuum vapor deposition were consolidated by the spark plasma sintering (SPS) process to prepare diamond-enhanced WC-Co cemented carbide composite materials. The interface microstructures between coated tungsten diamond and WC-Co cemented carbide matrix were investigated by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDXS). The results showed that there is a transitional layer between the diamond and the matrix, in which the carbon content is 62.97wt.%, and the content of cobalt in the transitional zone is 6.19wt.%; the content of cobalt in the WC-Co cemented carbide matrix is 6.07wt.%, in which the carbon content is 15.95wt.%, and the content of cobalt on the surface of diamond is 7.30wt.%, in which the carbon content is 80.38wt.%. The transitional zone prevents the carbon atom of the diamond from spreading to the matrix, in which the carbon content does coincide with the theoretical value of the raw nanocomposite powders, and the carbon content forms a graded distribution among the matrix, transitional zone, and the surface of diamond; after the 1280℃ SPS consolidated process the diamond still maintains a very good crystal shape, the coated tungsten on the surface of the diamond improves thermal stability of the diamond and increases the bonding strength of the interface between the diamond and the matrix.展开更多
The rods that were shaped from nanocrystalline WC- 10.21 Co-0.42 VC/ Cr3 C2 ( wt% ) composite powders by using powder extrusion molding (PEM) were investigated. The nanocrystalline WC- 10.21 Co- 0. 42 VC/ Cr3 C2 ...The rods that were shaped from nanocrystalline WC- 10.21 Co-0.42 VC/ Cr3 C2 ( wt% ) composite powders by using powder extrusion molding (PEM) were investigated. The nanocrystalline WC- 10.21 Co- 0. 42 VC/ Cr3 C2 ( wt% ) composite powders were prepared by the spray thermal decomposition-continuous reduction and carburization technology. In order to improve the properties of rods shaped by using powder extrusion molding, the cold isostatic pressing (CIP) technology was used before or after debinding. Specimens were siutered by vacuum siutering and hot isostatic pressing (HIP). The density, Rockwell A hardness, magnetic coercivity , and magnetic saturation induction of siutered specimen were measured. The microstructure of the green bodies and the siutered specimens was studied by scanning electron microscopy (SEM). Results show that the rod formed by using powder extrusion molding after debinding and followed by cold isostatic pressing can be siutered to 99.5% density of composite cemented carbide rods with an average grain size of about 200- 300 nm, magnetic coercivity of 30.4 KA / m, Rockwell A hardness of 92.6 and magnetic saturation induction of 85% . Superfine WC- 10 Co cemented carbide rods with excellent properties were obtained.展开更多
Al2O3-SiC-C specimens were prepared using white fused corundum (3-1,≤1 and ≤0.044 mm),Al2O3-SiC composite powders (d50 ≤ 5 μm),α-Al2O3 micropowder (d50 =1.2 μm),SiC powder (≤ 0.044 mm),flake graphite (...Al2O3-SiC-C specimens were prepared using white fused corundum (3-1,≤1 and ≤0.044 mm),Al2O3-SiC composite powders (d50 ≤ 5 μm),α-Al2O3 micropowder (d50 =1.2 μm),SiC powder (≤ 0.044 mm),flake graphite (≤ 0.088 mm),Si powder (d50 =42.8 μm) and B4C powder (d50 ≤10 μm) as main starting materials,and thermosetting phenolic resin as binder.4%,8%,12% and 16% (in mass,the same hereinafter) of Al2O3-SiC composite powders substituted the same quantity of α-Al2O3 micropowder + SiC powder.Effects of composite powder additions on apparent porosity,bulk density,cold modulus of rupture,cold crushing strength,hot modulus of rupture (1 400 ℃),thermal shock resistance (1 100 ℃,water quenching) and oxidation resistance (1 000 and 1 500 ℃) of Al2O3-SiC -C specimens after 180 ℃ curing,1 000 ℃ 3 h carbon-embedded firing and 1 500 ℃ 3 h carbon-embedded firing,respectively,were researched.The results indicate that:(1) with the increase of Al2O3-SiC composite powder,cold strengths of the cured specimens decline,those of the specimens fired at 1 000 ℃ change a little,and those of the specimens fired at 1 500 ℃ change a little except for an obvious improvement of cold crushing strength ; (2) with the increase of Al2O3-SiC composite powder,hot modulus of rupture at 1 400 ℃ decreases and thermal shock resistance enhances significantly; (3) when Al2O3-SiC composite powder addition is 4%,the oxidation resistance at 1 500 ℃ is the best,and the reason may be the composite powder is finer and more active,which is beneficial to form dense mullite protective layer to retard the O2 diffusion into the specimens.展开更多
Cu(NO3)(2) and (NH4)(6)H(2)W(12)O(40)center dot 4H(2)O were used to prepare W/Cu nanosized composite powder by sol-gel technique. The influences of heat treatment process, pH value of the solution and the amount of an...Cu(NO3)(2) and (NH4)(6)H(2)W(12)O(40)center dot 4H(2)O were used to prepare W/Cu nanosized composite powder by sol-gel technique. The influences of heat treatment process, pH value of the solution and the amount of an addition agent on particle size were investigated by DSC, XRD and TEM. The results show that, at a certain heat treatment temperature, the W/Cu nanoparticle size increases with the pH value or the amount of the addition agent increasing.展开更多
基金Funded by the National Natural Science Foundation of China(Nos.51202175 and 11072228)the National 111 Project(No.B13035)
文摘A direct electroless copper (Cu) coating on tungsten powders method requiring no surface treatment or stabilizing agent and using glyoxylic acid (C2H203) as a reducing agent was reported. The effects of copper sulfate concentration and the pH of the plating solution on the properties of the prepared W@Cu composite powders were assessed. The content of Cu in the composite powders was controlled by adjusting the concentration of copper sulfate in the electroless plating solution. A uniform, dense, and consistent Cu coating was obtained under the established optimum conditions (flow rate of C2H203 = 5.01 mL/min, solution pH = 12.25 and reaction temperature 45.35℃) by using central composite design method. In addition, the crystalline Cu coating was evenly dispersed within the W@Cu composite powders and Cu element in the coating existed as Cu~. The formation mechanism for the W@Cu composite powders by electroless plating in the absence of surface treatment and stabilizing agent was also proposed.
文摘TiB2-Al2O3 composite powders were produced by self-propagating high-temperature synthesis(SHS) method with reductive process from B2O3-TiO2-AI system. X-ray diffraction(XRD) and scanning electron microscopy(SEM) analyses show the presence of TiB2 and Al2O3 only in the composite powders produced by SHS. The powders are uniform and free-agglomerate. Transmission electron microscopy (TEM) and high resolution electron microscopy (HREM) observation of microstructure of the composite powders indicate that the interfaces of the TiB2-Al2O3 bond well, without any interfacial reaction products. It is proposed that the good interfacial bonding of the composite powders can be resulted from the TiB2 particles crystallizing and growing on the Al2O3 particles surface with surface defects acting as nucleation centers.
文摘This work aims at solving the problems of difficult dispersion,easy oxidation and high cost of nano carbon during application,carbon/magnesium aluminate spinel(C/MgAl_(2)O_(4))composite powders were prepared using MgC2O4·2H2O,MgO2,Al2O3 powder,and Al powder as raw materials by combustion synthesis.The results indicate that with the maximum MgC2O4·2H2O addition of 33.34 mass%,the prepared powder contains 1.17 mass%of carbon and carbon distributes among spinel grains.The MgAl_(2)O_(4)spinel shows both granular and rod-like morphologies.The granular MgAl_(2)O_(4)spinel is generated from mutual diffusion between MgO and Al2O3;while the rod-like MgAl_(2)O_(4)spinel is mainly formed by the vapor-solid growth mechanism from Mg vapor and Al2O3.
基金Project(51274107)supported by the National Natural Science Foundation of ChinaProject(2015FB127)supported by the Yunnan Natural Science Foundation,ChinaProject(2016P20151130003)supported by Analysis Foundation of Kunming University of Science and Technology,China
文摘Pure WC-6%Co nanosized composite powders were synthesized via a low-temperature method.The effects of carbon source on microstructure characteristic of composite powders were investigated,and the effects of heat-treatment parameter on carbon content of composite powders were also discussed.The results of SEM and XRD revealed that the carbon decomposing from glucose was more active than carbon black.Therefore,WC-Co nanosized composite powders could be synthesized at 900°C for 1 h under a hydrogen atmosphere.The individual WC grains were bonded together into a long strip under the action of cobalt.The results of carbon analysis revealed that the total carbon content decreased with the increase of the temperature in the range of 800-1000°C.Moreover,the total carbon content and the compounded carbon increased with the increase of the flow rate of H2 in the range of 1.1-1.9 m3/h.
文摘Based on the characteristic of high energy milling and the micromechanics of composite material, a plastic constitutive equation is implemented for milled composite powders. To check the equation, the extrusion of Ti/Al composite powders prepared by high energy milling was simulated. It was from the numerical analysis that the predicted extrusion pressure mounted up with milling time and extrusion ratio increasing, which was perfect agreement with experimental results.
基金Funded by the National Natural Science Foundation of China(Nos.U1502274 and 51834009)。
文摘2wt%TiB_(2)/Cu composite powders were fabricated in situ by reactive gas atomization.The fabricated composite powder exhibits high sphericity,and the powder sizes range from 5μm to 150μm.The morphology of the Cu matrix and the distribution of the TiB2 particles in the composite powders vary with the powder size.The critical transitions of interface morphologies from dendritic-to-cellular and cellular-to-planar interfaces occurs when the composite powder sizes decrease to 34μm and 14μm,respectively.Compared with pure Cu droplets,the composite droplets undergo critical transition of the interface morphologies at a smaller droplet size corresponding to a higher cooling rate because the existence of TiB2 particles can cause instability in the advancing solidification front and heterogeneous nucleation.With decreasing powder size,the extent of the TiB_(2) particle interdendritic segregation decreases as the result of enhanced engulfment of TiB2 particles by the advancing solidification front.
基金This work was financially supported by the Postdoctoral Science Foundation of China (No.2003034504),the Open Foundation ofState Key Laboratory of Advanced Technology for Materials Synthesis & Processing, Wuhan University of Technology (2004-2005)and the National High-Tech Research and Development Program of China (No.2002AA302504).
文摘In order to compare the spark plasma sintedng (SPS) process plus hot isostatic press (HIP) with vacuum sintedng plus HIP, an investigation was carried out on the topography, microstructure and gain size distribution of nanocrystalline WC-10Co composite powder and the sintered specimens prepared by SPS plus HIP and by vacuum sintering plus HIP by means of atomic force microscopy (AFM). The mechanical properties of the sintered specimens were also investigated. It is very easy to find cobalt lakes in the specimen prepared by vacuum sintering plus HIP process. But the microstructure of the specimen prepared by SPS plus HIP is more homogeneous, and the grain size is smaller than that prepared by vacuum sintering plus HIP. The WC-10Co ultrafine cemented carbide consolidated by SPS plus HIP can reach a relative density of 99.4%, and the transverse rupture strength (TRS) is higher than 3540 MPa, the Rockwell A hardness (HRA) is higher than 92.8, the average grain size is smaller than 300 nm, and the WC-10Co ultrafine cemented carbide with excellent properties is achieved. The specimen prepared by SPS with HIP has better properties and microstructure than that prepared by vacuum sintering with HIP.
基金This work was supported by National Natural Science Foundation of China(Grant Nos.551905439,U1930207).
文摘The development of multiscale fiber-reinforced composite powders is an effective way to improve the mechanical properties and functionality of additively manufactured parts.Herein,a novel thermally induced precipitation process is proposed for preparing multiscale fiber-reinforced powders.A systematic evaluation was conducted to explore the main factors influencing powder morphology,powder flow,and microstructure.In the powder-forming mechanism,the polymer matrix is coated on the microfiber,and a film of carbon nanotubes covers the powder surface,which is promoted by heterogeneous nucleation.The composite powders comprised polyamide 12,carbon fiber(CF),and carbon nanotubes,which have been successfully applied in powder bed fusion processes including selective laser sintering(SLS).Smooth flow and powder deposition were observed,and the composite components obtained via SLS were well-fabricated using the optimized process parameters.A CF loading ratio of up to 66.7 wt%and homogeneous fiber distribution within the matrix were successfully achieved.
基金funded by the National Natural Science Foundation of China (Nos. 21476066 and 51271074)
文摘Nickel coated diamond composite powders were fabricated via a newly developed direct electrodeposition technique. The effects of activators on the coating of diamond were firstly investigated and diamond grinding wheels were then prepared from Ni-coated diamond composite powders with different activators. The microstructural characterizations of this composite powders were finally conducted by scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction, and the mechanical and tribological properties of as-prepared diamond grinding wheels were also measured. There are changes in microstructures and properties of the composite powders with activators. The activator concentration also has an influence on the morphologies and phase structures of the Ni coating on diamond particles.The composite powders with more compact coating of nickel can be prepared by adding 1 g dm^(-3) or more AgNO_3 as an activator to electrodeposit nickel on diamond. The mechanical and tribological properties of diamond grinding wheels were significantly improved when the coating phase structure of Ni crystal grew with(111) plane orientation on the surface of diamond particles. The wheels made from nickel coated diamond composite powders possessed the advantages of easy preparation and outstanding tribological properties. Therefore, Ni coated diamond composite powders exhibit a great potential to be extensively applied in diamond cutting and grinding tools.
基金the National Natural Science Foundation of China(Nos.51672170 and 51702206)Shanghai Science and Technology Commission Research Project(No.17XD1424700)。
文摘ZrB_(2)-Al_(2)O_(3)composite powders were synthesized at 1100℃using a novel ZrB_(2)precursor and Al powders as raw materials.The final ZrB_(2)-Al_(2)O_(3)composite powders consisted of submicron Al_(2)O_(3)and nanosize ZrB_(2)(50-100 nm)particles,which were homogeneously mixed in microscale.Combined with thermodynamic calculation and experiment results,the formation mechanism of ZrB_(2)-Al_(2)O_(3)composite powders was proposed as follows:ZrB_(2)precursor first decomposed into ZrO_(2)and amorphousB2O3.Aluminothermic reduction of ZrO_(2) and B_(2)O_(3) generated Zr and B atoms and the coproducts Al_(2)O_(3),and then,a series of reactions between Zr atoms,B atoms and Al took place to form ZrB_(2)and Al_(3)Zr.Then,ZrB_(2),Al_(2)O_(3)and Al were obtained through a liquid-solid reaction between Al_(3)Zr andB2O3,which is the limiting step in the conversion process.When the Al_(3)Zr was exhausted,the reaction between Al,ZrO_(2)and B became the main reaction to obtain ZrB_(2)and Al_(2)O_(3).
文摘Effects of metal (Ni, Cu, Al) and composite metal (NiB, NiCu, NiCuB) nanopowders on the thermal decomposition of ammonium perchlorate (AP) and composite solid propellant ammonium perchlorate/hydroxyterminated polybutadiene (AP/HTPB) were studied by thermal analysis (DTA). The results show that metal and composite metal nanopowders all have good catalytic effects on the thermal decomposition of AP and AP/HTPB composite solid propellant. The effects of metal nanopowders on the thermal decomposition of AP are less than those of the composite metal nanopowders. The effects of metal and composite metal nanopowders on the thermal decomposition of AP are different from those on the thermal decomposition of the AP/HTPB composite solid propellant.
基金The authors thankfully acknowledge the financial support of the National Natural Science Foundation of China(Nos.U20A20239,U1908227,and 51772236)for sponsoring this work.
文摘The development of low-carbon refractories is of great significance,but it is limited by the deteriorated properties that resulted from the decreased graphite content.Incorporating composite powders has proved to be effective in improving the properties of low-carbon refractories.The recent progress in the synthesis of composite powders including modified graphite,nanocarbon-containing composite powders,oxide/non-oxide and non-oxide composite powders and their applications in low-carbon refractories were reviewed,and the future development of composite powder technology was prospected.
基金jointly funded by the National Natural Science Foundation of China(Nos.21476066 and 51271074)the Key Project of Hunan provincial Education Department of China(No.15A146)
文摘Core-shell structured cobalt coated tungsten carbide(WC/Co) composite powders were prepared by intermittent electrodeposition. The influence of process parameters such as current density, single deposition pulse, p H value and surfactants on the formation of WC/Co was investigated and characterized by scanning electron microscopy(SEM), electrochemical station, acidometer and X-ray diffraction(XRD) techniques.The composite powders with 54% cobalt content were fabricated at a current density of 16 A dm-2, with a load of 10 g dm-3WC powders and a stirring speed of 600 r min-1at an operation temperature of 40 ± 2 °C,and 90% current efficiency was obtained with a single deposition pulse of 1.5 min and single stirring pulse of 2 min during 12 min efficient electrodeposition time. The uniformly distributed WC/Co powders could be obtained in the cobalt electrolyte containing 300 mg dm-3PEG-2000. The spherical cobalt grains coated WC particles were prepared in the p H 4-5 electrolyte at the Co deposition rate of 0.58 g min-1. A practical process for high efficient production of WC/Co powders by electrodeposition was developed in the present work.
基金the Project for Science and Technology Plan of Wuhan City (No. 200910321092)the Youth Science Plan for Light of the Morning Sun of Wuhan City (No. 200750731270)the Fundamental Research Funds for the Central Universities (No. 2010-Ⅱ-020)
文摘The effects of microwave sintering on the properties, phases and microstructure of W-2OCu alloy, using composite powder fabricated by spray pyrolysis-continuous reduction technology, were investigated. Compared with the conventional hot-press sintering, microwave sintering to W-2OCu composites could be achieved with lower sintering temperature and shorter sintering time. Furthermore, microwave sintered W-Cu composites with high densification, homogenous microstructure and excellent properties were obtained. Microwave sintering could also result in finer microstructures. :~
文摘Using Al Mg and Al Mg Y alloys as raw materials and nitrogen as gas reactants, AlN powders and composite AlN powders by in situ synthesis method were prepared. AlN lumps prepared by the nitriding of Al Mg and Al Mg Y alloys have porous microstructure, which is favorable for pulverization. They have high purity, containing 1.23%(mass fraction) oxygen impurity, and consisted of AlN single phase. The average particle size of AlN powders is 6.78 μm. Composite AlN powders consist of AlN phases and rare earth oxide Y 2O 3 phase. The distribution of particle size of AlN powders shows two peaks. In view of packing factor, AlN powders with such size distribution can easily be sintered to high density.
基金supported by National Natural Science Foundation of China(52172031 and 51872266)Henan Provincial Science and Technology Research Project(222102230030).
文摘Using zircon,boric acid and carbon black as starting materials,ZrB_(2)-ZrO_(2)-SiC composite powder was synthesized by calcining at 1500℃in flowing argon atmosphere.The effects of the soaking time(3,6 and 9 h)and the addition of additive AlF_(3)(0,0.5%,1.0%,1.5%,2.0%and 2.5%,by mass)on the phase composition and the microstructure of the synthesized products were investigated.The results show that:(1)ZrB_(2)-ZrO_(2)-SiC composite powder can be synthesized by carbothermal reduction at 1500℃in flowing argon atmosphere;ZrB_(2) and ZrO_(2) are granular-like,and SiC crystals are fiberous;(2)with the soaking time increasing,the amount of ZrB_(2) increases,the amounts of m-ZrO_(2) and SiC decrease,and the total amount of non-oxides ZrB_(2),SiC and ZrC gradually increases;the optimal soaking time is 3 h;(3)compared with the sample without AlF_(3),the sample with 0.5% AlF_(3) has decreased m-ZrO_(2)amount,noticeably increased ZrB_(2) amount but decreased SiC amount;however,when the addition of AlF_(3) increases from 0.5%to 2.5%,the m-ZrO_(2) amount increases,the ZrB_(2)amount decreases,and the SiC amount changes slightly;the optimum AlF_(3)addition is 0.5%.
基金This work was financially supported by the National Natural Science Foundation of China (No. 50502026), the Chinese 863 Program (No. 2002AA302504), the Science Foundation of Wuhan University of Technology (No. xjj2005166), and the Key Project for Science and Technology Development of Wuhan City (No. 20041003068-04)
文摘Nanocrystalline WC-Co composite powder and coated tungsten diamond by using vacuum vapor deposition were consolidated by the spark plasma sintering (SPS) process to prepare diamond-enhanced WC-Co cemented carbide composite materials. The interface microstructures between coated tungsten diamond and WC-Co cemented carbide matrix were investigated by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDXS). The results showed that there is a transitional layer between the diamond and the matrix, in which the carbon content is 62.97wt.%, and the content of cobalt in the transitional zone is 6.19wt.%; the content of cobalt in the WC-Co cemented carbide matrix is 6.07wt.%, in which the carbon content is 15.95wt.%, and the content of cobalt on the surface of diamond is 7.30wt.%, in which the carbon content is 80.38wt.%. The transitional zone prevents the carbon atom of the diamond from spreading to the matrix, in which the carbon content does coincide with the theoretical value of the raw nanocomposite powders, and the carbon content forms a graded distribution among the matrix, transitional zone, and the surface of diamond; after the 1280℃ SPS consolidated process the diamond still maintains a very good crystal shape, the coated tungsten on the surface of the diamond improves thermal stability of the diamond and increases the bonding strength of the interface between the diamond and the matrix.
基金Funded by Open Foundation of State Key Laboratory of AdvancedTechnologyfor Materials Synthesis and Processing, Wuhan Universi-ty of Technology, the Post PhD Science Foundation of China(2003034504) andthe Foundation of Wuhan University of Technol-ogy(2003XJJ202)
文摘The rods that were shaped from nanocrystalline WC- 10.21 Co-0.42 VC/ Cr3 C2 ( wt% ) composite powders by using powder extrusion molding (PEM) were investigated. The nanocrystalline WC- 10.21 Co- 0. 42 VC/ Cr3 C2 ( wt% ) composite powders were prepared by the spray thermal decomposition-continuous reduction and carburization technology. In order to improve the properties of rods shaped by using powder extrusion molding, the cold isostatic pressing (CIP) technology was used before or after debinding. Specimens were siutered by vacuum siutering and hot isostatic pressing (HIP). The density, Rockwell A hardness, magnetic coercivity , and magnetic saturation induction of siutered specimen were measured. The microstructure of the green bodies and the siutered specimens was studied by scanning electron microscopy (SEM). Results show that the rod formed by using powder extrusion molding after debinding and followed by cold isostatic pressing can be siutered to 99.5% density of composite cemented carbide rods with an average grain size of about 200- 300 nm, magnetic coercivity of 30.4 KA / m, Rockwell A hardness of 92.6 and magnetic saturation induction of 85% . Superfine WC- 10 Co cemented carbide rods with excellent properties were obtained.
文摘Al2O3-SiC-C specimens were prepared using white fused corundum (3-1,≤1 and ≤0.044 mm),Al2O3-SiC composite powders (d50 ≤ 5 μm),α-Al2O3 micropowder (d50 =1.2 μm),SiC powder (≤ 0.044 mm),flake graphite (≤ 0.088 mm),Si powder (d50 =42.8 μm) and B4C powder (d50 ≤10 μm) as main starting materials,and thermosetting phenolic resin as binder.4%,8%,12% and 16% (in mass,the same hereinafter) of Al2O3-SiC composite powders substituted the same quantity of α-Al2O3 micropowder + SiC powder.Effects of composite powder additions on apparent porosity,bulk density,cold modulus of rupture,cold crushing strength,hot modulus of rupture (1 400 ℃),thermal shock resistance (1 100 ℃,water quenching) and oxidation resistance (1 000 and 1 500 ℃) of Al2O3-SiC -C specimens after 180 ℃ curing,1 000 ℃ 3 h carbon-embedded firing and 1 500 ℃ 3 h carbon-embedded firing,respectively,were researched.The results indicate that:(1) with the increase of Al2O3-SiC composite powder,cold strengths of the cured specimens decline,those of the specimens fired at 1 000 ℃ change a little,and those of the specimens fired at 1 500 ℃ change a little except for an obvious improvement of cold crushing strength ; (2) with the increase of Al2O3-SiC composite powder,hot modulus of rupture at 1 400 ℃ decreases and thermal shock resistance enhances significantly; (3) when Al2O3-SiC composite powder addition is 4%,the oxidation resistance at 1 500 ℃ is the best,and the reason may be the composite powder is finer and more active,which is beneficial to form dense mullite protective layer to retard the O2 diffusion into the specimens.
基金This Project was financially supported by the National Natural Science Foundation of China (No. 50471033).
文摘Cu(NO3)(2) and (NH4)(6)H(2)W(12)O(40)center dot 4H(2)O were used to prepare W/Cu nanosized composite powder by sol-gel technique. The influences of heat treatment process, pH value of the solution and the amount of an addition agent on particle size were investigated by DSC, XRD and TEM. The results show that, at a certain heat treatment temperature, the W/Cu nanoparticle size increases with the pH value or the amount of the addition agent increasing.