Support vector regression (SVR) combined with particle swarm optimization for its parameter optimization is employed to establish a model for predicting the Henry constants of multi-walled carbon nanotubes (MWNTs)...Support vector regression (SVR) combined with particle swarm optimization for its parameter optimization is employed to establish a model for predicting the Henry constants of multi-walled carbon nanotubes (MWNTs) for adsorption of volatile organic compounds (VOCs). The prediction performance of SVR is compared with those of the model of theoretical linear salvation energy relationship (TLSER). By using leave-one-out cross validation of SVR test Henry constants for adsorption of 35 VOCs on MWNTs, the root mean square error is 0.080, the mean absolute percentage error is only 1.19~, and the correlation coefficient (R2) is as high as 0.997. Compared with the results of the TLSER model, it is shown that the estimated errors by SVR are ali smaller than those achieved by TLSER. It reveals that the generalization ability of SVR is superior to that of the TLSER model Meanwhile, multifactor analysis is adopted for investigation of the influences of each molecular structure descriptor on the Henry constants. According to the TLSER model, the adsorption mechanism of adsorption of carbon nanotubes of VOCs is mainly a result of van der Waals and interactions of hydrogen bonds. These can provide the theoretical support for the application of carbon nanotube adsorption of VOCs and can make up for the lack of experimental data.展开更多
Graphite intercalation compounds(GIC) were tested as an experimental model for studying the electronic effect of carbon support on the catalytic activity and poisoning tolerance of Pt catalyst for direct methanol fu...Graphite intercalation compounds(GIC) were tested as an experimental model for studying the electronic effect of carbon support on the catalytic activity and poisoning tolerance of Pt catalyst for direct methanol fuel cells. The GIC samples with different intercalation degrees were prepared by electrolyzing graphite flake in H2SO4 for varying the periods of time. The GIC-supported Pt catalyst was deposited electrochemically. The catalytic activity and poisoning tolerance of the GIC-supported Pt catalysts were evaluated. It was found that GIC with sulfate anion as intercalate was able to catalyze methanol electrooxidation, which could be related to the positive charges generated on the graphite layer upon intercalation. As intercalation degree increased, the catalytic activity of the GIC-supported Pt catalyst decreased while the poisoning tolerance improved. This suggests that electron donation from support to catalyst had great effect on both catalytic activity and poisoning tolerance of Pt catalyst. And intercalation can be adopted as another important way to make modification on carboneous catalyst support.展开更多
The instability of trapezoidal Ⅰ-steel support is analysed for the compound roof of main coal seam in Shaqu Colliery, and the mechanism of bolt supporting is studied. A scheme of bolt supporting has been given and pu...The instability of trapezoidal Ⅰ-steel support is analysed for the compound roof of main coal seam in Shaqu Colliery, and the mechanism of bolt supporting is studied. A scheme of bolt supporting has been given and put into practice, remarkable technical and economic benefits have been got.展开更多
A silica-supported carboxymethylcellulose platinum complex (abbreviated as SiO_2-CMC-Pt) has been prepared and characterized by XPS. Its catalytic properties for hydro-genation of aromatic compounds were studied. The ...A silica-supported carboxymethylcellulose platinum complex (abbreviated as SiO_2-CMC-Pt) has been prepared and characterized by XPS. Its catalytic properties for hydro-genation of aromatic compounds were studied. The results showed that this catalystcould catalyze the hydrogenation of phenol, anisol, p-cresol, benzene and toluene to cyclo-hexanol, cyclohexyl methyl ether, p-methyl cyclohexanol, cyclohexane and methylcyclo-hexane, respectively in 100% yield at 30℃ and 1 atm. In the hydrogenation of phenol,COO/Pt ratio in SiO_2-CMC-Pt has much influence on the initial hydrogenation rate andthe selectivity for the intermediate product, cyclohexanone. The highest initial rate andthe highest yield of cyclohexanone both occur at COO/Pt ratio of 6. The complex is stableduring the reaction and can be used repeatedly.展开更多
The thick Cenozoic unconsolidated aquifer is deposited under Sunan syncline core in Huaibei coalfield, the water yield property of unconsolidated bottom aquifer is strong and water pressure is high in some areas (up t...The thick Cenozoic unconsolidated aquifer is deposited under Sunan syncline core in Huaibei coalfield, the water yield property of unconsolidated bottom aquifer is strong and water pressure is high in some areas (up to 4 MPa in some areas). Water inrush accident often occurs during mining under unconsolidated aquifer, the biggest characteristic is abnormal mine pressure and support break-off during water inrush accident comparing with normal condition. In order to study mechanism of?support break-off and water inrush during mining under the high confined thick unconsolidated aquifer, a simulation of similar material was designed. The experimental results indicated that, under normal condition, the compound breakage sequence of water-resisting key strata between coal seam and high confined thick unconsolidated aquifer is from top to bottom and the basic reason of synchronous fracture is the load of bottom key strata increased suddenly when the breakage of top key strata happened. Because of high confined thick unconsolidated aquifer, surface acts on the bottom key strata soil layer in the form of uniformly distributed load, which is the load-transfer mechanism of confined thick unconsolidated aquifer. Once the overlying key strata compound breaks, the height of unstable strata will reach far more than 30 meters and exceed support capability of current fully-mechanized mining supporter, which leads to support break-off accident during mining process under confined unconsolidated aquifer.展开更多
基金Supported by the Innovative Talent Funds for Project 985 under Grant No WLYJSBJRCTD201102the Fundamental Research Funds for the Central Universities under Grant No CQDXWL-2013-014+1 种基金the Natural Science Foundation of Chongqing under Grant No CSTC2006BB5240the Program for New Century Excellent Talents in Universities of China under Grant No NCET-07-0903
文摘Support vector regression (SVR) combined with particle swarm optimization for its parameter optimization is employed to establish a model for predicting the Henry constants of multi-walled carbon nanotubes (MWNTs) for adsorption of volatile organic compounds (VOCs). The prediction performance of SVR is compared with those of the model of theoretical linear salvation energy relationship (TLSER). By using leave-one-out cross validation of SVR test Henry constants for adsorption of 35 VOCs on MWNTs, the root mean square error is 0.080, the mean absolute percentage error is only 1.19~, and the correlation coefficient (R2) is as high as 0.997. Compared with the results of the TLSER model, it is shown that the estimated errors by SVR are ali smaller than those achieved by TLSER. It reveals that the generalization ability of SVR is superior to that of the TLSER model Meanwhile, multifactor analysis is adopted for investigation of the influences of each molecular structure descriptor on the Henry constants. According to the TLSER model, the adsorption mechanism of adsorption of carbon nanotubes of VOCs is mainly a result of van der Waals and interactions of hydrogen bonds. These can provide the theoretical support for the application of carbon nanotube adsorption of VOCs and can make up for the lack of experimental data.
基金Supported by the National Natural Science Foundation of China(No.20673068)
文摘Graphite intercalation compounds(GIC) were tested as an experimental model for studying the electronic effect of carbon support on the catalytic activity and poisoning tolerance of Pt catalyst for direct methanol fuel cells. The GIC samples with different intercalation degrees were prepared by electrolyzing graphite flake in H2SO4 for varying the periods of time. The GIC-supported Pt catalyst was deposited electrochemically. The catalytic activity and poisoning tolerance of the GIC-supported Pt catalysts were evaluated. It was found that GIC with sulfate anion as intercalate was able to catalyze methanol electrooxidation, which could be related to the positive charges generated on the graphite layer upon intercalation. As intercalation degree increased, the catalytic activity of the GIC-supported Pt catalyst decreased while the poisoning tolerance improved. This suggests that electron donation from support to catalyst had great effect on both catalytic activity and poisoning tolerance of Pt catalyst. And intercalation can be adopted as another important way to make modification on carboneous catalyst support.
文摘The instability of trapezoidal Ⅰ-steel support is analysed for the compound roof of main coal seam in Shaqu Colliery, and the mechanism of bolt supporting is studied. A scheme of bolt supporting has been given and put into practice, remarkable technical and economic benefits have been got.
文摘A silica-supported carboxymethylcellulose platinum complex (abbreviated as SiO_2-CMC-Pt) has been prepared and characterized by XPS. Its catalytic properties for hydro-genation of aromatic compounds were studied. The results showed that this catalystcould catalyze the hydrogenation of phenol, anisol, p-cresol, benzene and toluene to cyclo-hexanol, cyclohexyl methyl ether, p-methyl cyclohexanol, cyclohexane and methylcyclo-hexane, respectively in 100% yield at 30℃ and 1 atm. In the hydrogenation of phenol,COO/Pt ratio in SiO_2-CMC-Pt has much influence on the initial hydrogenation rate andthe selectivity for the intermediate product, cyclohexanone. The highest initial rate andthe highest yield of cyclohexanone both occur at COO/Pt ratio of 6. The complex is stableduring the reaction and can be used repeatedly.
文摘The thick Cenozoic unconsolidated aquifer is deposited under Sunan syncline core in Huaibei coalfield, the water yield property of unconsolidated bottom aquifer is strong and water pressure is high in some areas (up to 4 MPa in some areas). Water inrush accident often occurs during mining under unconsolidated aquifer, the biggest characteristic is abnormal mine pressure and support break-off during water inrush accident comparing with normal condition. In order to study mechanism of?support break-off and water inrush during mining under the high confined thick unconsolidated aquifer, a simulation of similar material was designed. The experimental results indicated that, under normal condition, the compound breakage sequence of water-resisting key strata between coal seam and high confined thick unconsolidated aquifer is from top to bottom and the basic reason of synchronous fracture is the load of bottom key strata increased suddenly when the breakage of top key strata happened. Because of high confined thick unconsolidated aquifer, surface acts on the bottom key strata soil layer in the form of uniformly distributed load, which is the load-transfer mechanism of confined thick unconsolidated aquifer. Once the overlying key strata compound breaks, the height of unstable strata will reach far more than 30 meters and exceed support capability of current fully-mechanized mining supporter, which leads to support break-off accident during mining process under confined unconsolidated aquifer.