期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
Mechanical properties and influence mechanism of confined concrete arches in high-stress tunnels 被引量:9
1
作者 Bei Jiang Zhongxin Xin +4 位作者 Xiufeng Zhang Yusong Deng Mingzi Wang Shidong Li Wentao Ren 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第7期829-841,共13页
Deep underground projects(e.g., coal mines), are often faced with complex conditions such as high stress and extremely soft rock. The strength and rigidity of the traditional support system are often insufficient,whic... Deep underground projects(e.g., coal mines), are often faced with complex conditions such as high stress and extremely soft rock. The strength and rigidity of the traditional support system are often insufficient,which makes it difficult to meet the requirements of ground control under complex conditions. As a new support form with high strength and rigidity, the confined concrete arch plays an important role in controlling the rock deformation under complex conditions. The section shape of the tunnel has an important impact on the mechanical properties and design of the support system. However, studies on the mechanical properties and influence mechanism of the new confined concrete arch are rarely reported. To this end, the mechanical properties of traditional U-shaped steel and new confined concrete arches are compared and comparative tests on arches of circular and straight-leg semicircular shapes in deep tunnels are conducted. A large mechanical testing system for underground engineering support structure is developed. The mechanical properties and influence mechanism of confined concrete arches with different section shapes under different loading modes and cross-section parameters are systematically studied. Test results show that the bearing capacity of the confined concrete arch is 2.10 times that of the U-shaped steel arch, and the bearing capacity of the circular confined concrete arch is 2.27 times that of the straight-leg semicircular arch. Among the various influencing factors and their engineering parameters,the lateral stress coefficient has the greatest impact on the bearing capacity of the confined concrete arch,followed by the steel pipe wall thickness, steel strength, and core concrete strength. Subsequently, the economic index of bearing capacity and cost is established, and the optimization design method for the confined concrete arch is proposed. Finally, this design method is applied to a high-stress tunnel under complex conditions, and the deformation of the surrounding rock is effectively controlled. 展开更多
关键词 High-stress tunnel Confined concrete arch Section shape Mechanical properties Design method
下载PDF
Determination of initial cable force of cantilever casting concrete arch bridge using stress balance and influence matrix methods 被引量:7
2
作者 TIAN Zhong-chu PENG Wen-ping +2 位作者 ZHANG Jian-ren JIANG Tian-yong DENG Yang 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第11期3140-3155,共16页
Cantilever casting concrete arch bridge using form traveller has a broad application prospect.However,it is difficult to obtain reasonable initial cable force in construction stage.In this study,stress balance and inf... Cantilever casting concrete arch bridge using form traveller has a broad application prospect.However,it is difficult to obtain reasonable initial cable force in construction stage.In this study,stress balance and influence matrix methods were developed to determine the initial cable force of cantilever casting concrete arch bridge.The stress balance equation and influence matrix of arch rib critical section were established,and the buckle cable force range was determined by the allowable stress of arch rib critical section.Then a group of buckle cable forces were selected and substituted into the stress balance equation,and the reasonable initial buckle cable force was determined through iteration.Based on the principle of force balance,the initial anchor cable force was determined.In an engineering application example,it is shown that the stress balance and influence matrix methods for the determination of initial cable force are feasible and reliable.The initial cable forces of arch rib segments only need to be adjusted once in the corresponding construction process,which improves the working efficiency and reduces the construction risk.It is found that the methods have great advantages for determining initial cable force in cantilever casting construction process of concrete arch bridge. 展开更多
关键词 concrete arch bridge cantilever casting initial cable force stress balance method influence matrix method
下载PDF
Mechanical behaviour analysis and support system field experiment of confined concrete arches 被引量:5
3
作者 WANG Qi LUAN Ying-cheng +2 位作者 JIANG Bei LI Shu-cai YU Heng-chang 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第4期970-983,共14页
Soft rock control is a big challenge in underground engineering.As for this problem,a high-strength support technique of confined concrete(CC)arches is proposed and studied in this paper.Based on full-scale mechanical... Soft rock control is a big challenge in underground engineering.As for this problem,a high-strength support technique of confined concrete(CC)arches is proposed and studied in this paper.Based on full-scale mechanical test system of arch,research is made on the failure mechanism and mechanical properties of CC arch.Then,a mechanical calculation model of circular section is established for the arches with arbitrary section and unequal rigidity;a calculation formula is deduced for the internal force of the arch;an analysis is made on the influence of different factors on the internal force of the arch;and a calculation formula is got for the bearing capacity of CC arch through the strength criterion of bearing capacity.With numerical calculation and laboratory experiment,the ultimate bearing capacity and internal force distribution is analyzed for CC arches.The research results show that:1)CC arch is 2.31 times higher in strength than the U-shaped steel arch and has better stability;2)The key damage position of the arch is the two sides;3)Theoretical analysis,numerical calculation and laboratory experiment have good consistency in the internal force distribution,bearing capacity,and deformation and failure modes of the arch.All of that verifies the correctness of the theoretical calculation.Based on the above results,a field experiment is carried out in Liangjia Mine.Compared with the U-shaped steel arch support,CC arch support is more effective in surrounding rock deformation control.The research results can provide a basis for the design of CC arch support in underground engineering. 展开更多
关键词 confined concrete arch full-scale laboratory experiment theoretical analysis numerical experiment field application
下载PDF
Time-dependent behavior comparison of long-span concrete arch bridge between prototype and model 被引量:1
4
作者 WANG Yong-bao QIN Peng-ju +2 位作者 LIU Zhi-hua ZHANG Xiao MAO Min 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第5期1565-1577,共13页
Beipanjiang Bridge is a long-span concrete arch bridges with stiffened skeleton(CABSS)in China.It has a fixed end arch with the span of 445 m and the rise of 100 m.To evaluate the rationality of the construction seque... Beipanjiang Bridge is a long-span concrete arch bridges with stiffened skeleton(CABSS)in China.It has a fixed end arch with the span of 445 m and the rise of 100 m.To evaluate the rationality of the construction sequence and the time-dependent behavior of CABSS,an experimental study of a model bridge was explored.But the measured displacement and stress ratios of arch rib between prototype and model bridge did not subject to linear similarity relation when the time-dependent behavior was considered.So,the three-dimensional finite element models were established,and verified by the measured data.Then,the displacements and stresses of the prototype and model were compared with each other,when the elastic analysis or coupling of temperature and shrinkage,creep effect was considered.Furthermore,a parametric study was studied.The results showed that when the temperature,shrinkage and creep effect of concrete are considered,the finite element analysis results of prototype and model agree well with the measured results.The displacement and stress ratios of prototype and model bridge in construction and bridge completed stage do not present the geometric similarity ratio 7.5 and 1.0,respectively.They are also much influenced by concrete predicting model and variation of temperature. 展开更多
关键词 concrete arch bridge time-dependent behavior finite element model test stiffened skeleton
下载PDF
Recent Construction Technology Innovations and Practices for Large-Span Arch Bridges in China
5
作者 Jielian Zheng 《Engineering》 SCIE EI CAS CSCD 2024年第10期110-129,共20页
Arch bridges provide significant technical and economic benefits under suitable conditions.In particular,concrete-filled steel tubular(CFST)arch bridges and steel-reinforced concrete(SRC)arch bridges are two types of ... Arch bridges provide significant technical and economic benefits under suitable conditions.In particular,concrete-filled steel tubular(CFST)arch bridges and steel-reinforced concrete(SRC)arch bridges are two types of arch bridges that have gained great economic competitiveness and span growth potential due to advancements in construction technology,engineering materials,and construction equipment over the past 30 years.Under the leadership of the author,two record-breaking arch bridges—that is,the Pingnan Third Bridge(a CFST arch bridge),with a span of 560 m,and the Tian’e Longtan Bridge(an SRC arch bridge),with a span of 600 m—have been built in the past five years,embodying great technological breakthroughs in the construction of these two types of arch bridges.This paper takes these two arch bridges as examples to systematically summarize the latest technological innovations and practices in the construction of CFST arch bridges and SRC arch bridges in China.The technological innovations of CFST arch bridges include cable-stayed fastening-hanging cantilevered assembly methods,new in-tube concrete materials,in-tube concrete pouring techniques,a novel thrust abutment foundation for nonrocky terrain,and measures to reduce the quantity of temporary facilities.The technological innovations of SRC arch bridges involve arch skeleton stiffness selection,the development of encasing concrete materials,encasing concrete pouring,arch rib stress mitigation,and longitudinal reinforcement optimization.To conclude,future research focuses and development directions for these two types of arch bridges are proposed. 展开更多
关键词 concrete-filled steel tubular arch bridges Steel-reinforced concrete arch bridges Cable-stayed fastening-hanging cantilevered assembly Non-rocky thrust abutment foundation Stiff skeleton Encasing concrete pouring Longitudinal reinforcement optimization
下载PDF
Numerical Simulation Analysis of Welded Joints in Arch Ribs of Large Span Steel Pipe Arch Bridges
6
作者 Deer He Nianchun Deng Xiuning Peng 《Journal of Harbin Institute of Technology(New Series)》 CAS 2024年第3期19-30,共12页
In order to study the residual stress distribution law of welded joints of arch ribs of large-span steel pipe concrete arch bridges,numerical simulation of temperature,stress and strain fields based on ABAQUS for weld... In order to study the residual stress distribution law of welded joints of arch ribs of large-span steel pipe concrete arch bridges,numerical simulation of temperature,stress and strain fields based on ABAQUS for welded joints of arch-ribbed steel tubes using 7-,8-and 9-layer welds is carried out and its accuracy is demonstrated.The steel pipe welding temperature changes,residual stress distribution,different processes residual stress changes in the law,the prediction of post-weld residual stress distribution and deformation are studied in this paper.The results show that the temperature field values and test results are more consistent with the accuracy of numerical simulation of welding,the welding process is mainly in the form of heat transfer;Residual high stresses are predominantly distributed in the Fusion zone(FZ)and Heat-affected zone(HAZ),with residual stress levels tending to decrease from the center of the weld along the axial path,the maximum stress appears in the FZ and HAZ junction;The number of welding layers has an effect on the residual stress distribution,the number of welding layers increases,the residual stress tends to decrease,while the FZ and HAZ high stress area range shrinks;Increasing the number of plies will increase the amount of residual distortion. 展开更多
关键词 steel pipe and concrete arch bridge arch rib multi-pass welding residual stress numerical simulation
下载PDF
Approach for analyzing the ultimate strength of concrete filled steel tubular arch bridges with stiffening girder 被引量:6
7
作者 ZHANG Zhi-cheng XIE Xu +1 位作者 ZHANG He CHEN Heng-zhi 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第5期682-692,共11页
A convenient approach is proposed for analyzing the ultimate load carrying capacity of concrete filled steel tubular (CFST) arch bridge with stiffening girders. A fiber model beam element is specially used to simulate... A convenient approach is proposed for analyzing the ultimate load carrying capacity of concrete filled steel tubular (CFST) arch bridge with stiffening girders. A fiber model beam element is specially used to simulate the stiffening girder and CFST arch rib. The geometric nonlinearity, material nonlinearity, influence of the construction process and the contribution of prestressing reinforcement are all taken into consideration. The accuracy of this method is validated by comparing its results with experimental results. Finally, the ultimate strength of an abnormal CFST arch bridge with stiffening girders is investigated and the effect of construction method is discussed. It is concluded that the construction process has little effect on the ultimate strength of the bridge. 展开更多
关键词 Ultimate strength concrete filled steel tubular (CFST) arch bridge Stiffening girder Fiber model beam element Construction process
下载PDF
Real-Time Temperature Control for High Arch Dam Based on Decision Support System 被引量:4
8
作者 井向阳 刘杏红 +1 位作者 周伟 常晓林 《Transactions of Tianjin University》 EI CAS 2014年第2期118-125,共8页
It is important and difficult to control the temperature of mass concrete structure during high arch dam construction.A new method with decision support system is presented for temperature control and crack prevention... It is important and difficult to control the temperature of mass concrete structure during high arch dam construction.A new method with decision support system is presented for temperature control and crack prevention.It is a database system with functions of data storage,information inquiry,data analysis,early warning and resource sharing.Monitoring information during construction can be digitized via this system,and the intelligent analysis and dynamic control of concrete temperature can be conducted.This method has been applied in the construction of the Dagangshan Arch Dam in China and has proven to be very convenient.Based on the decision support of this system and the dynamic adjustment of construction measures,the concrete temperature of this project is well-controlled. 展开更多
关键词 concrete arch dam temperature control decision support system pipe cooling MONITORING
下载PDF
Wave passage and incoherency effects on seismic response of high arch dams 被引量:2
9
作者 H. Mirzabozorg M. Akbari M. A. Hariri Ardebili 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2012年第4期567-578,共12页
The effects ofincoherency and wave-passage on the nonlinear responses of concrete arch dams are investigated in this study. A double curvature arch dam is selected as a numerical example. The reservoir is modeled as a... The effects ofincoherency and wave-passage on the nonlinear responses of concrete arch dams are investigated in this study. A double curvature arch dam is selected as a numerical example. The reservoir is modeled as a compressible material and the foundation is modeled as a massless medium. Ground motion time-histories are artificially generated using the Monte Carlo simulation approach. Four different finite element models (FEM) are considered: uniform excitation; incoherence effect; wave passage effect; and both incoherence and wave passage effects. It was revealed that modeling multiple-supports excitation could have a significant impact on the structural response of the dam by inducing a pseudo-static effect. Also, it was concluded that the coherency effect overshadows the wave passage effect and the results obtained from non-uniform excitation of FEM, including the wave passage effect, is close to the results of the FEM when it is uniformly excited. 展开更多
关键词 concrete arch dam incoherency nonlinear analysis wave passage
下载PDF
Calculation Model of Equivalent Strength for Induced Crack Based on Double-K Fracture Theory and Its Optimizing Setting in RCC Arch Dam 被引量:8
10
作者 张小刚 宋玉普 吴智敏 《Transactions of Tianjin University》 EI CAS 2005年第1期59-65,共7页
By means of fracture testing on roller-compacted concrete (RCC) three-point bending beams with two different specimen sizes, the P-CMOD complete curve for RCC was gained. Furthermore, by applying double-K fracture t... By means of fracture testing on roller-compacted concrete (RCC) three-point bending beams with two different specimen sizes, the P-CMOD complete curve for RCC was gained. Furthermore, by applying double-K fracture theory, KiniⅠC,KunⅠC, as well as the critical effective crack length and the critical crack tip opening displacement, were evaluated. Based on the double-K fracture parameters above, the calculation model of equivalent strength for induced crack was established, thus the calculation method on its initiation, stable propagation and unstable fracture was ascertained. Moreover, the finite element simulation analysis of stress field in ShaPai arch dam and the on-site observational splaying points of induced crack at different altitudes validated the reliability of the model. Finally, crack inducer′s optimal setting in RCC arch dam was studied. It improves the design level of induced crack in RCC arch dam and satisfies the necessity of engineering practice. 展开更多
关键词 roller-compacted concrete (RCC) arch dam induced crack double-K fracture parameters equivalent strength calculation model optimizing setting
下载PDF
Study on equivalent strength for crack directors of RCC arch dam based on size effect rule
11
作者 王学志 宋玉普 +1 位作者 董锦坤 黄志强 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2009年第2期149-153,共5页
The size effect rule of roller compacted concrete (RCC) fracture toughness was reached on the analysis of fracture toughness of RCC specimens, which have been done by project team. And then the rule was applied to the... The size effect rule of roller compacted concrete (RCC) fracture toughness was reached on the analysis of fracture toughness of RCC specimens, which have been done by project team. And then the rule was applied to the calculation formula of equivalent strength of crack director in the RCC arch dam, thus a simple and useful formula was reached. The study shows that the equivalent strength of crack directors increases with the increasing intensity of concrete, but the surplus rate of strength of crack directors section decreases with the increasing intensity of concrete and the distance between centers of adjacent crack directors, and that bilateral interval crack directors are more efficient in weakening the strength of section than unidirectional interval crack directors in the case of the same distance between adjacent crack director centers. A good design for crack directors of RCC arch dam is proposed via the rule. 展开更多
关键词 roller compacted concrete (RCC) arch dam crack director equivalent strength fracture toughness size effect rule
下载PDF
Arch-dam crack deformation monitoring hybrid model based on XFEM 被引量:10
12
作者 ZHENG DongJian HUO ZhongYan LI Bo 《Science China(Technological Sciences)》 SCIE EI CAS 2011年第10期2611-2617,共7页
An extended finite element method incorporated with the cohesive crack model(CCM-based XFEM) is developed in consideration of crack tip enrichment.It could improve the accuracy and is introduced into dam safety monito... An extended finite element method incorporated with the cohesive crack model(CCM-based XFEM) is developed in consideration of crack tip enrichment.It could improve the accuracy and is introduced into dam safety monitoring for the first time.Firstly,the proposed method is verified for a benchmark concrete beam by comparing the results with those of numerical investigations obtained by other researchers.Furthermore,it is adopted as an alternative method for building the deformation hybrid models of non-stable cracks in an arc dam,for the reason that classical FEMs are cumbersome in modeling the cohesive crack growth due to the need of remeshing the moving discontinuities.Case study proves that the fitted results of the mentioned deformation hybrid model,better than the classical statistical model,are well consistent with the measured data and reliable to forecast the development tendency of crack deformation.Therefore,the present CCM-based XFEM could provide a practical way to simulate and monitor the cracking process in concrete arch dam. 展开更多
关键词 XFEM cohesive crack model concrete arch dam hybrid model
原文传递
Blast responses of shallow-buried prefabricated modular concrete tunnels reinforced by BFRP-steel bars 被引量:4
13
作者 Chengjie Zhao Zexun Tang +6 位作者 Peng Wang Jiang Feng Jiannan Zhou Xinli Kong Hansheng Geng Fengnian Jin Hualin Fan 《Underground Space》 SCIE EI 2022年第2期184-198,共15页
This paper reports the anti-blast performance of shallow-buried prefabricated modular tunnel reinforced by basalt fiber-reinforced polymer(BFRP)-steel bars.Three concrete arch members with steel bars and three concret... This paper reports the anti-blast performance of shallow-buried prefabricated modular tunnel reinforced by basalt fiber-reinforced polymer(BFRP)-steel bars.Three concrete arch members with steel bars and three concrete arch members with BFRP-steel bars were fabricated,with the other arch parameters kept constant.The three identical arches were assembled into an integral structure and then buried in soil for field anti-blast experiments.Through the experiment,the pressure on the vault,the displacement and acceleration of the vault,the strain in the reinforcement bars and the macroscopic damage of the arches under the blast load were determined.To evaluate the damage of the arch tunnel,a residual load-bearing capacity test was conducted on the arch members after the explosion experiment.The experimental results showed that the BFRP-steel bars reinforced concrete arch exhibited a higher load-bearing capacity and more safety redundancy than the steel bars reinforced concrete arch,and that the BFRP-steel bars could inhibit the occurrence of concrete cracks to a certain extent.A comparison between the arches assembled at different positions showed that the prefabricated modular tun-nel can be simplified directly as a two-dimensional arch structure under the blast load for analysis and calculation. 展开更多
关键词 BFRP-steel bars concrete arch Shallow-buried protective tunnel Anti-blast performance
原文传递
RCC Arch Dam Structure on the Taxi River and Water Storage Measure During Construction 被引量:1
14
作者 刘光廷 李鹏辉 +2 位作者 胡昱 张富德 谢树南 《Tsinghua Science and Technology》 SCIE EI CAS 2002年第3期243-250,269,共9页
The new structure of roller compacted concrete (RCC) arch dams is presented for extremely cold and earthquake prone areas. The influence of construction plans and improved materials on the stresses in the Taxi River ... The new structure of roller compacted concrete (RCC) arch dams is presented for extremely cold and earthquake prone areas. The influence of construction plans and improved materials on the stresses in the Taxi River dam is also given. Earlier impoundment of water is shown to not only benefit the engineering design but also improve the stresses during construction in winter. Low cement content in the concrete and artificial short joints improved the monolithic structure and the transmitted forces. The concrete plug installed in the first cooled part of the arch dam provides excellent force transmission in the arch, which increases the monolith of the earlier arch, reduces the increasing thermal stresses that occur later, and improves the deformation flexibility of the dam. 展开更多
关键词 roller compacted concrete (RCC) arch dam artificial short joint concrete plug
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部