Deep underground projects(e.g., coal mines), are often faced with complex conditions such as high stress and extremely soft rock. The strength and rigidity of the traditional support system are often insufficient,whic...Deep underground projects(e.g., coal mines), are often faced with complex conditions such as high stress and extremely soft rock. The strength and rigidity of the traditional support system are often insufficient,which makes it difficult to meet the requirements of ground control under complex conditions. As a new support form with high strength and rigidity, the confined concrete arch plays an important role in controlling the rock deformation under complex conditions. The section shape of the tunnel has an important impact on the mechanical properties and design of the support system. However, studies on the mechanical properties and influence mechanism of the new confined concrete arch are rarely reported. To this end, the mechanical properties of traditional U-shaped steel and new confined concrete arches are compared and comparative tests on arches of circular and straight-leg semicircular shapes in deep tunnels are conducted. A large mechanical testing system for underground engineering support structure is developed. The mechanical properties and influence mechanism of confined concrete arches with different section shapes under different loading modes and cross-section parameters are systematically studied. Test results show that the bearing capacity of the confined concrete arch is 2.10 times that of the U-shaped steel arch, and the bearing capacity of the circular confined concrete arch is 2.27 times that of the straight-leg semicircular arch. Among the various influencing factors and their engineering parameters,the lateral stress coefficient has the greatest impact on the bearing capacity of the confined concrete arch,followed by the steel pipe wall thickness, steel strength, and core concrete strength. Subsequently, the economic index of bearing capacity and cost is established, and the optimization design method for the confined concrete arch is proposed. Finally, this design method is applied to a high-stress tunnel under complex conditions, and the deformation of the surrounding rock is effectively controlled.展开更多
Cantilever casting concrete arch bridge using form traveller has a broad application prospect.However,it is difficult to obtain reasonable initial cable force in construction stage.In this study,stress balance and inf...Cantilever casting concrete arch bridge using form traveller has a broad application prospect.However,it is difficult to obtain reasonable initial cable force in construction stage.In this study,stress balance and influence matrix methods were developed to determine the initial cable force of cantilever casting concrete arch bridge.The stress balance equation and influence matrix of arch rib critical section were established,and the buckle cable force range was determined by the allowable stress of arch rib critical section.Then a group of buckle cable forces were selected and substituted into the stress balance equation,and the reasonable initial buckle cable force was determined through iteration.Based on the principle of force balance,the initial anchor cable force was determined.In an engineering application example,it is shown that the stress balance and influence matrix methods for the determination of initial cable force are feasible and reliable.The initial cable forces of arch rib segments only need to be adjusted once in the corresponding construction process,which improves the working efficiency and reduces the construction risk.It is found that the methods have great advantages for determining initial cable force in cantilever casting construction process of concrete arch bridge.展开更多
Soft rock control is a big challenge in underground engineering.As for this problem,a high-strength support technique of confined concrete(CC)arches is proposed and studied in this paper.Based on full-scale mechanical...Soft rock control is a big challenge in underground engineering.As for this problem,a high-strength support technique of confined concrete(CC)arches is proposed and studied in this paper.Based on full-scale mechanical test system of arch,research is made on the failure mechanism and mechanical properties of CC arch.Then,a mechanical calculation model of circular section is established for the arches with arbitrary section and unequal rigidity;a calculation formula is deduced for the internal force of the arch;an analysis is made on the influence of different factors on the internal force of the arch;and a calculation formula is got for the bearing capacity of CC arch through the strength criterion of bearing capacity.With numerical calculation and laboratory experiment,the ultimate bearing capacity and internal force distribution is analyzed for CC arches.The research results show that:1)CC arch is 2.31 times higher in strength than the U-shaped steel arch and has better stability;2)The key damage position of the arch is the two sides;3)Theoretical analysis,numerical calculation and laboratory experiment have good consistency in the internal force distribution,bearing capacity,and deformation and failure modes of the arch.All of that verifies the correctness of the theoretical calculation.Based on the above results,a field experiment is carried out in Liangjia Mine.Compared with the U-shaped steel arch support,CC arch support is more effective in surrounding rock deformation control.The research results can provide a basis for the design of CC arch support in underground engineering.展开更多
Beipanjiang Bridge is a long-span concrete arch bridges with stiffened skeleton(CABSS)in China.It has a fixed end arch with the span of 445 m and the rise of 100 m.To evaluate the rationality of the construction seque...Beipanjiang Bridge is a long-span concrete arch bridges with stiffened skeleton(CABSS)in China.It has a fixed end arch with the span of 445 m and the rise of 100 m.To evaluate the rationality of the construction sequence and the time-dependent behavior of CABSS,an experimental study of a model bridge was explored.But the measured displacement and stress ratios of arch rib between prototype and model bridge did not subject to linear similarity relation when the time-dependent behavior was considered.So,the three-dimensional finite element models were established,and verified by the measured data.Then,the displacements and stresses of the prototype and model were compared with each other,when the elastic analysis or coupling of temperature and shrinkage,creep effect was considered.Furthermore,a parametric study was studied.The results showed that when the temperature,shrinkage and creep effect of concrete are considered,the finite element analysis results of prototype and model agree well with the measured results.The displacement and stress ratios of prototype and model bridge in construction and bridge completed stage do not present the geometric similarity ratio 7.5 and 1.0,respectively.They are also much influenced by concrete predicting model and variation of temperature.展开更多
Arch bridges provide significant technical and economic benefits under suitable conditions.In particular,concrete-filled steel tubular(CFST)arch bridges and steel-reinforced concrete(SRC)arch bridges are two types of ...Arch bridges provide significant technical and economic benefits under suitable conditions.In particular,concrete-filled steel tubular(CFST)arch bridges and steel-reinforced concrete(SRC)arch bridges are two types of arch bridges that have gained great economic competitiveness and span growth potential due to advancements in construction technology,engineering materials,and construction equipment over the past 30 years.Under the leadership of the author,two record-breaking arch bridges—that is,the Pingnan Third Bridge(a CFST arch bridge),with a span of 560 m,and the Tian’e Longtan Bridge(an SRC arch bridge),with a span of 600 m—have been built in the past five years,embodying great technological breakthroughs in the construction of these two types of arch bridges.This paper takes these two arch bridges as examples to systematically summarize the latest technological innovations and practices in the construction of CFST arch bridges and SRC arch bridges in China.The technological innovations of CFST arch bridges include cable-stayed fastening-hanging cantilevered assembly methods,new in-tube concrete materials,in-tube concrete pouring techniques,a novel thrust abutment foundation for nonrocky terrain,and measures to reduce the quantity of temporary facilities.The technological innovations of SRC arch bridges involve arch skeleton stiffness selection,the development of encasing concrete materials,encasing concrete pouring,arch rib stress mitigation,and longitudinal reinforcement optimization.To conclude,future research focuses and development directions for these two types of arch bridges are proposed.展开更多
In order to study the residual stress distribution law of welded joints of arch ribs of large-span steel pipe concrete arch bridges,numerical simulation of temperature,stress and strain fields based on ABAQUS for weld...In order to study the residual stress distribution law of welded joints of arch ribs of large-span steel pipe concrete arch bridges,numerical simulation of temperature,stress and strain fields based on ABAQUS for welded joints of arch-ribbed steel tubes using 7-,8-and 9-layer welds is carried out and its accuracy is demonstrated.The steel pipe welding temperature changes,residual stress distribution,different processes residual stress changes in the law,the prediction of post-weld residual stress distribution and deformation are studied in this paper.The results show that the temperature field values and test results are more consistent with the accuracy of numerical simulation of welding,the welding process is mainly in the form of heat transfer;Residual high stresses are predominantly distributed in the Fusion zone(FZ)and Heat-affected zone(HAZ),with residual stress levels tending to decrease from the center of the weld along the axial path,the maximum stress appears in the FZ and HAZ junction;The number of welding layers has an effect on the residual stress distribution,the number of welding layers increases,the residual stress tends to decrease,while the FZ and HAZ high stress area range shrinks;Increasing the number of plies will increase the amount of residual distortion.展开更多
A convenient approach is proposed for analyzing the ultimate load carrying capacity of concrete filled steel tubular (CFST) arch bridge with stiffening girders. A fiber model beam element is specially used to simulate...A convenient approach is proposed for analyzing the ultimate load carrying capacity of concrete filled steel tubular (CFST) arch bridge with stiffening girders. A fiber model beam element is specially used to simulate the stiffening girder and CFST arch rib. The geometric nonlinearity, material nonlinearity, influence of the construction process and the contribution of prestressing reinforcement are all taken into consideration. The accuracy of this method is validated by comparing its results with experimental results. Finally, the ultimate strength of an abnormal CFST arch bridge with stiffening girders is investigated and the effect of construction method is discussed. It is concluded that the construction process has little effect on the ultimate strength of the bridge.展开更多
It is important and difficult to control the temperature of mass concrete structure during high arch dam construction.A new method with decision support system is presented for temperature control and crack prevention...It is important and difficult to control the temperature of mass concrete structure during high arch dam construction.A new method with decision support system is presented for temperature control and crack prevention.It is a database system with functions of data storage,information inquiry,data analysis,early warning and resource sharing.Monitoring information during construction can be digitized via this system,and the intelligent analysis and dynamic control of concrete temperature can be conducted.This method has been applied in the construction of the Dagangshan Arch Dam in China and has proven to be very convenient.Based on the decision support of this system and the dynamic adjustment of construction measures,the concrete temperature of this project is well-controlled.展开更多
The effects ofincoherency and wave-passage on the nonlinear responses of concrete arch dams are investigated in this study. A double curvature arch dam is selected as a numerical example. The reservoir is modeled as a...The effects ofincoherency and wave-passage on the nonlinear responses of concrete arch dams are investigated in this study. A double curvature arch dam is selected as a numerical example. The reservoir is modeled as a compressible material and the foundation is modeled as a massless medium. Ground motion time-histories are artificially generated using the Monte Carlo simulation approach. Four different finite element models (FEM) are considered: uniform excitation; incoherence effect; wave passage effect; and both incoherence and wave passage effects. It was revealed that modeling multiple-supports excitation could have a significant impact on the structural response of the dam by inducing a pseudo-static effect. Also, it was concluded that the coherency effect overshadows the wave passage effect and the results obtained from non-uniform excitation of FEM, including the wave passage effect, is close to the results of the FEM when it is uniformly excited.展开更多
By means of fracture testing on roller-compacted concrete (RCC) three-point bending beams with two different specimen sizes, the P-CMOD complete curve for RCC was gained. Furthermore, by applying double-K fracture t...By means of fracture testing on roller-compacted concrete (RCC) three-point bending beams with two different specimen sizes, the P-CMOD complete curve for RCC was gained. Furthermore, by applying double-K fracture theory, KiniⅠC,KunⅠC, as well as the critical effective crack length and the critical crack tip opening displacement, were evaluated. Based on the double-K fracture parameters above, the calculation model of equivalent strength for induced crack was established, thus the calculation method on its initiation, stable propagation and unstable fracture was ascertained. Moreover, the finite element simulation analysis of stress field in ShaPai arch dam and the on-site observational splaying points of induced crack at different altitudes validated the reliability of the model. Finally, crack inducer′s optimal setting in RCC arch dam was studied. It improves the design level of induced crack in RCC arch dam and satisfies the necessity of engineering practice.展开更多
The size effect rule of roller compacted concrete (RCC) fracture toughness was reached on the analysis of fracture toughness of RCC specimens, which have been done by project team. And then the rule was applied to the...The size effect rule of roller compacted concrete (RCC) fracture toughness was reached on the analysis of fracture toughness of RCC specimens, which have been done by project team. And then the rule was applied to the calculation formula of equivalent strength of crack director in the RCC arch dam, thus a simple and useful formula was reached. The study shows that the equivalent strength of crack directors increases with the increasing intensity of concrete, but the surplus rate of strength of crack directors section decreases with the increasing intensity of concrete and the distance between centers of adjacent crack directors, and that bilateral interval crack directors are more efficient in weakening the strength of section than unidirectional interval crack directors in the case of the same distance between adjacent crack director centers. A good design for crack directors of RCC arch dam is proposed via the rule.展开更多
An extended finite element method incorporated with the cohesive crack model(CCM-based XFEM) is developed in consideration of crack tip enrichment.It could improve the accuracy and is introduced into dam safety monito...An extended finite element method incorporated with the cohesive crack model(CCM-based XFEM) is developed in consideration of crack tip enrichment.It could improve the accuracy and is introduced into dam safety monitoring for the first time.Firstly,the proposed method is verified for a benchmark concrete beam by comparing the results with those of numerical investigations obtained by other researchers.Furthermore,it is adopted as an alternative method for building the deformation hybrid models of non-stable cracks in an arc dam,for the reason that classical FEMs are cumbersome in modeling the cohesive crack growth due to the need of remeshing the moving discontinuities.Case study proves that the fitted results of the mentioned deformation hybrid model,better than the classical statistical model,are well consistent with the measured data and reliable to forecast the development tendency of crack deformation.Therefore,the present CCM-based XFEM could provide a practical way to simulate and monitor the cracking process in concrete arch dam.展开更多
This paper reports the anti-blast performance of shallow-buried prefabricated modular tunnel reinforced by basalt fiber-reinforced polymer(BFRP)-steel bars.Three concrete arch members with steel bars and three concret...This paper reports the anti-blast performance of shallow-buried prefabricated modular tunnel reinforced by basalt fiber-reinforced polymer(BFRP)-steel bars.Three concrete arch members with steel bars and three concrete arch members with BFRP-steel bars were fabricated,with the other arch parameters kept constant.The three identical arches were assembled into an integral structure and then buried in soil for field anti-blast experiments.Through the experiment,the pressure on the vault,the displacement and acceleration of the vault,the strain in the reinforcement bars and the macroscopic damage of the arches under the blast load were determined.To evaluate the damage of the arch tunnel,a residual load-bearing capacity test was conducted on the arch members after the explosion experiment.The experimental results showed that the BFRP-steel bars reinforced concrete arch exhibited a higher load-bearing capacity and more safety redundancy than the steel bars reinforced concrete arch,and that the BFRP-steel bars could inhibit the occurrence of concrete cracks to a certain extent.A comparison between the arches assembled at different positions showed that the prefabricated modular tun-nel can be simplified directly as a two-dimensional arch structure under the blast load for analysis and calculation.展开更多
The new structure of roller compacted concrete (RCC) arch dams is presented for extremely cold and earthquake prone areas. The influence of construction plans and improved materials on the stresses in the Taxi River ...The new structure of roller compacted concrete (RCC) arch dams is presented for extremely cold and earthquake prone areas. The influence of construction plans and improved materials on the stresses in the Taxi River dam is also given. Earlier impoundment of water is shown to not only benefit the engineering design but also improve the stresses during construction in winter. Low cement content in the concrete and artificial short joints improved the monolithic structure and the transmitted forces. The concrete plug installed in the first cooled part of the arch dam provides excellent force transmission in the arch, which increases the monolith of the earlier arch, reduces the increasing thermal stresses that occur later, and improves the deformation flexibility of the dam.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 42277174, 42077267, and 52074164)the Natural Science Foundation of Shandong Province, China (No. ZR2020JQ23)+2 种基金Major Scientific and Technological Innovation Project of Shandong Province, China (No. 2019SDZY04)the Project of Shandong Province Higher Educational Youth Innovation Science and Technology Program, China (No. 2019KJG013)the opening project of State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology (No. KFJJ21-02Z)。
文摘Deep underground projects(e.g., coal mines), are often faced with complex conditions such as high stress and extremely soft rock. The strength and rigidity of the traditional support system are often insufficient,which makes it difficult to meet the requirements of ground control under complex conditions. As a new support form with high strength and rigidity, the confined concrete arch plays an important role in controlling the rock deformation under complex conditions. The section shape of the tunnel has an important impact on the mechanical properties and design of the support system. However, studies on the mechanical properties and influence mechanism of the new confined concrete arch are rarely reported. To this end, the mechanical properties of traditional U-shaped steel and new confined concrete arches are compared and comparative tests on arches of circular and straight-leg semicircular shapes in deep tunnels are conducted. A large mechanical testing system for underground engineering support structure is developed. The mechanical properties and influence mechanism of confined concrete arches with different section shapes under different loading modes and cross-section parameters are systematically studied. Test results show that the bearing capacity of the confined concrete arch is 2.10 times that of the U-shaped steel arch, and the bearing capacity of the circular confined concrete arch is 2.27 times that of the straight-leg semicircular arch. Among the various influencing factors and their engineering parameters,the lateral stress coefficient has the greatest impact on the bearing capacity of the confined concrete arch,followed by the steel pipe wall thickness, steel strength, and core concrete strength. Subsequently, the economic index of bearing capacity and cost is established, and the optimization design method for the confined concrete arch is proposed. Finally, this design method is applied to a high-stress tunnel under complex conditions, and the deformation of the surrounding rock is effectively controlled.
基金Projects(51478049,51778068)supported by the National Natural Science Foundation of ChinaProject(14JJ2075,2019JJ40301)supported by the Hunan Natural Science Foundation of China+1 种基金Project(17A010)supported by the Scientific Research Fund of Hunan Provincial Education Department of ChinaProject(2017GK4034)supported by the Major Technological Achievements Transformation Program of Hunan Strategic Emerging Industries of China
文摘Cantilever casting concrete arch bridge using form traveller has a broad application prospect.However,it is difficult to obtain reasonable initial cable force in construction stage.In this study,stress balance and influence matrix methods were developed to determine the initial cable force of cantilever casting concrete arch bridge.The stress balance equation and influence matrix of arch rib critical section were established,and the buckle cable force range was determined by the allowable stress of arch rib critical section.Then a group of buckle cable forces were selected and substituted into the stress balance equation,and the reasonable initial buckle cable force was determined through iteration.Based on the principle of force balance,the initial anchor cable force was determined.In an engineering application example,it is shown that the stress balance and influence matrix methods for the determination of initial cable force are feasible and reliable.The initial cable forces of arch rib segments only need to be adjusted once in the corresponding construction process,which improves the working efficiency and reduces the construction risk.It is found that the methods have great advantages for determining initial cable force in cantilever casting construction process of concrete arch bridge.
基金Projects(51674154,51704125,51874188) supported by the National Natural Science Foundation of ChinaProjects(2017T100116,2017T100491,2016M590150,2016M602144) supported by the China Postdoctoral Science Foundation+2 种基金Projects(2017GGX30101,2018GGX109001,ZR2017QEE013) supported by the Natural Science Foundation of Shandong Province,ChinaProject(SKLCRSM18KF012) supported by the State Key Laboratory of Coal Resources and Safe Mining,ChinaProject(2018WLJH76) supported by the Young Scholars Program of Shandong University,China
文摘Soft rock control is a big challenge in underground engineering.As for this problem,a high-strength support technique of confined concrete(CC)arches is proposed and studied in this paper.Based on full-scale mechanical test system of arch,research is made on the failure mechanism and mechanical properties of CC arch.Then,a mechanical calculation model of circular section is established for the arches with arbitrary section and unequal rigidity;a calculation formula is deduced for the internal force of the arch;an analysis is made on the influence of different factors on the internal force of the arch;and a calculation formula is got for the bearing capacity of CC arch through the strength criterion of bearing capacity.With numerical calculation and laboratory experiment,the ultimate bearing capacity and internal force distribution is analyzed for CC arches.The research results show that:1)CC arch is 2.31 times higher in strength than the U-shaped steel arch and has better stability;2)The key damage position of the arch is the two sides;3)Theoretical analysis,numerical calculation and laboratory experiment have good consistency in the internal force distribution,bearing capacity,and deformation and failure modes of the arch.All of that verifies the correctness of the theoretical calculation.Based on the above results,a field experiment is carried out in Liangjia Mine.Compared with the U-shaped steel arch support,CC arch support is more effective in surrounding rock deformation control.The research results can provide a basis for the design of CC arch support in underground engineering.
基金Projects(20-JKKJ-17,18-JKKJ-05)supported by the Shanxi Communications Holding Group Co.,Ltd.,ChinaProject(41907239)supported by the National Natural Science Foundation of China+1 种基金Project(2020M670698)supported by the China Postdoctoral Science FoundationProject(2019L0295)supported by the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi,China。
文摘Beipanjiang Bridge is a long-span concrete arch bridges with stiffened skeleton(CABSS)in China.It has a fixed end arch with the span of 445 m and the rise of 100 m.To evaluate the rationality of the construction sequence and the time-dependent behavior of CABSS,an experimental study of a model bridge was explored.But the measured displacement and stress ratios of arch rib between prototype and model bridge did not subject to linear similarity relation when the time-dependent behavior was considered.So,the three-dimensional finite element models were established,and verified by the measured data.Then,the displacements and stresses of the prototype and model were compared with each other,when the elastic analysis or coupling of temperature and shrinkage,creep effect was considered.Furthermore,a parametric study was studied.The results showed that when the temperature,shrinkage and creep effect of concrete are considered,the finite element analysis results of prototype and model agree well with the measured results.The displacement and stress ratios of prototype and model bridge in construction and bridge completed stage do not present the geometric similarity ratio 7.5 and 1.0,respectively.They are also much influenced by concrete predicting model and variation of temperature.
基金financially supported by the Guangxi Key Research and Development Plan Program(AB22036007).
文摘Arch bridges provide significant technical and economic benefits under suitable conditions.In particular,concrete-filled steel tubular(CFST)arch bridges and steel-reinforced concrete(SRC)arch bridges are two types of arch bridges that have gained great economic competitiveness and span growth potential due to advancements in construction technology,engineering materials,and construction equipment over the past 30 years.Under the leadership of the author,two record-breaking arch bridges—that is,the Pingnan Third Bridge(a CFST arch bridge),with a span of 560 m,and the Tian’e Longtan Bridge(an SRC arch bridge),with a span of 600 m—have been built in the past five years,embodying great technological breakthroughs in the construction of these two types of arch bridges.This paper takes these two arch bridges as examples to systematically summarize the latest technological innovations and practices in the construction of CFST arch bridges and SRC arch bridges in China.The technological innovations of CFST arch bridges include cable-stayed fastening-hanging cantilevered assembly methods,new in-tube concrete materials,in-tube concrete pouring techniques,a novel thrust abutment foundation for nonrocky terrain,and measures to reduce the quantity of temporary facilities.The technological innovations of SRC arch bridges involve arch skeleton stiffness selection,the development of encasing concrete materials,encasing concrete pouring,arch rib stress mitigation,and longitudinal reinforcement optimization.To conclude,future research focuses and development directions for these two types of arch bridges are proposed.
基金Sponsored by the National Natural Science Foundation of China(Grant No.52268048)the Guangxi Key Technology Research and Development Program(Grant No.GUI-KEAB23026101)the Guangxi Science and Technology Major Special Project(Grant No.GUI-KEAA22068066).
文摘In order to study the residual stress distribution law of welded joints of arch ribs of large-span steel pipe concrete arch bridges,numerical simulation of temperature,stress and strain fields based on ABAQUS for welded joints of arch-ribbed steel tubes using 7-,8-and 9-layer welds is carried out and its accuracy is demonstrated.The steel pipe welding temperature changes,residual stress distribution,different processes residual stress changes in the law,the prediction of post-weld residual stress distribution and deformation are studied in this paper.The results show that the temperature field values and test results are more consistent with the accuracy of numerical simulation of welding,the welding process is mainly in the form of heat transfer;Residual high stresses are predominantly distributed in the Fusion zone(FZ)and Heat-affected zone(HAZ),with residual stress levels tending to decrease from the center of the weld along the axial path,the maximum stress appears in the FZ and HAZ junction;The number of welding layers has an effect on the residual stress distribution,the number of welding layers increases,the residual stress tends to decrease,while the FZ and HAZ high stress area range shrinks;Increasing the number of plies will increase the amount of residual distortion.
文摘A convenient approach is proposed for analyzing the ultimate load carrying capacity of concrete filled steel tubular (CFST) arch bridge with stiffening girders. A fiber model beam element is specially used to simulate the stiffening girder and CFST arch rib. The geometric nonlinearity, material nonlinearity, influence of the construction process and the contribution of prestressing reinforcement are all taken into consideration. The accuracy of this method is validated by comparing its results with experimental results. Finally, the ultimate strength of an abnormal CFST arch bridge with stiffening girders is investigated and the effect of construction method is discussed. It is concluded that the construction process has little effect on the ultimate strength of the bridge.
基金Supported by the National Natural Science Foundation of China(No.50909078)the National Basic Research Program of China("973"Program,No.2013CB035900)
文摘It is important and difficult to control the temperature of mass concrete structure during high arch dam construction.A new method with decision support system is presented for temperature control and crack prevention.It is a database system with functions of data storage,information inquiry,data analysis,early warning and resource sharing.Monitoring information during construction can be digitized via this system,and the intelligent analysis and dynamic control of concrete temperature can be conducted.This method has been applied in the construction of the Dagangshan Arch Dam in China and has proven to be very convenient.Based on the decision support of this system and the dynamic adjustment of construction measures,the concrete temperature of this project is well-controlled.
文摘The effects ofincoherency and wave-passage on the nonlinear responses of concrete arch dams are investigated in this study. A double curvature arch dam is selected as a numerical example. The reservoir is modeled as a compressible material and the foundation is modeled as a massless medium. Ground motion time-histories are artificially generated using the Monte Carlo simulation approach. Four different finite element models (FEM) are considered: uniform excitation; incoherence effect; wave passage effect; and both incoherence and wave passage effects. It was revealed that modeling multiple-supports excitation could have a significant impact on the structural response of the dam by inducing a pseudo-static effect. Also, it was concluded that the coherency effect overshadows the wave passage effect and the results obtained from non-uniform excitation of FEM, including the wave passage effect, is close to the results of the FEM when it is uniformly excited.
文摘By means of fracture testing on roller-compacted concrete (RCC) three-point bending beams with two different specimen sizes, the P-CMOD complete curve for RCC was gained. Furthermore, by applying double-K fracture theory, KiniⅠC,KunⅠC, as well as the critical effective crack length and the critical crack tip opening displacement, were evaluated. Based on the double-K fracture parameters above, the calculation model of equivalent strength for induced crack was established, thus the calculation method on its initiation, stable propagation and unstable fracture was ascertained. Moreover, the finite element simulation analysis of stress field in ShaPai arch dam and the on-site observational splaying points of induced crack at different altitudes validated the reliability of the model. Finally, crack inducer′s optimal setting in RCC arch dam was studied. It improves the design level of induced crack in RCC arch dam and satisfies the necessity of engineering practice.
基金Sponsored by the National Natural Science Foundation of China(Grant No.50179002,50709013)Liaoning Province Dr. Fund(Grant No.20071025)
文摘The size effect rule of roller compacted concrete (RCC) fracture toughness was reached on the analysis of fracture toughness of RCC specimens, which have been done by project team. And then the rule was applied to the calculation formula of equivalent strength of crack director in the RCC arch dam, thus a simple and useful formula was reached. The study shows that the equivalent strength of crack directors increases with the increasing intensity of concrete, but the surplus rate of strength of crack directors section decreases with the increasing intensity of concrete and the distance between centers of adjacent crack directors, and that bilateral interval crack directors are more efficient in weakening the strength of section than unidirectional interval crack directors in the case of the same distance between adjacent crack director centers. A good design for crack directors of RCC arch dam is proposed via the rule.
基金supported by the National Natural Science Foundation of China (Grant Nos. 50879024,50909041)Special Fund of State Key Laboratory of China (Grant Nos. 2009586012,2010585212) the Fun-damental Research Funds for the Central Universities (Grant Nos. 2009B08514,2010B20414)
文摘An extended finite element method incorporated with the cohesive crack model(CCM-based XFEM) is developed in consideration of crack tip enrichment.It could improve the accuracy and is introduced into dam safety monitoring for the first time.Firstly,the proposed method is verified for a benchmark concrete beam by comparing the results with those of numerical investigations obtained by other researchers.Furthermore,it is adopted as an alternative method for building the deformation hybrid models of non-stable cracks in an arc dam,for the reason that classical FEMs are cumbersome in modeling the cohesive crack growth due to the need of remeshing the moving discontinuities.Case study proves that the fitted results of the mentioned deformation hybrid model,better than the classical statistical model,are well consistent with the measured data and reliable to forecast the development tendency of crack deformation.Therefore,the present CCM-based XFEM could provide a practical way to simulate and monitor the cracking process in concrete arch dam.
基金Supports from the Natural Science Foundations of Jiangsu Province(Grant No.BK20190573)General Project of Social Development in Jiangsu Province(Grant No.BE2020716)the National Natural Science Foundation of China(Grant No.51778622).
文摘This paper reports the anti-blast performance of shallow-buried prefabricated modular tunnel reinforced by basalt fiber-reinforced polymer(BFRP)-steel bars.Three concrete arch members with steel bars and three concrete arch members with BFRP-steel bars were fabricated,with the other arch parameters kept constant.The three identical arches were assembled into an integral structure and then buried in soil for field anti-blast experiments.Through the experiment,the pressure on the vault,the displacement and acceleration of the vault,the strain in the reinforcement bars and the macroscopic damage of the arches under the blast load were determined.To evaluate the damage of the arch tunnel,a residual load-bearing capacity test was conducted on the arch members after the explosion experiment.The experimental results showed that the BFRP-steel bars reinforced concrete arch exhibited a higher load-bearing capacity and more safety redundancy than the steel bars reinforced concrete arch,and that the BFRP-steel bars could inhibit the occurrence of concrete cracks to a certain extent.A comparison between the arches assembled at different positions showed that the prefabricated modular tun-nel can be simplified directly as a two-dimensional arch structure under the blast load for analysis and calculation.
文摘The new structure of roller compacted concrete (RCC) arch dams is presented for extremely cold and earthquake prone areas. The influence of construction plans and improved materials on the stresses in the Taxi River dam is also given. Earlier impoundment of water is shown to not only benefit the engineering design but also improve the stresses during construction in winter. Low cement content in the concrete and artificial short joints improved the monolithic structure and the transmitted forces. The concrete plug installed in the first cooled part of the arch dam provides excellent force transmission in the arch, which increases the monolith of the earlier arch, reduces the increasing thermal stresses that occur later, and improves the deformation flexibility of the dam.