Conventional feature description methods have large errors in froth features due to the fact that the image during the zinc flotation process of froth flotation is dynamic,and the existing image features rarely have t...Conventional feature description methods have large errors in froth features due to the fact that the image during the zinc flotation process of froth flotation is dynamic,and the existing image features rarely have time series information.Based on the conventional froth size distribution characteristics,this paper proposes a size trend core feature(STCF)considering the froth size distribution,i.e.,a feature centered on the time series of the froth size distribution.The core features of the trend are extracted,the inter-frame change factor and the inter-frame stability factor are given and two calculation methods of the feature factors are proposed.Meanwhile,the STCF feature algorithm was established based on the core features by adding the inter-frame change factor and the inter-frame stability factor.Finally,a flotation condition recognition model based on BP neural network was established.The experiments show that the recognition model has achieved excellent results,proving that the method proposed effectively overcomes the limitation of the lack of dynamic information in the existing traditional size distribution features and the introduction of the two factors can improve the classification accuracy to varying degrees.展开更多
A novel tire-road adaptive model in longitude direction to formulate the dynamic characteristic between tire and road is proposed in this paper, based on this model, a new adaptive approach of road condition identific...A novel tire-road adaptive model in longitude direction to formulate the dynamic characteristic between tire and road is proposed in this paper, based on this model, a new adaptive approach of road condition identification is presented to identify the model's parameters on-line in order to improve the performance of anti-slip regulation system(ASR). The optimal slip is determined by using the drive wheel's slip and longitude traction force in ASR before the slipping of the drive wheel. Co-simulation is done based on the model for JETTA GTX building with ADAMS/CAR and Matlab, and results show that the adaptive model accords with Pacejka model very well. This adaptive model has simpler form, less number of parameters and higher adaptability than usual, and the new identification approach has a small amounts of operation, which is very suitful for ASR.展开更多
An X-by-wire chassis can improve the kinematic characteristics of human-vehicle closed-loop system and thus active safety especially under emergency scenarios via enabling chassis coordinated control.This paper aims t...An X-by-wire chassis can improve the kinematic characteristics of human-vehicle closed-loop system and thus active safety especially under emergency scenarios via enabling chassis coordinated control.This paper aims to provide a complete and systematic survey on chassis coordinated control methods for full X-by-wire vehicles,with the primary goal of summarizing recent reserch advancements and stimulating innovative thoughts.Driving condition identification including driver’s operation intention,critical vehicle states and road adhesion condition and integrated control of X-by-wire chassis subsystems constitute the main framework of a chassis coordinated control scheme.Under steering and braking maneuvers,different driving condition identification methods are described in this paper.These are the trigger conditions and the basis for the implementation of chassis coordinated control.For the vehicles equipped with steering-by-wire,braking-by-wire and/or wire-controlled-suspension systems,state-of-the-art chassis coordinated control methods are reviewed including the coordination of any two or three chassis subsystems.Finally,the development trends are discussed.展开更多
In this paper, a method of intelligent fault tolerant management on electromechanical equipment is presented. It is based on condition monitoring of equipment and realized by condition prediction and condition contro...In this paper, a method of intelligent fault tolerant management on electromechanical equipment is presented. It is based on condition monitoring of equipment and realized by condition prediction and condition control. An example is introduced and analyzed in this paper.展开更多
The aircraft antiskid braking system is an important hydraulic system for preventing tire bursts and ensuring safe take-off and landing. The brake system adjusts the force applied on the brake discs by controlling the...The aircraft antiskid braking system is an important hydraulic system for preventing tire bursts and ensuring safe take-off and landing. The brake system adjusts the force applied on the brake discs by controlling the brake pressure. Traditional aircraft antiskid braking systems achieve antiskid performance by controlling the braking pressure with an electrohydraulic servo valve.Because the pilot stage of an electrohydraulic servo valve is easily blocked by carbonized hydraulic oil, the servo valve would become a dangerous weak point for aircraft safety. This paper proposes a new approach that uses an on-off valve array to replace the servo valve for pressure control. Based on this new pressure control component, an efficient antiskid control algorithm that can utilize this discontinuous feature is proposed. Furthermore, the algorithm has the ability to identify the runway circumstances. To overcome the discontinuity in the process of using an on-off valve array, the Filippov framework is introduced. The conditions of convergence of the system are also discussed.The results of the digital simulations and the hardware-in-the-loop(HIL) braking experiments are used to verify the efficiency and stability of the proposed control algorithm. The method also proves that the on-off valve array can replace the servo valve perfectly as a new type of antiskid braking pressure control component.展开更多
The iron oxide(FeO)content had a significant impact on both the metallurgical properties of sintered ores and the economic indicators of the sintering process.Precisely predicting FeO content possessed substantial pot...The iron oxide(FeO)content had a significant impact on both the metallurgical properties of sintered ores and the economic indicators of the sintering process.Precisely predicting FeO content possessed substantial potential for enhancing the quality of sintered ore and optimizing the sintering process.A multi-model integrated prediction framework for FeO content during the iron ore sintering process was presented.By applying the affinity propagation clustering algorithm,different working conditions were efficiently classified and the support vector machine algorithm was utilized to identify these conditions.Comparison of several models under different working conditions was carried out.The regression prediction model characterized by high precision and robust stability was selected.The model was integrated into the comprehensive multi-model framework.The precision,reliability and credibility of the model were validated through actual production data,yielding an impressive accuracy of 94.57%and a minimal absolute error of 0.13 in FeO content prediction.The real-time prediction of FeO content provided excellent guidance for on-site sinter production.展开更多
Selected milestones in the development and use of electrical tomography in powder conveying, slurry processing and multi-phase flow are highlighted. The ability to map concentration in opaque mixtures under process-re...Selected milestones in the development and use of electrical tomography in powder conveying, slurry processing and multi-phase flow are highlighted. The ability to map concentration in opaque mixtures under process-realistic conditions was a major innovation for the method and has had far reaching implications. Subsequent developments have enabled velocity information to be abstracted resulting in the ability to measure component flux and motion.展开更多
基金Project(U1701261)supported by the National Science Foundation of China,Guangdong Joint Fund of Key ProjectsProject(61771492)supported by the National Natural Science Foundation of ChinaProject(2018GK4016)supported by Hunan Province Strategic Emerging Industry Science and Technology Research and Major Science and Technology Achievement Transformation Project,China。
文摘Conventional feature description methods have large errors in froth features due to the fact that the image during the zinc flotation process of froth flotation is dynamic,and the existing image features rarely have time series information.Based on the conventional froth size distribution characteristics,this paper proposes a size trend core feature(STCF)considering the froth size distribution,i.e.,a feature centered on the time series of the froth size distribution.The core features of the trend are extracted,the inter-frame change factor and the inter-frame stability factor are given and two calculation methods of the feature factors are proposed.Meanwhile,the STCF feature algorithm was established based on the core features by adding the inter-frame change factor and the inter-frame stability factor.Finally,a flotation condition recognition model based on BP neural network was established.The experiments show that the recognition model has achieved excellent results,proving that the method proposed effectively overcomes the limitation of the lack of dynamic information in the existing traditional size distribution features and the introduction of the two factors can improve the classification accuracy to varying degrees.
文摘A novel tire-road adaptive model in longitude direction to formulate the dynamic characteristic between tire and road is proposed in this paper, based on this model, a new adaptive approach of road condition identification is presented to identify the model's parameters on-line in order to improve the performance of anti-slip regulation system(ASR). The optimal slip is determined by using the drive wheel's slip and longitude traction force in ASR before the slipping of the drive wheel. Co-simulation is done based on the model for JETTA GTX building with ADAMS/CAR and Matlab, and results show that the adaptive model accords with Pacejka model very well. This adaptive model has simpler form, less number of parameters and higher adaptability than usual, and the new identification approach has a small amounts of operation, which is very suitful for ASR.
基金Supported in part by Ministry of Science and Technology of the People’s Republic of China(Grant No.2017YFB0103600)Beijing Municipal Science and Technology Commission via the Beijing Nova Program(Grant No.Z201100006820007).
文摘An X-by-wire chassis can improve the kinematic characteristics of human-vehicle closed-loop system and thus active safety especially under emergency scenarios via enabling chassis coordinated control.This paper aims to provide a complete and systematic survey on chassis coordinated control methods for full X-by-wire vehicles,with the primary goal of summarizing recent reserch advancements and stimulating innovative thoughts.Driving condition identification including driver’s operation intention,critical vehicle states and road adhesion condition and integrated control of X-by-wire chassis subsystems constitute the main framework of a chassis coordinated control scheme.Under steering and braking maneuvers,different driving condition identification methods are described in this paper.These are the trigger conditions and the basis for the implementation of chassis coordinated control.For the vehicles equipped with steering-by-wire,braking-by-wire and/or wire-controlled-suspension systems,state-of-the-art chassis coordinated control methods are reviewed including the coordination of any two or three chassis subsystems.Finally,the development trends are discussed.
文摘In this paper, a method of intelligent fault tolerant management on electromechanical equipment is presented. It is based on condition monitoring of equipment and realized by condition prediction and condition control. An example is introduced and analyzed in this paper.
基金the Science and Technology on Aircraft Control Laboratorythe National Nature Science Foundation of China (Nos. 51775014 and 51890882)
文摘The aircraft antiskid braking system is an important hydraulic system for preventing tire bursts and ensuring safe take-off and landing. The brake system adjusts the force applied on the brake discs by controlling the brake pressure. Traditional aircraft antiskid braking systems achieve antiskid performance by controlling the braking pressure with an electrohydraulic servo valve.Because the pilot stage of an electrohydraulic servo valve is easily blocked by carbonized hydraulic oil, the servo valve would become a dangerous weak point for aircraft safety. This paper proposes a new approach that uses an on-off valve array to replace the servo valve for pressure control. Based on this new pressure control component, an efficient antiskid control algorithm that can utilize this discontinuous feature is proposed. Furthermore, the algorithm has the ability to identify the runway circumstances. To overcome the discontinuity in the process of using an on-off valve array, the Filippov framework is introduced. The conditions of convergence of the system are also discussed.The results of the digital simulations and the hardware-in-the-loop(HIL) braking experiments are used to verify the efficiency and stability of the proposed control algorithm. The method also proves that the on-off valve array can replace the servo valve perfectly as a new type of antiskid braking pressure control component.
基金the National Natural Science Foundation of China(52174325)the Key Research and Development Program of Shaanxi(Grant Nos.2020GY-166 and 2020GY-247)the Shaanxi Provincial Innovation Capacity Support Plan(Grant No.2023-CX-TD-53).
文摘The iron oxide(FeO)content had a significant impact on both the metallurgical properties of sintered ores and the economic indicators of the sintering process.Precisely predicting FeO content possessed substantial potential for enhancing the quality of sintered ore and optimizing the sintering process.A multi-model integrated prediction framework for FeO content during the iron ore sintering process was presented.By applying the affinity propagation clustering algorithm,different working conditions were efficiently classified and the support vector machine algorithm was utilized to identify these conditions.Comparison of several models under different working conditions was carried out.The regression prediction model characterized by high precision and robust stability was selected.The model was integrated into the comprehensive multi-model framework.The precision,reliability and credibility of the model were validated through actual production data,yielding an impressive accuracy of 94.57%and a minimal absolute error of 0.13 in FeO content prediction.The real-time prediction of FeO content provided excellent guidance for on-site sinter production.
基金support of co-workers in the tomography groups at University of Leeds and the University of Manchester with funding to enable us to develop the frontiers of tomography provided by EPSRC (EP/D031257/1)
文摘Selected milestones in the development and use of electrical tomography in powder conveying, slurry processing and multi-phase flow are highlighted. The ability to map concentration in opaque mixtures under process-realistic conditions was a major innovation for the method and has had far reaching implications. Subsequent developments have enabled velocity information to be abstracted resulting in the ability to measure component flux and motion.