The widespread adoption of aluminumalloy electric buses,known for their energy efficiency and eco-friendliness,faces a challenge due to the aluminum frame’s susceptibility to deformation compared to steel.This issue ...The widespread adoption of aluminumalloy electric buses,known for their energy efficiency and eco-friendliness,faces a challenge due to the aluminum frame’s susceptibility to deformation compared to steel.This issue is further exacerbated by the stringent requirements imposed by the flammability and explosiveness of batteries,necessitating robust frame protection.Our study aims to optimize the connectors of aluminum alloy bus frames,emphasizing durability,energy efficiency,and safety.This research delves into Multi-Objective Coordinated Optimization(MCO)techniques for lightweight design in aluminum alloy bus body connectors.Our goal is to enhance lightweighting,reinforce energy absorption,and improve deformation resistance in connector components.Three typical aluminum alloy connectors were selected and a design optimization platform was built for their MCO using a variety of software and methods.Firstly,through three-point bending experiments and finite element analysis on three types of connector components,we identified optimized design parameters based on deformation patterns.Then,employing Optimal Latin hypercube design(OLHD),parametric modeling,and neural network approximation,we developed high-precision approximate models for the design parameters of each connector component,targeting energy absorption,mass,and logarithmic strain.Lastly,utilizing the Archive-based Micro Genetic Algorithm(AMGA),Multi-Objective Particle Swarm Optimization(MOPSO),and Non-dominated SortingGenetic Algorithm(NSGA2),we explored optimized design solutions for these joint components.Subsequently,we simulated joint assembly buckling during bus rollover crash scenarios to verify and analyze the optimized solutions in three-point bending simulations.Each joint component showcased a remarkable 30%–40%mass reduction while boosting energy absorption.Our design optimization method exhibits high efficiency and costeffectiveness.Leveraging contemporary automation technology,the design optimization platform developed in this study is poised to facilitate intelligent optimization of lightweight metal components in future applications.展开更多
Aerospace optical cables and fiber-optic connectors have numerous advantages(e.g.,low loss,wide transmission frequency band,large capacity,light weight,and excellent resistance to electromagnetic interference).They ca...Aerospace optical cables and fiber-optic connectors have numerous advantages(e.g.,low loss,wide transmission frequency band,large capacity,light weight,and excellent resistance to electromagnetic interference).They can achieve optical communication interconnections and high-speed bidirectional data transmission between optical terminals and photodetectors in space,ensuring the stability and reliability of data transmission during spacecraft operations in orbit.They have become essential components in high-speed networking and optically interconnected communications for spacecrafts.Thermal stress simulation analysis is important for evaluating the temperature stress concentration phenomenon resulting from temperature fluctuations,temperature gradients,and other factors in aerospace optical cables and connectors under the combined effects of extreme temperatures and vacuum environments.Considering this,advanced optical communication technology has been widely used in high-speed railway communication networks to transmit safe,stable and reliable signals,as high-speed railway optical communication in special areas with extreme climates,such as cold and high-temperature regions,requires high-reliability optical cables and connectors.Therefore,based on the finite element method,comprehensive comparisons were made between the thermal distributions of aerospace optical cables and J599III fiber optic connectors under different conditions,providing a theoretical basis for evaluating the performance of aerospace optical cables and connectors in space environments and meanwhile building a technical foundation for potential optical communication applications in the field of high-speed railways.展开更多
With the vigorous development of Internet of Things(IoT)technology,the demand for communication and data exchange between different types of IoT devices is increasing day by day.To solve the problems of diversity and ...With the vigorous development of Internet of Things(IoT)technology,the demand for communication and data exchange between different types of IoT devices is increasing day by day.To solve the problems of diversity and complexity of communication protocols between devices,this paper proposes a design scheme of a multi-connector IoT central gateway based on Raspberry Pi and Docker.Through the research and application of related technologies,by integrating multiple communication interfaces and utilizing containerization technology,an efficient,flexible,and scalable IoT central gateway has been realized,which can support the connection and data interaction of multiple communication protocols and provide strong support for the stable operation and development of the IoT system.展开更多
As few or no failures occur during accelerated life test,it is difficult to assess reliability for long-life products with traditional life tests.Reliability assessment using degradation data of product performance ov...As few or no failures occur during accelerated life test,it is difficult to assess reliability for long-life products with traditional life tests.Reliability assessment using degradation data of product performance over time becomes a significant approach.Aerospace electrical connector is researched in this paper.Through the analysis of failure mechanism,the performance degradation law is obtained and the statistical model for degradation failure is set up; according to the research on statistical analysis methods for degradation data,accelerated life test theory and method for aerospace electrical connector based on performance degradation is proposed by improving time series analysis method,and the storage reliability is assessed for Y11X series of aerospace electrical connector with degradation data from accelerated degradation test.The result obtained is basically consistent with that obtained from accelerated life test based on failure data,and the two estimates of product's characteristic life only have a difference of 8.7%,but the test time shortens about a half.As a result,a systemic approach is proposed for reliability assessment of highly reliable and long-life aerospace product.展开更多
The metal sealing performance of subsea X-tree wellhead connectors is crucial for the safety and reliability of subsea X-trees. In order to establish the theoretical relation between metal sealing ring's contact stre...The metal sealing performance of subsea X-tree wellhead connectors is crucial for the safety and reliability of subsea X-trees. In order to establish the theoretical relation between metal sealing ring's contact stress and its structural parameters and working pressure, a mechanical analysis method for double-cone sealing of high pressure vessels is applied in analyzing the metal sealing ring under the condition of preload and operation. As a result, the formula of the unit sealing load for the metal sealing ring under operation with residual preload is shown in this paper, which ensures that the metal sealing ring has an excellent sealing effect and can prevent the metal sealing ring from yielding. Besides, while analyzing the sealing process of the metal sealing ring, the change rule of contact stress and working pressure is concluded here, putting forward that the structural parameters of the metal sealing ring are the major factors affecting the change rule. Finally, the analytical solution through theoretical analysis is compared with the simulation result through finite element analysis in a force feedback experiment, and both are consistent with each other, which fully verifies for the design and calculation theory on metal sealing ring's contact stress and its structural parameters and working pressure deduced in this paper. The proposed research will be treated as an applicable theory guiding the design of metal seal for subsea X-tree wellhead connectors.展开更多
A Mobile Offshore Base (MOB) is a multi-purpose logistics base, which can be stationed in coastal or international waters. In the conceptual design of the MOB, attention should he paid to the dynamic responses of the ...A Mobile Offshore Base (MOB) is a multi-purpose logistics base, which can be stationed in coastal or international waters. In the conceptual design of the MOB, attention should he paid to the dynamic responses of the inter-module connectors because tremendous loads occur in the connectors. In this paper, a study on dynamic responses of the MOB connectors is carried out by use of the Rigid Module Flexible Connector (RMFC) model which assumes that the module stiffness is significantly larger than that of the connector. In the analysis, the connector is modeled as a linear spring, which restricts relative translations but allows for relative rotations of modules. The 3-D source distribution method is adopted to determine the hydrodynamic forces of the modules, and the hydrodynamic interaction between modules is taken into account. The module motions and connector loads for 12 connector stiffness cases in regular and irregular waves are calculated with the multi-rigid-body motion equations. And the calculated results are compared with those from relative references. It is shown that the results obtained by different methods are in good agreement.展开更多
Thermal analysis and thermal diagnose are important for small power connector especially in electronic devices since their structure is usually compact. In this paper thermal behavior of small power connector was inve...Thermal analysis and thermal diagnose are important for small power connector especially in electronic devices since their structure is usually compact. In this paper thermal behavior of small power connector was investigated. It was found that the contact resistance increased due to the Joule beating, and that increased contact resistance produced more Joule heating; this mutual action causes the connector to lose efficiency. The thermal distribution in the connector was analyzed using finite element method (FEM). The failure mechanism is discussed. It provides basis for improving the structure. The conclusion was verified by experimental results.展开更多
Researchers seldom study the optimum design of a mechanical connector for subsea oil-gas pipeline based upon the sealing performance. An optimal design method of a novel subsea pipeline mechanical connector is present...Researchers seldom study the optimum design of a mechanical connector for subsea oil-gas pipeline based upon the sealing performance. An optimal design method of a novel subsea pipeline mechanical connector is presented. By analyzing the static metal sealing mechanism, the critical condition of the sealing performance is established for this connector and the formulation method of the contact pressure on the sealing surface is created. By the method the minimum mean contact pressure of the 8.625 inch connector is calculated as 361 MPa, which is the constraint condition in the optimum design of connector.The finite element model is created in ANSYS Parametric Design Language(APDL) and the structure is optimized by the zero-order method, with variance of contact pressure as the objective function, and mean contact pressures and plastic strains as constraint variables. The optimization shows that variances of contact pressure on two sealing surfaces decrease by 72.41% and 89.33%, respectively, and mean contact pressures increase by 31.18% and 52.84%, respectively. The comparison of the optimal connectors and non-optimal connectors in the water pressure experiments and bending experiments shows that the sealing ability of optimized connectors is much higher than the rated pressure of 4.5 MPa, and the optimal connectors don’t leak under the bending moment of 52.2 kN·m.This research provides the formulation to solve contact pressure on the sealing surface and a structure optimization method to design the connectors with various dimensions.展开更多
Combined multi-body dynamics with structural dynamics, a new discrete element with flexible connector, which is applicable for 3-D beam structures, is developed in this paper. Both the generalized elastic coefficient ...Combined multi-body dynamics with structural dynamics, a new discrete element with flexible connector, which is applicable for 3-D beam structures, is developed in this paper. Both the generalized elastic coefficient matrix of the flexible connector and the mass matrix of discrete element may be off-diagonal in a general case. The zero-length rigid element is introduced to simulate the node at which multiple elements are jointed together. It may also be effective when the axes of adjacent elements are not in the same line. The examples for eigenvalue calculation show that the model is successful. It can be extended to the geometric nonlinear response analysis.展开更多
The application of fi ber-reinforced polymer (FRP) composites for the development of high-performance composite structural systems has received signifi cant recent research attention. A composite of FRP–recycled aggr...The application of fi ber-reinforced polymer (FRP) composites for the development of high-performance composite structural systems has received signifi cant recent research attention. A composite of FRP–recycled aggregate concrete (RAC)–steel column (FRSC), consisting of an outer FRP tube, an inner steel tube and annular RAC fi lled between two tubes, is proposed herein to facilitate green disposal of demolished concrete and to improve the ductility of concrete columns for earthquake resistance. To better understand the seismic behavior of FRSCs, quasi-static tests of large-scale basalt FRSCs with shear connectors were conducted. The infl uence of the recycled coarse aggregate (RCA) replacement percentage, shear connectors and axial loading method on the lateral load and deformation capacity, energy dissipation and cumulative damage were analyzed to evaluate the seismic behavior of FRSCs. The test results show that FRSCs have good seismic behavior, which was evidenced by high lateral loads, excellent ductility and energy dissipation capacity, indicating RAC is applicable in FRSCs. Shear connectors can signifi cantly postpone the steel buckling and increase the lateral loads of FRSCs, but weaken the deformation capacity and energy dissipation performance.展开更多
A kind of low power connector used e.g. in household appliances was partly burned in routine experiment. The heat sources were four paralleled contacts constructed by springs (Sn/CuSn-alloy) in socket and a plug sheet...A kind of low power connector used e.g. in household appliances was partly burned in routine experiment. The heat sources were four paralleled contacts constructed by springs (Sn/CuSn-alloy) in socket and a plug sheet (Ni/Steel) while mating. The contact interfaces were detected by scanning electronic microscope (SEM) and X-ray energy dispersive spectros- copy (XEDS), obvious wear tracks and various contaminants, including element Si, Al, Na, K, S, Cl, O, etc., were found. The contamination degrees on the four paralleled contacts were different, so that the ratio of average contact resistance on the four contacts was about 5:8:3:1. The maximum contact resistance on contacts of the plug sheet reached 28 ?. The main failure rea- sons were fretting and contamination between the contact interfaces. Fretting simulation showed that connection resistance of connectors was raised up, even to ohms level. When the current increased to 5 A, the socket housing was heated and decom- posed. By the thermal analysis, it was estimated that the connector would be burned under the lower current if the current was not evenly distributed on the four paralleled contacts caused by uneven contamination. Improvement methods for connector failure are also discussed.展开更多
Objective: To study the memory biomechanical character of anatomic distal radius Nitinol memory connector (DRMC) in treating distal radius fracture. Methods: Establishing three dimensional model and finite element ana...Objective: To study the memory biomechanical character of anatomic distal radius Nitinol memory connector (DRMC) in treating distal radius fracture. Methods: Establishing three dimensional model and finite element analysis, we calculated the stress in and around the fracture faces when distal radius fracture was fixated with DRMC. Results: Axial holding stress produced by holding part of DRMC on distal radius was 14.66 MPa. The maximum stress of holding part was 40-70 MPa, the minimum stress was 3-7 MPa,and the stress of compression part was 20-40 MPa. Conclusion: The distribution of stress produced by DRMC around the fracture line is reasonable, and axial holding stress can help stabilize fracture during earlier period. The existence of longitudal compression and memory effect can transfer fixated disused section into developed section and enhance fracture healing.展开更多
Pin and socket contacts are the key parts of electrical connector as aerospace electronic components. The contacts are also the direct carriers for signal transmitting of electronic equipments, passing the signal from...Pin and socket contacts are the key parts of electrical connector as aerospace electronic components. The contacts are also the direct carriers for signal transmitting of electronic equipments, passing the signal from the input end to the output end of electrical connector. The reliability of pin and socket contacts directly influences signal transmission. The goal of this study is to enhance the contact reliability of aerospace electrical connector. Computer simulation analysis was made on contacts performance data by utilizing the simulation system developed by PCL Language of MSC software. Furthermore, the results were experi- mentally validated so as to realize the objective of optimizing contacts design.展开更多
The basic configuration of a new type of subsea pipeline connector was proposed based on the press-fitting principle, and a parametric finite element model was created using APDL language in ANSYS. Combining the finit...The basic configuration of a new type of subsea pipeline connector was proposed based on the press-fitting principle, and a parametric finite element model was created using APDL language in ANSYS. Combining the finite element model and optimization technology, the dimension optimization aiming at obtaining the minimum loading force and the optimum sealing performance was designed by the zero order optimization method. Experiments of the optimized connector were carried out. The results indicate that the optimum structural design significantly improved the indicators of the minimum loading force and sealing performance of the connector.展开更多
Since the previous strength prediction models for the perfobond rib connector were proposed based upon the results of push-out tests conducted on concretes with compressive strength below 50 MPa, push-out test is perf...Since the previous strength prediction models for the perfobond rib connector were proposed based upon the results of push-out tests conducted on concretes with compressive strength below 50 MPa, push-out test is performed on perfobond shear connectors applying ultra high performance concretes with compressive strength higher than 80 MPa to evaluate their shear resistance. The test variables are chosen to be the diameter and number of dowel holes and, the change in the shear strength of the perfobond rib connector is examined with respect to the strength of two types of UHPC: steel fiber-reinforced concrete with compressive strength of 180 MPa and concrete without steel fiber with compressive strength of 80 MPa. The test results reveal that higher concrete strength and larger number of holes increased the shear strength, and that higher increase rate in the shear strength was achieved by the dowel action. The comparison with the predictions obtained by the previous models shows that the experimental results are close to the values given by the model proposed by Oguejiofor and Hosain [1].展开更多
Loads generated after an air crash, ship collision, and other accidents may destroy very large floating structures (VLFSs) and create additional connector loads. In this study, the combined effects of ship collision...Loads generated after an air crash, ship collision, and other accidents may destroy very large floating structures (VLFSs) and create additional connector loads. In this study, the combined effects of ship collision and wave loads are considered to establish motion differential equations for a multi-body VLFS. A time domain calculation method is proposed to calculate the connector load of the VLFS in waves. The Longuet-Higgins model is employed to simulate the stochastic wave load. Fluid force and hydrodynamic coefficient are obtained with DNV Sesam software. The motion differential equation is calculated by applying the time domain method when the frequency domain hydrodynamic coefficient is converted into the memory function of the motion differential equation of the time domain. As a result of the combined action of wave and impact loads, high-frequency oscillation is observed in the time history curve of the connector load. At wave directions of 0° and 75°, the regularities of the time history curves of the connector loads in different directions are similar and the connector loads of C1 and C2 in the X direction are the largest. The oscillation load is observed in the connector in the Y direction at a wave direction of 75° and not at 0° This paper presents a time domain calculation method of connector load to provide a certain reference function for the future development of Chinese VLFS展开更多
This paper investigates a simplified method to determine the optimal stiffness of flexible connectors on a mobile offshore base(MOB) during the preliminary design stage. A three-module numerical model of an MOB was us...This paper investigates a simplified method to determine the optimal stiffness of flexible connectors on a mobile offshore base(MOB) during the preliminary design stage. A three-module numerical model of an MOB was used as a case study. Numerous constraint forces and relative displacements for the connectors at rough sea states with different wave angles were utilized to determine the optimized stiffness of the flexible connectors. The range of optimal stiffnesses for the connectors was obtained based on the combination and intersection of the optimized stiffness results, and the implementation steps were elaborated in detail. The percentage reductions of the optimized and optimal stiffness of the flexible connector were determined to quantitatively evaluate the decreases of the constraint force and relative displacement of the connectors compared with those calculated by using the original range of the connector stiffnesses. The results indicate the accuracy and feasibility of this method for determining the optimal stiffness of the flexible connectors and demonstrate the rationality and practicability of the optimal stiffness results. The research ideas, calculation process, and solutions for the optimal stiffness of the flexible connectors of an MOB in this paper can provide valuable technical support for the design of the connectors in similar semisubmersible floating structures.展开更多
Objective: To explore a new strategy to treat humeral shaft nonunion efficiently. Methods: In the light of mechanical characteristics of Nickel Titanium memory and the anatomic morphology of humeral shaft, we designed...Objective: To explore a new strategy to treat humeral shaft nonunion efficiently. Methods: In the light of mechanical characteristics of Nickel Titanium memory and the anatomic morphology of humeral shaft, we designed the swan like shape memory alloy connector (SMC). SMC was clinically applied in treating 55 cases of humeral shaft nonunion. Success rate of nonunion repair, reinterventions, complications, range of motion, and patient satisfaction were evaluated. Results: Fifty five humeral shaft nonunion patients were treated with autogenous bone grafting and SMC internal fixation. The average follow up period was 32 months. In 50 patients with complete follow up data, 49 were recovered from nonunion by lamellar bone healing. The excellent and good rate was 98%; one patient suffering from re fracture in a fall refused further treatment. Neither infection nor re fracture after SMC extraction or joint dysfunction was found in the whole group. Conclusion: SMC facilitates safe internal fixation and bone grafting; its memory biomechanic properties promote osteosynthesis, resulting in accelerated and high quality healing of humeral shaft nonunion. SMC internal fixation with bone grafting is creative, efficient and promising in treating humeral shaft nonunion.展开更多
基金the National Natural Science Foundation of China(Grant Number 52075553)the Postgraduate Research and Innovation Project of Central South University(School-Enterprise Association)(Grant Number 2021XQLH014).
文摘The widespread adoption of aluminumalloy electric buses,known for their energy efficiency and eco-friendliness,faces a challenge due to the aluminum frame’s susceptibility to deformation compared to steel.This issue is further exacerbated by the stringent requirements imposed by the flammability and explosiveness of batteries,necessitating robust frame protection.Our study aims to optimize the connectors of aluminum alloy bus frames,emphasizing durability,energy efficiency,and safety.This research delves into Multi-Objective Coordinated Optimization(MCO)techniques for lightweight design in aluminum alloy bus body connectors.Our goal is to enhance lightweighting,reinforce energy absorption,and improve deformation resistance in connector components.Three typical aluminum alloy connectors were selected and a design optimization platform was built for their MCO using a variety of software and methods.Firstly,through three-point bending experiments and finite element analysis on three types of connector components,we identified optimized design parameters based on deformation patterns.Then,employing Optimal Latin hypercube design(OLHD),parametric modeling,and neural network approximation,we developed high-precision approximate models for the design parameters of each connector component,targeting energy absorption,mass,and logarithmic strain.Lastly,utilizing the Archive-based Micro Genetic Algorithm(AMGA),Multi-Objective Particle Swarm Optimization(MOPSO),and Non-dominated SortingGenetic Algorithm(NSGA2),we explored optimized design solutions for these joint components.Subsequently,we simulated joint assembly buckling during bus rollover crash scenarios to verify and analyze the optimized solutions in three-point bending simulations.Each joint component showcased a remarkable 30%–40%mass reduction while boosting energy absorption.Our design optimization method exhibits high efficiency and costeffectiveness.Leveraging contemporary automation technology,the design optimization platform developed in this study is poised to facilitate intelligent optimization of lightweight metal components in future applications.
基金supported by the National Natural Science Foundation of China(U23A20336).
文摘Aerospace optical cables and fiber-optic connectors have numerous advantages(e.g.,low loss,wide transmission frequency band,large capacity,light weight,and excellent resistance to electromagnetic interference).They can achieve optical communication interconnections and high-speed bidirectional data transmission between optical terminals and photodetectors in space,ensuring the stability and reliability of data transmission during spacecraft operations in orbit.They have become essential components in high-speed networking and optically interconnected communications for spacecrafts.Thermal stress simulation analysis is important for evaluating the temperature stress concentration phenomenon resulting from temperature fluctuations,temperature gradients,and other factors in aerospace optical cables and connectors under the combined effects of extreme temperatures and vacuum environments.Considering this,advanced optical communication technology has been widely used in high-speed railway communication networks to transmit safe,stable and reliable signals,as high-speed railway optical communication in special areas with extreme climates,such as cold and high-temperature regions,requires high-reliability optical cables and connectors.Therefore,based on the finite element method,comprehensive comparisons were made between the thermal distributions of aerospace optical cables and J599III fiber optic connectors under different conditions,providing a theoretical basis for evaluating the performance of aerospace optical cables and connectors in space environments and meanwhile building a technical foundation for potential optical communication applications in the field of high-speed railways.
文摘With the vigorous development of Internet of Things(IoT)technology,the demand for communication and data exchange between different types of IoT devices is increasing day by day.To solve the problems of diversity and complexity of communication protocols between devices,this paper proposes a design scheme of a multi-connector IoT central gateway based on Raspberry Pi and Docker.Through the research and application of related technologies,by integrating multiple communication interfaces and utilizing containerization technology,an efficient,flexible,and scalable IoT central gateway has been realized,which can support the connection and data interaction of multiple communication protocols and provide strong support for the stable operation and development of the IoT system.
基金supported by National Natural Science Foundation of China (Grant No. 50935002,Grant No. 51075370,Grant No. 51105341)National Hi-tech Research and Development Program of China (863 Program,Grant No. 2007AA04Z409)Civil Aerospace Science and Technology Pre-research Project of China (Grant No. B122006 2302)
文摘As few or no failures occur during accelerated life test,it is difficult to assess reliability for long-life products with traditional life tests.Reliability assessment using degradation data of product performance over time becomes a significant approach.Aerospace electrical connector is researched in this paper.Through the analysis of failure mechanism,the performance degradation law is obtained and the statistical model for degradation failure is set up; according to the research on statistical analysis methods for degradation data,accelerated life test theory and method for aerospace electrical connector based on performance degradation is proposed by improving time series analysis method,and the storage reliability is assessed for Y11X series of aerospace electrical connector with degradation data from accelerated degradation test.The result obtained is basically consistent with that obtained from accelerated life test based on failure data,and the two estimates of product's characteristic life only have a difference of 8.7%,but the test time shortens about a half.As a result,a systemic approach is proposed for reliability assessment of highly reliable and long-life aerospace product.
基金Supported by National Hi-tech Research and Development Program of China(863 Program,Grant No.2012AA09A205)
文摘The metal sealing performance of subsea X-tree wellhead connectors is crucial for the safety and reliability of subsea X-trees. In order to establish the theoretical relation between metal sealing ring's contact stress and its structural parameters and working pressure, a mechanical analysis method for double-cone sealing of high pressure vessels is applied in analyzing the metal sealing ring under the condition of preload and operation. As a result, the formula of the unit sealing load for the metal sealing ring under operation with residual preload is shown in this paper, which ensures that the metal sealing ring has an excellent sealing effect and can prevent the metal sealing ring from yielding. Besides, while analyzing the sealing process of the metal sealing ring, the change rule of contact stress and working pressure is concluded here, putting forward that the structural parameters of the metal sealing ring are the major factors affecting the change rule. Finally, the analytical solution through theoretical analysis is compared with the simulation result through finite element analysis in a force feedback experiment, and both are consistent with each other, which fully verifies for the design and calculation theory on metal sealing ring's contact stress and its structural parameters and working pressure deduced in this paper. The proposed research will be treated as an applicable theory guiding the design of metal seal for subsea X-tree wellhead connectors.
基金This work was finarcially supported by the National Natural Science Foundation of China(Grant No.50039016)
文摘A Mobile Offshore Base (MOB) is a multi-purpose logistics base, which can be stationed in coastal or international waters. In the conceptual design of the MOB, attention should he paid to the dynamic responses of the inter-module connectors because tremendous loads occur in the connectors. In this paper, a study on dynamic responses of the MOB connectors is carried out by use of the Rigid Module Flexible Connector (RMFC) model which assumes that the module stiffness is significantly larger than that of the connector. In the analysis, the connector is modeled as a linear spring, which restricts relative translations but allows for relative rotations of modules. The 3-D source distribution method is adopted to determine the hydrodynamic forces of the modules, and the hydrodynamic interaction between modules is taken into account. The module motions and connector loads for 12 connector stiffness cases in regular and irregular waves are calculated with the multi-rigid-body motion equations. And the calculated results are compared with those from relative references. It is shown that the results obtained by different methods are in good agreement.
文摘Thermal analysis and thermal diagnose are important for small power connector especially in electronic devices since their structure is usually compact. In this paper thermal behavior of small power connector was investigated. It was found that the contact resistance increased due to the Joule beating, and that increased contact resistance produced more Joule heating; this mutual action causes the connector to lose efficiency. The thermal distribution in the connector was analyzed using finite element method (FEM). The failure mechanism is discussed. It provides basis for improving the structure. The conclusion was verified by experimental results.
基金Supported by National Natural Science Foundation of China(Grant Nos.51279042,51105088)
文摘Researchers seldom study the optimum design of a mechanical connector for subsea oil-gas pipeline based upon the sealing performance. An optimal design method of a novel subsea pipeline mechanical connector is presented. By analyzing the static metal sealing mechanism, the critical condition of the sealing performance is established for this connector and the formulation method of the contact pressure on the sealing surface is created. By the method the minimum mean contact pressure of the 8.625 inch connector is calculated as 361 MPa, which is the constraint condition in the optimum design of connector.The finite element model is created in ANSYS Parametric Design Language(APDL) and the structure is optimized by the zero-order method, with variance of contact pressure as the objective function, and mean contact pressures and plastic strains as constraint variables. The optimization shows that variances of contact pressure on two sealing surfaces decrease by 72.41% and 89.33%, respectively, and mean contact pressures increase by 31.18% and 52.84%, respectively. The comparison of the optimal connectors and non-optimal connectors in the water pressure experiments and bending experiments shows that the sealing ability of optimized connectors is much higher than the rated pressure of 4.5 MPa, and the optimal connectors don’t leak under the bending moment of 52.2 kN·m.This research provides the formulation to solve contact pressure on the sealing surface and a structure optimization method to design the connectors with various dimensions.
基金The project was financially supported by the National Natural Science Foundation of China
文摘Combined multi-body dynamics with structural dynamics, a new discrete element with flexible connector, which is applicable for 3-D beam structures, is developed in this paper. Both the generalized elastic coefficient matrix of the flexible connector and the mass matrix of discrete element may be off-diagonal in a general case. The zero-length rigid element is introduced to simulate the node at which multiple elements are jointed together. It may also be effective when the axes of adjacent elements are not in the same line. The examples for eigenvalue calculation show that the model is successful. It can be extended to the geometric nonlinear response analysis.
基金National Natural Science Foundation of China under Grant No.11472084Science and Technology Project of Guangdong Province under Grant No.2017B020238006+1 种基金Science and Technology Planning Project of Guangzhou City under Grant No.201704030057Fundamental Research Funds for the Central Universities under Grant No.21619327
文摘The application of fi ber-reinforced polymer (FRP) composites for the development of high-performance composite structural systems has received signifi cant recent research attention. A composite of FRP–recycled aggregate concrete (RAC)–steel column (FRSC), consisting of an outer FRP tube, an inner steel tube and annular RAC fi lled between two tubes, is proposed herein to facilitate green disposal of demolished concrete and to improve the ductility of concrete columns for earthquake resistance. To better understand the seismic behavior of FRSCs, quasi-static tests of large-scale basalt FRSCs with shear connectors were conducted. The infl uence of the recycled coarse aggregate (RCA) replacement percentage, shear connectors and axial loading method on the lateral load and deformation capacity, energy dissipation and cumulative damage were analyzed to evaluate the seismic behavior of FRSCs. The test results show that FRSCs have good seismic behavior, which was evidenced by high lateral loads, excellent ductility and energy dissipation capacity, indicating RAC is applicable in FRSCs. Shear connectors can signifi cantly postpone the steel buckling and increase the lateral loads of FRSCs, but weaken the deformation capacity and energy dissipation performance.
文摘A kind of low power connector used e.g. in household appliances was partly burned in routine experiment. The heat sources were four paralleled contacts constructed by springs (Sn/CuSn-alloy) in socket and a plug sheet (Ni/Steel) while mating. The contact interfaces were detected by scanning electronic microscope (SEM) and X-ray energy dispersive spectros- copy (XEDS), obvious wear tracks and various contaminants, including element Si, Al, Na, K, S, Cl, O, etc., were found. The contamination degrees on the four paralleled contacts were different, so that the ratio of average contact resistance on the four contacts was about 5:8:3:1. The maximum contact resistance on contacts of the plug sheet reached 28 ?. The main failure rea- sons were fretting and contamination between the contact interfaces. Fretting simulation showed that connection resistance of connectors was raised up, even to ohms level. When the current increased to 5 A, the socket housing was heated and decom- posed. By the thermal analysis, it was estimated that the connector would be burned under the lower current if the current was not evenly distributed on the four paralleled contacts caused by uneven contamination. Improvement methods for connector failure are also discussed.
文摘Objective: To study the memory biomechanical character of anatomic distal radius Nitinol memory connector (DRMC) in treating distal radius fracture. Methods: Establishing three dimensional model and finite element analysis, we calculated the stress in and around the fracture faces when distal radius fracture was fixated with DRMC. Results: Axial holding stress produced by holding part of DRMC on distal radius was 14.66 MPa. The maximum stress of holding part was 40-70 MPa, the minimum stress was 3-7 MPa,and the stress of compression part was 20-40 MPa. Conclusion: The distribution of stress produced by DRMC around the fracture line is reasonable, and axial holding stress can help stabilize fracture during earlier period. The existence of longitudal compression and memory effect can transfer fixated disused section into developed section and enhance fracture healing.
文摘Pin and socket contacts are the key parts of electrical connector as aerospace electronic components. The contacts are also the direct carriers for signal transmitting of electronic equipments, passing the signal from the input end to the output end of electrical connector. The reliability of pin and socket contacts directly influences signal transmission. The goal of this study is to enhance the contact reliability of aerospace electrical connector. Computer simulation analysis was made on contacts performance data by utilizing the simulation system developed by PCL Language of MSC software. Furthermore, the results were experi- mentally validated so as to realize the objective of optimizing contacts design.
文摘The basic configuration of a new type of subsea pipeline connector was proposed based on the press-fitting principle, and a parametric finite element model was created using APDL language in ANSYS. Combining the finite element model and optimization technology, the dimension optimization aiming at obtaining the minimum loading force and the optimum sealing performance was designed by the zero order optimization method. Experiments of the optimized connector were carried out. The results indicate that the optimum structural design significantly improved the indicators of the minimum loading force and sealing performance of the connector.
文摘Since the previous strength prediction models for the perfobond rib connector were proposed based upon the results of push-out tests conducted on concretes with compressive strength below 50 MPa, push-out test is performed on perfobond shear connectors applying ultra high performance concretes with compressive strength higher than 80 MPa to evaluate their shear resistance. The test variables are chosen to be the diameter and number of dowel holes and, the change in the shear strength of the perfobond rib connector is examined with respect to the strength of two types of UHPC: steel fiber-reinforced concrete with compressive strength of 180 MPa and concrete without steel fiber with compressive strength of 80 MPa. The test results reveal that higher concrete strength and larger number of holes increased the shear strength, and that higher increase rate in the shear strength was achieved by the dowel action. The comparison with the predictions obtained by the previous models shows that the experimental results are close to the values given by the model proposed by Oguejiofor and Hosain [1].
基金Foundation item: Supported by the National Natural Science Foundation of China (51309123), National Key Basic Research and Development Plan (973 Plan, 2013CB036104), Jiangsu Province Natural Science Research Projects in Colleges and Universities (13KJB570002), Open Foundation of State Key Laboratory of Ocean Engineering (1407), "Qing Lan Project" of Colleges and Universities in Jiangsu Province, Academic Program Development of Jiangsu Higher Education Institutions (PAPD).
文摘Loads generated after an air crash, ship collision, and other accidents may destroy very large floating structures (VLFSs) and create additional connector loads. In this study, the combined effects of ship collision and wave loads are considered to establish motion differential equations for a multi-body VLFS. A time domain calculation method is proposed to calculate the connector load of the VLFS in waves. The Longuet-Higgins model is employed to simulate the stochastic wave load. Fluid force and hydrodynamic coefficient are obtained with DNV Sesam software. The motion differential equation is calculated by applying the time domain method when the frequency domain hydrodynamic coefficient is converted into the memory function of the motion differential equation of the time domain. As a result of the combined action of wave and impact loads, high-frequency oscillation is observed in the time history curve of the connector load. At wave directions of 0° and 75°, the regularities of the time history curves of the connector loads in different directions are similar and the connector loads of C1 and C2 in the X direction are the largest. The oscillation load is observed in the connector in the Y direction at a wave direction of 75° and not at 0° This paper presents a time domain calculation method of connector load to provide a certain reference function for the future development of Chinese VLFS
基金financially supported by the National Key Research and Development Program of China(Grant Nos.2016YFC0802204and 2016YFC0802201)the National Natural Science Foundation of China(Grant No.51679166)+2 种基金the National Natural Science Fund for Innovative Research Groups Science Foundation(Grant No.51321065)the Construction Science and Technology Project of the Ministry of Transport of the People’s Republic of China(Grant No.2014328224040)the Innovative Research Program for Graduate Students at Chongqing Jiaotong University(Grant No.20140104)
文摘This paper investigates a simplified method to determine the optimal stiffness of flexible connectors on a mobile offshore base(MOB) during the preliminary design stage. A three-module numerical model of an MOB was used as a case study. Numerous constraint forces and relative displacements for the connectors at rough sea states with different wave angles were utilized to determine the optimized stiffness of the flexible connectors. The range of optimal stiffnesses for the connectors was obtained based on the combination and intersection of the optimized stiffness results, and the implementation steps were elaborated in detail. The percentage reductions of the optimized and optimal stiffness of the flexible connector were determined to quantitatively evaluate the decreases of the constraint force and relative displacement of the connectors compared with those calculated by using the original range of the connector stiffnesses. The results indicate the accuracy and feasibility of this method for determining the optimal stiffness of the flexible connectors and demonstrate the rationality and practicability of the optimal stiffness results. The research ideas, calculation process, and solutions for the optimal stiffness of the flexible connectors of an MOB in this paper can provide valuable technical support for the design of the connectors in similar semisubmersible floating structures.
基金SupportedbyShanghaiYouthScienceandTechnologyRisingStarPlan (No .0 3QD1 4 0 6 9)
文摘Objective: To explore a new strategy to treat humeral shaft nonunion efficiently. Methods: In the light of mechanical characteristics of Nickel Titanium memory and the anatomic morphology of humeral shaft, we designed the swan like shape memory alloy connector (SMC). SMC was clinically applied in treating 55 cases of humeral shaft nonunion. Success rate of nonunion repair, reinterventions, complications, range of motion, and patient satisfaction were evaluated. Results: Fifty five humeral shaft nonunion patients were treated with autogenous bone grafting and SMC internal fixation. The average follow up period was 32 months. In 50 patients with complete follow up data, 49 were recovered from nonunion by lamellar bone healing. The excellent and good rate was 98%; one patient suffering from re fracture in a fall refused further treatment. Neither infection nor re fracture after SMC extraction or joint dysfunction was found in the whole group. Conclusion: SMC facilitates safe internal fixation and bone grafting; its memory biomechanic properties promote osteosynthesis, resulting in accelerated and high quality healing of humeral shaft nonunion. SMC internal fixation with bone grafting is creative, efficient and promising in treating humeral shaft nonunion.