The thermal structure of the continental subduction zone can be deduced from high-pressure and ultra-high-pressure rock samples or numerical simulation.However,petrological data indicate that the temperature of subduc...The thermal structure of the continental subduction zone can be deduced from high-pressure and ultra-high-pressure rock samples or numerical simulation.However,petrological data indicate that the temperature of subducted continental plates is generally higher than that derived from numerical simulation.In this paper,a two-dimensional kinematic model is used to study the thermal structure of continental subduction zones,with or without a preceding oceanic slab.The results show that the removal of the preceding oceanic slab can effectively increase the slab surface temperature of the continental subduction zone in the early stage of subduction.This can sufficiently explain the difference between the cold thermal structure obtained from previous modeling results and the hot thermal structure obtained from rock sample data.展开更多
The transitional pressure of quartz coesite under the differential stress and highly strained conditions is far from the pressure of the stable field under the static pressure. Therefore, the effect of the different...The transitional pressure of quartz coesite under the differential stress and highly strained conditions is far from the pressure of the stable field under the static pressure. Therefore, the effect of the differential stress should be considered when the depth of petrogenesis is estimated about ultrahigh pressure metamorphic (UHPM) rocks. The rheological strength of typical ultrahigh pressure rocks in continental subduction zone was derived from the results of the laboratory experiments. The results indicate the following three points. (1) The rheological strength of gabbro, similar to that of eclogite, is smaller than that of clinopyroxenite on the same condition. (2) The calculated strength of rocks (gabbro, eclogite and clinopyroxenite) related to UHPM decreases by nearly one order of magnitude with the temperature rising by 100 ℃ in the range between 600 and 900 ℃. The calculated strength is far greater than the faulting strength of rocks at 600 ℃, and is in several hundred to more than one thousand mega pascals at 700-800 ℃, which suggests that those rocks are located in the brittle deformation region at 600 ℃, but are in the semi brittle to plastic deformation region at 700-800 ℃. Obviously, the 700 ℃ is a brittle plastic transition boundary. (3) The calculated rheological strength in the localized deformation zone on a higher strain rate condition (1.6×10 -12 s -l ) is 2-5 times more than that in the distributed deformation zone on a lower strain rate condition (1.6×10 -14 s -1 ). The average rheological stress (1 600 MPa) at the strain rate of 10 -12 s -1 stands for the ultimate differential stress of UHPM rocks in the semi brittle flow field, and the average rheological stress (550-950 MPa) at the strain rate of l0 -14 - 10 -13 s -l stands for the ultimate differential stress of UHPM rocks in the plastic flow field, suggesting that the depth for the formation of UHPM rocks is more than 20-60 km below the depth estimated under static pressure condition due to the effect of the differential stress.展开更多
Plate subduction is an important mechanism for exchanging the mass and energy between the mantle and the crust,and the igneous rocks in subduction zones are the important carriers for studying the recycling of crustal...Plate subduction is an important mechanism for exchanging the mass and energy between the mantle and the crust,and the igneous rocks in subduction zones are the important carriers for studying the recycling of crustal materials and the crust-mantle interaction.This study presents a review of geochronology and geochemistry for postcollisional mafic igneous rocks from the Hong’an-Dabie-Sulu orogens and the southeastern edge of the North China Block.The available results indicate two types of the crust-mantle interaction in the continental subduction zone,which are represented by two types of mafic igneous rocks with distinct geochemical compositions.The first type of rocks exhibit arc-like trace element distribution patterns(i.e.enrichment of LILE,LREE and Pb,but depletion of HFSE)and enriched radiogenic Sr-Nd isotope compositions,whereas the second type of rocks show OIB-like trace element distribution patterns(i.e.enrichment of LILE and LREE,but no depletion of HFSE)and depleted radiogenic Sr-Nd isotope compositions.Both of them have variable zircon O isotope compositions,which are different from those of the normal mantle zircon,and contain residual crustal zircons.These geochemical features indicate that the two types of mafic igneous rocks were originated from the different natures of mantle sources.The mantle source for the second type of rocks would be generated by reaction of the overlying juvenile lithospheric mantle with felsic melts originated from previously subducted oceanic crust,whereas the mantle source for the first type of rocks would be generated by reaction of the overlying ancient lithospheric mantle of the North China Block with felsic melts from subsequently subducted continental crust of the South China Block.Therefore,there exist two types of the crust-mantle interaction in the continental subduction zone,and the postcollisional mafic igneous rocks provide petrological and geochemical records of the slab-mantle interactions in continental collision orogens.展开更多
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB 41000000)National Basic Research Program of China(Grant No.2015CB856106)National Natural Science Foundation of China(41774105,41820104004,41688103).
文摘The thermal structure of the continental subduction zone can be deduced from high-pressure and ultra-high-pressure rock samples or numerical simulation.However,petrological data indicate that the temperature of subducted continental plates is generally higher than that derived from numerical simulation.In this paper,a two-dimensional kinematic model is used to study the thermal structure of continental subduction zones,with or without a preceding oceanic slab.The results show that the removal of the preceding oceanic slab can effectively increase the slab surface temperature of the continental subduction zone in the early stage of subduction.This can sufficiently explain the difference between the cold thermal structure obtained from previous modeling results and the hot thermal structure obtained from rock sample data.
文摘The transitional pressure of quartz coesite under the differential stress and highly strained conditions is far from the pressure of the stable field under the static pressure. Therefore, the effect of the differential stress should be considered when the depth of petrogenesis is estimated about ultrahigh pressure metamorphic (UHPM) rocks. The rheological strength of typical ultrahigh pressure rocks in continental subduction zone was derived from the results of the laboratory experiments. The results indicate the following three points. (1) The rheological strength of gabbro, similar to that of eclogite, is smaller than that of clinopyroxenite on the same condition. (2) The calculated strength of rocks (gabbro, eclogite and clinopyroxenite) related to UHPM decreases by nearly one order of magnitude with the temperature rising by 100 ℃ in the range between 600 and 900 ℃. The calculated strength is far greater than the faulting strength of rocks at 600 ℃, and is in several hundred to more than one thousand mega pascals at 700-800 ℃, which suggests that those rocks are located in the brittle deformation region at 600 ℃, but are in the semi brittle to plastic deformation region at 700-800 ℃. Obviously, the 700 ℃ is a brittle plastic transition boundary. (3) The calculated rheological strength in the localized deformation zone on a higher strain rate condition (1.6×10 -12 s -l ) is 2-5 times more than that in the distributed deformation zone on a lower strain rate condition (1.6×10 -14 s -1 ). The average rheological stress (1 600 MPa) at the strain rate of 10 -12 s -1 stands for the ultimate differential stress of UHPM rocks in the semi brittle flow field, and the average rheological stress (550-950 MPa) at the strain rate of l0 -14 - 10 -13 s -l stands for the ultimate differential stress of UHPM rocks in the plastic flow field, suggesting that the depth for the formation of UHPM rocks is more than 20-60 km below the depth estimated under static pressure condition due to the effect of the differential stress.
基金supported by the Chinese Ministry of Science and Techno-logy(Grant No.2015CB856102)the National Natural Science Foundation of China(Grant Nos.41125012,41221062)
文摘Plate subduction is an important mechanism for exchanging the mass and energy between the mantle and the crust,and the igneous rocks in subduction zones are the important carriers for studying the recycling of crustal materials and the crust-mantle interaction.This study presents a review of geochronology and geochemistry for postcollisional mafic igneous rocks from the Hong’an-Dabie-Sulu orogens and the southeastern edge of the North China Block.The available results indicate two types of the crust-mantle interaction in the continental subduction zone,which are represented by two types of mafic igneous rocks with distinct geochemical compositions.The first type of rocks exhibit arc-like trace element distribution patterns(i.e.enrichment of LILE,LREE and Pb,but depletion of HFSE)and enriched radiogenic Sr-Nd isotope compositions,whereas the second type of rocks show OIB-like trace element distribution patterns(i.e.enrichment of LILE and LREE,but no depletion of HFSE)and depleted radiogenic Sr-Nd isotope compositions.Both of them have variable zircon O isotope compositions,which are different from those of the normal mantle zircon,and contain residual crustal zircons.These geochemical features indicate that the two types of mafic igneous rocks were originated from the different natures of mantle sources.The mantle source for the second type of rocks would be generated by reaction of the overlying juvenile lithospheric mantle with felsic melts originated from previously subducted oceanic crust,whereas the mantle source for the first type of rocks would be generated by reaction of the overlying ancient lithospheric mantle of the North China Block with felsic melts from subsequently subducted continental crust of the South China Block.Therefore,there exist two types of the crust-mantle interaction in the continental subduction zone,and the postcollisional mafic igneous rocks provide petrological and geochemical records of the slab-mantle interactions in continental collision orogens.