In the X-C linkage grinding of non-circular parts,the computation and control method of contour error in polar coordinates platform is different with that in the XY coordinates platform.To solve this problem,the analy...In the X-C linkage grinding of non-circular parts,the computation and control method of contour error in polar coordinates platform is different with that in the XY coordinates platform.To solve this problem,the analysis of the definition and computation methods for contour error and track error in polar coordinates platform will be made.Through the relative lead-lag relation of the linkage axes in the grinding process,the range of the estimation contour error is narrowed and a contour error calculation model is constructed.Then the contour compensation controllers along contour error direction and trajectory tracking error direction are designed respectively,and the error compensation decoupling matrix of the X-C linkage axes is given as well.In the end of this paper,we take the machining of the cylinder contour in Wankel rotary piston engine as an example.A simulation experiment of contour error compensation control based on relative lead-lag quantity is made.The result shows that the designed contour compensation controller can increase the contour machining accuracy effectively.展开更多
The contour error was analyzed based on CNC multi-axis motion control, the contour error model was obtained focused on beeline and different radius of curvature and common contour of curve, for a CNC biaxial motion co...The contour error was analyzed based on CNC multi-axis motion control, the contour error model was obtained focused on beeline and different radius of curvature and common contour of curve, for a CNC biaxial motion control system and the mechanism of producing contour error and the relationship between tracking error and contour error were presented. The theoretical and practical significance of modeling error and controlling error in motion control systems was carried out.展开更多
The cross-coupled control(CCC)is widely applied to reduce contour errors in contour-following applications.In such situation,the contour error estimation plays an important role.Traditionally,the linear or second-orde...The cross-coupled control(CCC)is widely applied to reduce contour errors in contour-following applications.In such situation,the contour error estimation plays an important role.Traditionally,the linear or second-order estimation approach is adopted for biaxial motion systems,whereas only linear approach is available for triaxial systems.In this paper,the second-order contour error estimation,which was presented in our previous work,is utilized to determine the variable CCC gains for motion control systems with three axes.An integrated stable motion control strategy,which combines the feedforward,feedback and CCC controllers,is developed for multiaxis CNC systems.Experimental results on a triaxial platform indicate that the CCC scheme based on the second-order estimation,compared with that based on the linear one,significantly reduces the contour error even in the conditions of high tracking feedrate and small radius of curvature.展开更多
A technology of two-coordinate dual-servo(TCDS) is proposed. Using this technology which is based on error compensation, workpieces of higher contour accuracy could he turned on ultra-precision machine tool with Poor ...A technology of two-coordinate dual-servo(TCDS) is proposed. Using this technology which is based on error compensation, workpieces of higher contour accuracy could he turned on ultra-precision machine tool with Poor dynamic performances. The principle, constitute and operation of a TCDS system are described. Mathematical proof and experiments are achieved in addition.展开更多
As the traditional cross-coupling control method cannot meet the requirements for tracking accuracy and contour control accuracy in large curvature positions, an integrated control strategy of cross-coupling contour e...As the traditional cross-coupling control method cannot meet the requirements for tracking accuracy and contour control accuracy in large curvature positions, an integrated control strategy of cross-coupling contour error compensation based on chord error constraint, which consists of a cross-coupling controller and an improved position error compensator, is proposed. To reduce the contour error, a PI-type cross-coupling controller is designed, with its stability being analyzed by using the contour error transfer function. Moreover, a feed rate regulator based on the chord error constraint is proposed, which performs speed planning with the maximum feed rate allowed by the large curvature position as the constraint condition, so as to meet the requirements of large curvature positions for the chord error. Besides, an improved position error compensation method is further presented by combining the feed rate regulator with the position error compensator, which improves the tracking accuracy via the advance compensation of tracking error. The biaxial experimental results of non-uniform rational B-splines curves indicate that the proposed integrated control strategy can significantly improve the tracking and contour control accuracy in biaxial contour following tasks.展开更多
High accuracy contour error estimation and direct contour error control are two major approaches to reduce the contour error.However, two key factors make them complex for five-axis machine tools: the nonlinear kinema...High accuracy contour error estimation and direct contour error control are two major approaches to reduce the contour error.However, two key factors make them complex for five-axis machine tools: the nonlinear kinematics and the coupling between the tool position and orientation. In this study, by finding the reference point nearest to the current actual position, and interpolating the point with two neighboring reference points and using the distance ratio, a new contour error estimation method for five-axis machine tools is proposed, which guarantees high accuracy while depending on only the reference points. By adding a weighted contour error on the tracking error in the workpiece coordinate system, and specifying a desired second-order error dynamics based on the error variable, an effective contouring control method is proposed, which can alleviate the problem: when the contour error components are introduced into the controller, the contour errors increase instead in some regions of the tracking trajectory. A series of experiments are performed on a tilting-rotary-table(TRT) type five-axis machine tool. The results reveal that the proposed estimation method has high accuracy, and compared with the case without contour error control, the proposed control approach can reduce the contour error along the whole trajectory.展开更多
基金supported by the Chinese National Natural Science Foundation under Grant(51375056)the Beijing Natural Science Foundation under Grant(3142009)the key of Beijing Natural Science Foundation under Grant(KZ201211232039)
文摘In the X-C linkage grinding of non-circular parts,the computation and control method of contour error in polar coordinates platform is different with that in the XY coordinates platform.To solve this problem,the analysis of the definition and computation methods for contour error and track error in polar coordinates platform will be made.Through the relative lead-lag relation of the linkage axes in the grinding process,the range of the estimation contour error is narrowed and a contour error calculation model is constructed.Then the contour compensation controllers along contour error direction and trajectory tracking error direction are designed respectively,and the error compensation decoupling matrix of the X-C linkage axes is given as well.In the end of this paper,we take the machining of the cylinder contour in Wankel rotary piston engine as an example.A simulation experiment of contour error compensation control based on relative lead-lag quantity is made.The result shows that the designed contour compensation controller can increase the contour machining accuracy effectively.
基金supported by the Science Foundation of the Education Office of Gansu Province of Chinaunder Grant No.0914-01
文摘The contour error was analyzed based on CNC multi-axis motion control, the contour error model was obtained focused on beeline and different radius of curvature and common contour of curve, for a CNC biaxial motion control system and the mechanism of producing contour error and the relationship between tracking error and contour error were presented. The theoretical and practical significance of modeling error and controlling error in motion control systems was carried out.
基金supported by the National Natural Science Foundation of China(Grant Nos.51325502 and 51405175)the National Basic Research Program of China("973"Project)(Grant No.2011CB706804)the National Science and Technology Major Projects of China(Grant No.2012ZX04001-012-01-05)
文摘The cross-coupled control(CCC)is widely applied to reduce contour errors in contour-following applications.In such situation,the contour error estimation plays an important role.Traditionally,the linear or second-order estimation approach is adopted for biaxial motion systems,whereas only linear approach is available for triaxial systems.In this paper,the second-order contour error estimation,which was presented in our previous work,is utilized to determine the variable CCC gains for motion control systems with three axes.An integrated stable motion control strategy,which combines the feedforward,feedback and CCC controllers,is developed for multiaxis CNC systems.Experimental results on a triaxial platform indicate that the CCC scheme based on the second-order estimation,compared with that based on the linear one,significantly reduces the contour error even in the conditions of high tracking feedrate and small radius of curvature.
文摘A technology of two-coordinate dual-servo(TCDS) is proposed. Using this technology which is based on error compensation, workpieces of higher contour accuracy could he turned on ultra-precision machine tool with Poor dynamic performances. The principle, constitute and operation of a TCDS system are described. Mathematical proof and experiments are achieved in addition.
基金This work is supported by the National Science and Technology Major Project of China(Grant No.2015ZX04005006)the Science and Technology Major Project of Zhongshan City,China(Grant Nos.2016F2FC0006 and 2018A10018).
文摘As the traditional cross-coupling control method cannot meet the requirements for tracking accuracy and contour control accuracy in large curvature positions, an integrated control strategy of cross-coupling contour error compensation based on chord error constraint, which consists of a cross-coupling controller and an improved position error compensator, is proposed. To reduce the contour error, a PI-type cross-coupling controller is designed, with its stability being analyzed by using the contour error transfer function. Moreover, a feed rate regulator based on the chord error constraint is proposed, which performs speed planning with the maximum feed rate allowed by the large curvature position as the constraint condition, so as to meet the requirements of large curvature positions for the chord error. Besides, an improved position error compensation method is further presented by combining the feed rate regulator with the position error compensator, which improves the tracking accuracy via the advance compensation of tracking error. The biaxial experimental results of non-uniform rational B-splines curves indicate that the proposed integrated control strategy can significantly improve the tracking and contour control accuracy in biaxial contour following tasks.
基金supported by the National Natural Science Foundation of China(Grant Nos.51535004&91748114)
文摘High accuracy contour error estimation and direct contour error control are two major approaches to reduce the contour error.However, two key factors make them complex for five-axis machine tools: the nonlinear kinematics and the coupling between the tool position and orientation. In this study, by finding the reference point nearest to the current actual position, and interpolating the point with two neighboring reference points and using the distance ratio, a new contour error estimation method for five-axis machine tools is proposed, which guarantees high accuracy while depending on only the reference points. By adding a weighted contour error on the tracking error in the workpiece coordinate system, and specifying a desired second-order error dynamics based on the error variable, an effective contouring control method is proposed, which can alleviate the problem: when the contour error components are introduced into the controller, the contour errors increase instead in some regions of the tracking trajectory. A series of experiments are performed on a tilting-rotary-table(TRT) type five-axis machine tool. The results reveal that the proposed estimation method has high accuracy, and compared with the case without contour error control, the proposed control approach can reduce the contour error along the whole trajectory.