The electroformed copper layer with gradient microstructure was prepared using the ultrasonic technique. The microstructure of the electroformed copper layer was observed by using an optical microscope (OM) and a sc...The electroformed copper layer with gradient microstructure was prepared using the ultrasonic technique. The microstructure of the electroformed copper layer was observed by using an optical microscope (OM) and a scanning electron microscope (SEM). The preferred orientations of the layer were characterized by X-ray diffraction (XRD). The mechanical properties were evaluated with a Vicker's hardness tester and a tensile tester. It is found the gradient microstructure consists of two main parts: the outer part (faraway substrate) with columnar crystals and the inner part (nearby substrate) with equiaxed grains. The Cu-(220) preferred orientation increases with the increasing thickness of the copper layer. The test results show that the microhardness of the electroformed copper layer decreases with increasing grain size along the growth direction and presents a gradient distribution. The tensile strength of the outer part of the electroformed copper layer is higher than that of the inner part but at the cost of ductility. Meanwhile, the integral mechanical properties of the electroformed copper with gradient microstrucmre are significantly improved in comparison with the pure copper deposit.展开更多
The deposition of high-quality diamond films and their adhesion on cemented carbides are strongly influenced by the catalytic effect of cobalt under typical deposition conditions. Decreasing Co content on the surface...The deposition of high-quality diamond films and their adhesion on cemented carbides are strongly influenced by the catalytic effect of cobalt under typical deposition conditions. Decreasing Co content on the surface of the cemented carbide is often used for the diamond film deposition. But the leaching of Co from the WC-Co substrate leading to a mechanical weak surface often causes a poor adhesion. In this paper we adopted an implant copper layer prepared by vaporization to improve the mechanical properties of the Co-leached substrate. The diamond films were grown by microwave plasma chemical vapor deposition from CH4:H2 gas mixture. The cross section and the morphology of the diamond film were characterized by scanning electron microscopy (SEM). The non-diamond content in the film was analyzed by Raman spectroscopy. The effects of pretreatment on the concentrations of Co and Cu near the interfacial region were examined by energy dispersive spectrum (EDS) equipped with SEM. The adhesion of the diamond on the substrate was evaluated with a Rockwell-type hardness tester. The results indicate that the diamond films prepared with implant copper layer have a good adhesion to the cemented carbide substrate due to the recovery of the mechanical properties of the Co-depleted substrate after the copper implantation and the formation of less amorphous carbon between the substrate and the diamond film.展开更多
In this work, the deposition process features of a copper coating on stainless steel substrate, using the pulse vacuum arc spraying method were researched. A continuous layer of copper was deposited on a stainless ste...In this work, the deposition process features of a copper coating on stainless steel substrate, using the pulse vacuum arc spraying method were researched. A continuous layer of copper was deposited on a stainless steel substrate, and a high degree of coating adhesion to the substrate was demonstrated. The thickness of coating using application time was calculated, and the surface unevenness was estimated. Inside the coating layer substrate material elements were observed, that could appear as a result of simultaneously plasma spraying on the surface of the substrate. The feature of this method was discovered, that surface plasma plays a significant role in the deposition process. Finally, it was shown that the device with a pulsed arc could effectively be used in industry, since it is possible to change the layer thickness in the range of hundreds of microns by varying the deposition time.展开更多
CuAlBe alloy is an attractive shape memory alloy with many important usages in industrial field, in order to spread its range of application it is desirable to be able to join CuAlBe soundly with other metallic materi...CuAlBe alloy is an attractive shape memory alloy with many important usages in industrial field, in order to spread its range of application it is desirable to be able to join CuAlBe soundly with other metallic materials, for example stainless steel; however the weldability between CuAlBe alloy and stainless steel has never been studied, therefore an experimental investigation of different transition metals was carried out in the diffusion bonding joints of Cu alloys (CuAlBe) to stainless steel (1Cr18Ni9Ti). The microstructure and phase composition of the joint were analyzed by SEM, EPMA and X ray diffraction. The following conclusions have been drawn: 1) The joint strength with Ni interlayer is higher than that with Cu interlayer when the welding parameters are the same; 2) When Ni interlayer is thinner, Al will interact with Ni and Fe, and the intermetallic compounds such as Fe 3Al are formed in the interface, which decreases the strength of the joints; 3) When the bonding temperature is higher, because the diffusion of Cu in Ni is faster than Ni in Cu, a Kirkendall effect occurs, which also decreases the strength of the joints.展开更多
文摘The electroformed copper layer with gradient microstructure was prepared using the ultrasonic technique. The microstructure of the electroformed copper layer was observed by using an optical microscope (OM) and a scanning electron microscope (SEM). The preferred orientations of the layer were characterized by X-ray diffraction (XRD). The mechanical properties were evaluated with a Vicker's hardness tester and a tensile tester. It is found the gradient microstructure consists of two main parts: the outer part (faraway substrate) with columnar crystals and the inner part (nearby substrate) with equiaxed grains. The Cu-(220) preferred orientation increases with the increasing thickness of the copper layer. The test results show that the microhardness of the electroformed copper layer decreases with increasing grain size along the growth direction and presents a gradient distribution. The tensile strength of the outer part of the electroformed copper layer is higher than that of the inner part but at the cost of ductility. Meanwhile, the integral mechanical properties of the electroformed copper with gradient microstrucmre are significantly improved in comparison with the pure copper deposit.
文摘The deposition of high-quality diamond films and their adhesion on cemented carbides are strongly influenced by the catalytic effect of cobalt under typical deposition conditions. Decreasing Co content on the surface of the cemented carbide is often used for the diamond film deposition. But the leaching of Co from the WC-Co substrate leading to a mechanical weak surface often causes a poor adhesion. In this paper we adopted an implant copper layer prepared by vaporization to improve the mechanical properties of the Co-leached substrate. The diamond films were grown by microwave plasma chemical vapor deposition from CH4:H2 gas mixture. The cross section and the morphology of the diamond film were characterized by scanning electron microscopy (SEM). The non-diamond content in the film was analyzed by Raman spectroscopy. The effects of pretreatment on the concentrations of Co and Cu near the interfacial region were examined by energy dispersive spectrum (EDS) equipped with SEM. The adhesion of the diamond on the substrate was evaluated with a Rockwell-type hardness tester. The results indicate that the diamond films prepared with implant copper layer have a good adhesion to the cemented carbide substrate due to the recovery of the mechanical properties of the Co-depleted substrate after the copper implantation and the formation of less amorphous carbon between the substrate and the diamond film.
文摘In this work, the deposition process features of a copper coating on stainless steel substrate, using the pulse vacuum arc spraying method were researched. A continuous layer of copper was deposited on a stainless steel substrate, and a high degree of coating adhesion to the substrate was demonstrated. The thickness of coating using application time was calculated, and the surface unevenness was estimated. Inside the coating layer substrate material elements were observed, that could appear as a result of simultaneously plasma spraying on the surface of the substrate. The feature of this method was discovered, that surface plasma plays a significant role in the deposition process. Finally, it was shown that the device with a pulsed arc could effectively be used in industry, since it is possible to change the layer thickness in the range of hundreds of microns by varying the deposition time.
文摘CuAlBe alloy is an attractive shape memory alloy with many important usages in industrial field, in order to spread its range of application it is desirable to be able to join CuAlBe soundly with other metallic materials, for example stainless steel; however the weldability between CuAlBe alloy and stainless steel has never been studied, therefore an experimental investigation of different transition metals was carried out in the diffusion bonding joints of Cu alloys (CuAlBe) to stainless steel (1Cr18Ni9Ti). The microstructure and phase composition of the joint were analyzed by SEM, EPMA and X ray diffraction. The following conclusions have been drawn: 1) The joint strength with Ni interlayer is higher than that with Cu interlayer when the welding parameters are the same; 2) When Ni interlayer is thinner, Al will interact with Ni and Fe, and the intermetallic compounds such as Fe 3Al are formed in the interface, which decreases the strength of the joints; 3) When the bonding temperature is higher, because the diffusion of Cu in Ni is faster than Ni in Cu, a Kirkendall effect occurs, which also decreases the strength of the joints.