期刊文献+
共找到851篇文章
< 1 2 43 >
每页显示 20 50 100
IMTNet:Improved Multi-Task Copy-Move Forgery Detection Network with Feature Decoupling and Multi-Feature Pyramid
1
作者 Huan Wang Hong Wang +2 位作者 Zhongyuan Jiang Qing Qian Yong Long 《Computers, Materials & Continua》 SCIE EI 2024年第9期4603-4620,共18页
Copy-Move Forgery Detection(CMFD)is a technique that is designed to identify image tampering and locate suspicious areas.However,the practicality of the CMFD is impeded by the scarcity of datasets,inadequate quality a... Copy-Move Forgery Detection(CMFD)is a technique that is designed to identify image tampering and locate suspicious areas.However,the practicality of the CMFD is impeded by the scarcity of datasets,inadequate quality and quantity,and a narrow range of applicable tasks.These limitations significantly restrict the capacity and applicability of CMFD.To overcome the limitations of existing methods,a novel solution called IMTNet is proposed for CMFD by employing a feature decoupling approach.Firstly,this study formulates the objective task and network relationship as an optimization problem using transfer learning.Furthermore,it thoroughly discusses and analyzes the relationship between CMFD and deep network architecture by employing ResNet-50 during the optimization solving phase.Secondly,a quantitative comparison between fine-tuning and feature decoupling is conducted to evaluate the degree of similarity between the image classification and CMFD domains by the enhanced ResNet-50.Finally,suspicious regions are localized using a feature pyramid network with bottom-up path augmentation.Experimental results demonstrate that IMTNet achieves faster convergence,shorter training times,and favorable generalization performance compared to existingmethods.Moreover,it is shown that IMTNet significantly outperforms fine-tuning based approaches in terms of accuracy and F_(1). 展开更多
关键词 Image copy-move detection feature decoupling multi-scale feature pyramids passive forensics
下载PDF
Detection of Copy-Move Forgery in Digital Images Using Singular Value Decomposition 被引量:1
2
作者 Zaid Nidhal Khudhair Farhan Mohamed +2 位作者 Amjad Rehman Tanzila Saba Saeed Ali bahaj 《Computers, Materials & Continua》 SCIE EI 2023年第2期4135-4147,共13页
This paper presents an improved approach for detecting copy-move forgery based on singular value decomposition(SVD).It is a block-based method where the image is scanned from left to right and top to down by a sliding... This paper presents an improved approach for detecting copy-move forgery based on singular value decomposition(SVD).It is a block-based method where the image is scanned from left to right and top to down by a sliding window with a determined size.At each step,the SVD is determined.First,the diagonal matrix’s maximum value(norm)is selected(representing the scaling factor for SVD and a fixed value for each set of matrix elements even when rotating thematrix or scaled).Then,the similar norms are grouped,and each leading group is separated into many subgroups(elements of each subgroup are neighbors)according to 8-adjacency(the subgroups for each leading group must be far from others by a specific distance).After that,a weight is assigned for each subgroup to classify the image as forgery or not.Finally,the F1 score of the proposed system is measured,reaching 99.1%.This approach is robust against rotation,scaling,noisy images,and illumination variation.It is compared with other similarmethods and presents very promised results. 展开更多
关键词 forgery image forensic image processing region duplication SVD transformation technological development
下载PDF
Metaheuristics with Optimal Deep Transfer Learning Based Copy-Move Forgery Detection Technique
3
作者 C.D.Prem Kumar S.Saravana Sundaram 《Intelligent Automation & Soft Computing》 SCIE 2023年第1期881-899,共19页
The extensive availability of advanced digital image technologies and image editing tools has simplified the way of manipulating the image content.An effective technique for tampering the identification is the copy-mo... The extensive availability of advanced digital image technologies and image editing tools has simplified the way of manipulating the image content.An effective technique for tampering the identification is the copy-move forgery.Conventional image processing techniques generally search for the patterns linked to the fake content and restrict the usage in massive data classification.Contrast-ingly,deep learning(DL)models have demonstrated significant performance over the other statistical techniques.With this motivation,this paper presents an Optimal Deep Transfer Learning based Copy Move Forgery Detection(ODTL-CMFD)technique.The presented ODTL-CMFD technique aims to derive a DL model for the classification of target images into the original and the forged/tampered,and then localize the copy moved regions.To perform the feature extraction process,the political optimizer(PO)with Mobile Networks(MobileNet)model has been derived for generating a set of useful vectors.Finally,an enhanced bird swarm algorithm(EBSA)with least square support vector machine(LS-SVM)model has been employed for classifying the digital images into the original or the forged ones.The utilization of the EBSA algorithm helps to properly modify the parameters contained in the Multiclass Support Vector Machine(MSVM)technique and thereby enhance the classification performance.For ensuring the enhanced performance of the ODTL-CMFD technique,a series of simulations have been performed against the benchmark MICC-F220,MICC-F2000,and MICC-F600 datasets.The experimental results have demonstrated the improvised performance of the ODTL-CMFD approach over the other techniques in terms of several evaluation measures. 展开更多
关键词 Copy move detection image forgery deep learning machine learning parameter tuning FORENSICS
下载PDF
Image Copy-Move Forgery Detection Using SURF in Opponent Color Space 被引量:4
4
作者 巩家昌 郭继昌 《Transactions of Tianjin University》 EI CAS 2016年第2期151-157,共7页
Most existing methods for image copy-move forgery detection(CMFD)operate on grayscale images. Although the keypoint-based methods have the advantages of strong robustness and low computational cost,they cannot identif... Most existing methods for image copy-move forgery detection(CMFD)operate on grayscale images. Although the keypoint-based methods have the advantages of strong robustness and low computational cost,they cannot identify the flat duplicated regions without reliable extracted features. In this paper, we propose a new CMFD method by using speeded-up robust feature(SURF)in the opponent color space. Our method starts by converting the inspected image from RGB to the opponent color space. The color gradient per pixel is calculated and taken as the work space for SURF to extract the keypoints. The matched keypoints are clustered and their geometric transformations are estimated. Finally, the false matches are removed. Experimental results show that the proposed technique can effectively expose the duplicated regions with various transformations, even when the duplication regions are flat. 展开更多
关键词 copy-move forgery flat region color descriptor OwSURF
下载PDF
An effective copy-move forgery detection algorithm using fractional quaternion Zernike moments and improved PatchMatch algorithm 被引量:3
5
作者 Chen Beijing Gao Ye +2 位作者 Yu Ming Wu Peng Shu Huazhong 《Journal of Southeast University(English Edition)》 EI CAS 2019年第4期431-439,共9页
An effective algorithm is proposed to detect copy-move forgery.In this algorithm,first,the PatchMatch algorithm is improved by using a reliable order-statistics-based approximate nearest neighbor search algorithm(ROSA... An effective algorithm is proposed to detect copy-move forgery.In this algorithm,first,the PatchMatch algorithm is improved by using a reliable order-statistics-based approximate nearest neighbor search algorithm(ROSANNA)to modify the propagation process.Then,fractional quaternion Zernike moments(FrQZMs)are considered to be features extracted from color forged images.Finally,the extracted FrQZMs features are matched by the improved PatchMatch algorithm.The experimental results on two publicly available datasets(FAU and GRIP datasets)show that the proposed algorithm performs better than the state-of-the-art algorithms not only in objective criteria F-measure value but also in visual.Moreover,the proposed algorithm is robust to some attacks,such as additive white Gaussian noise,JPEG compression,rotation,and scaling. 展开更多
关键词 QUATERNION fractional Zernike moments PatchMatch algorithm copy-move forgery detection
下载PDF
Improving Image Copy-Move Forgery Detection with Particle Swarm Optimization Techniques 被引量:7
6
作者 SHI Wenchang ZHAO Fei +1 位作者 QIN Bo LIANG Bin 《China Communications》 SCIE CSCD 2016年第1期139-149,共11页
Copy-Move Forgery(CMF) is one of the simple and effective operations to create forged digital images.Recently,techniques based on Scale Invariant Features Transform(SIFT) are widely used to detect CMF.Various approach... Copy-Move Forgery(CMF) is one of the simple and effective operations to create forged digital images.Recently,techniques based on Scale Invariant Features Transform(SIFT) are widely used to detect CMF.Various approaches under the SIFT-based framework are the most acceptable ways to CMF detection due to their robust performance.However,for some CMF images,these approaches cannot produce satisfactory detection results.For instance,the number of the matched keypoints may be too less to prove an image to be a CMF image or to generate an accurate result.Sometimes these approaches may even produce error results.According to our observations,one of the reasons is that detection results produced by the SIFT-based framework depend highly on parameters whose values are often determined with experiences.These values are only applicable to a few images,which limits their application.To solve the problem,a novel approach named as CMF Detection with Particle Swarm Optimization(CMFDPSO) is proposed in this paper.CMFD-PSO integrates the Particle Swarm Optimization(PSO) algorithm into the SIFT-based framework.It utilizes the PSO algorithm to generate customized parameter values for images,which are used for CMF detection under the SIFT-based framework.Experimental results show that CMFD-PSO has good performance. 展开更多
关键词 copy-move forgery detection SIFT region duplication digital image forensics
下载PDF
A Survey on Digital Image Copy-Move Forgery Localization Using Passive Techniques 被引量:1
7
作者 Weijin Tan Yunqing Wu +1 位作者 Peng Wu Beijing Chen 《Journal of New Media》 2019年第1期11-25,共15页
Digital images can be tampered easily with simple image editing software tools.Therefore,image forensic investigation on the authenticity of digital images’content is increasingly important.Copy-move is one of the mo... Digital images can be tampered easily with simple image editing software tools.Therefore,image forensic investigation on the authenticity of digital images’content is increasingly important.Copy-move is one of the most common types of image forgeries.Thus,an overview of the traditional and the recent copy-move forgery localization methods using passive techniques is presented in this paper.These methods are classified into three types:block-based methods,keypoint-based methods,and deep learning-based methods.In addition,the strengths and weaknesses of these methods are compared and analyzed in robustness and computational cost.Finally,further research directions are discussed. 展开更多
关键词 Image forgery copy-move forgery localization passive techniques
下载PDF
Copy-Move Forgery Verification in Images Using Local Feature Extractors and Optimized Classifiers
8
作者 S.B.G.Tilak Babu Ch Srinivasa Rao 《Big Data Mining and Analytics》 EI CSCD 2023年第3期347-360,共14页
Passive image forgery detection methods that identify forgeries without prior knowledge have become a key research focus.In copy-move forgery,the assailant intends to hide a portion of an image by pasting other portio... Passive image forgery detection methods that identify forgeries without prior knowledge have become a key research focus.In copy-move forgery,the assailant intends to hide a portion of an image by pasting other portions of the same image.The detection of such manipulations in images has great demand in legal evidence,forensic investigation,and many other fields.The paper aims to present copy-move forgery detection algorithms with the help of advanced feature descriptors,such as local ternary pattern,local phase quantization,local Gabor binary pattern histogram sequence,Weber local descriptor,and local monotonic pattern,and classifiers such as optimized support vector machine and optimized NBC.The proposed algorithms can classify an image efficiently as either copy-move forged or authenticated,even if the test image is subjected to attacks such as JPEG compression,scaling,rotation,and brightness variation.CoMoFoD,CASIA,and MICC datasets and a combination of CoMoFoD and CASIA datasets images are used to quantify the performance of the proposed algorithms.The proposed algorithms are more efficient than state-of-the-art algorithms even though the suspected image is post-processed. 展开更多
关键词 copy move forgery detection image authentication passive image forgery detection blind forgery detection
原文传递
Image copy-move forgery passive detection based on improved PCNN and self-selected sub-images
9
作者 Guoshuai Zhou Xiuxia Tian Aoying Zhou 《Frontiers of Computer Science》 SCIE EI CSCD 2022年第4期131-146,共16页
Image forgery detection remains a challenging problem.For the most common copy-move forgery detection,the robustness and accuracy of existing methods can still be further improved.To the best of our knowledge,we are t... Image forgery detection remains a challenging problem.For the most common copy-move forgery detection,the robustness and accuracy of existing methods can still be further improved.To the best of our knowledge,we are the first to propose an image copy-move forgery passive detection method by combining the improved pulse coupled neural network(PCNN)and the self-selected sub-images.Our method has the following steps:First,contour detection is performed on the input color image,and bounding boxes are drawn to frame the contours to form suspected forgery sub-images.Second,by improving PCNN to perform feature extraction of sub-images,the feature invariance of rotation,scaling,noise adding,and so on can be achieved.Finally,the dual feature matching is used to match the features and locate the forgery regions.What’s more,the self-selected sub-images can quickly obtain suspected forgery sub-images and lessen the workload of feature extraction,and the improved PCNN can extract image features with high robustness.Through experiments on the standard image forgery datasets CoMoFoD and CASIA,it is effectively verified that the robustness score and accuracy of proposed method are much higher than the current best method,which is a more efficient image copy-move forgery passive detection method. 展开更多
关键词 image copy-move forgery passive detection self-selected sub-images pulse coupled neural network(PCNN) dual feature matching
原文传递
基于改进显著图和局部特征匹配的copy-move窜改检测
10
作者 赵鸿图 周秋豪 《计算机应用研究》 CSCD 北大核心 2023年第9期2838-2844,共7页
检测整幅窜改图像的方法增加了许多非必要的计算量,为了降低计算复杂度和进一步提高检测精确率,提出了一种基于改进显著图和局部特征匹配的copy-move窜改检测方法。首先,结合图像梯度改进显著图,分离出包含图像高纹理信息的局部显著区域... 检测整幅窜改图像的方法增加了许多非必要的计算量,为了降低计算复杂度和进一步提高检测精确率,提出了一种基于改进显著图和局部特征匹配的copy-move窜改检测方法。首先,结合图像梯度改进显著图,分离出包含图像高纹理信息的局部显著区域;其次,只对该局部区域采用SIFT(scale invariant feature transform)算法提取特征点;然后,对显著性小的图像采用密度聚类和二阶段匹配策略,对显著性大的图像采用超像素分割和显著块特征匹配的策略;最后,结合PSNR和形态学操作来定位窜改区域。在两个公开数据集上进行实验,该方法的平均检测时间小于10 s,平均检测精确率大于97%,均优于所对比的方法。实验结果表明,该方法能够大幅缩减检测时间、有效提高检测精确率,并且对几何变换和后处理操作也都具有较好的鲁棒性。 展开更多
关键词 copy-move窜改检测 图像显著性 局部特征 SIFT算法 密度聚类 超像素分割
下载PDF
Copy-Move Forgeries Detection and Localization Using Two Levels of Keypoints Extraction 被引量:1
11
作者 Soad Samir Eid Emary +1 位作者 Khaled Elsayed Hoda Onsi 《Journal of Computer and Communications》 2019年第9期1-18,共18页
Copy-move offense is considerably used to conceal or hide several data in the digital image for specific aim, and onto this offense some portion of the genuine image is reduplicated and pasted in the same image. There... Copy-move offense is considerably used to conceal or hide several data in the digital image for specific aim, and onto this offense some portion of the genuine image is reduplicated and pasted in the same image. Therefore, Copy-Move forgery is a very significant problem and active research area to check the confirmation of the image. In this paper, a system for Copy Move Forgery detection is proposed. The proposed system is composed of two stages: one is called the detection stages and the second is called the refine detection stage. The detection stage is executed using Speeded-Up Robust Feature (SURF) and Binary Robust Invariant Scalable Keypoints (BRISK) for feature detection and in the refine detection stage, image registration using non-linear transformation is used to enhance detection efficiency. Initially, the genuine image is picked, and then both SURF and BRISK feature extractions are used in parallel to detect the interest keypoints. This gives an appropriate number of interest points and gives the assurance for finding the majority of the manipulated regions. RANSAC is employed to find the superior group of matches to differentiate the manipulated parts. Then, non-linear transformation between the best-matched sets from both extraction features is used as an optimization to get the best-matched set and detect the copied regions. A number of numerical experiments performed using many benchmark datasets such as, the CASIA v2.0, MICC-220, MICC-F600 and MICC-F2000 datasets. With the proposed algorithm, an overall average detection accuracy of 95.33% is obtained for evaluation carried out with the aforementioned databases. Forgery detection achieved True Positive Rate of 97.4% for tampered images with object translation, different degree of rotation and enlargement. Thus, results from different datasets have been set, proving that the proposed algorithm can individuate the altered areas, with high reliability and dealing with multiple cloning. 展开更多
关键词 COPY MOVE forgery DETECTION Keypoint Based Methods SURF BRISK Bi-Cubic Interpolation
下载PDF
Image Splicing Forgery Detection Using Feature-Based of Sonine Functions and Deep Features
12
作者 Ala’a R.Al-Shamasneh Rabha W.Ibrahim 《Computers, Materials & Continua》 SCIE EI 2024年第1期795-810,共16页
The growing prevalence of fake images on the Internet and social media makes image integrity verification a crucial research topic.One of the most popular methods for manipulating digital images is image splicing,whic... The growing prevalence of fake images on the Internet and social media makes image integrity verification a crucial research topic.One of the most popular methods for manipulating digital images is image splicing,which involves copying a specific area from one image and pasting it into another.Attempts were made to mitigate the effects of image splicing,which continues to be a significant research challenge.This study proposes a new splicing detectionmodel,combining Sonine functions-derived convex-based features and deep features.Two stages make up the proposed method.The first step entails feature extraction,then classification using the“support vector machine”(SVM)to differentiate authentic and spliced images.The proposed Sonine functions-based feature extraction model reveals the spliced texture details by extracting some clues about the probability of image pixels.The proposed model achieved an accuracy of 98.93% when tested with the CASIA V2.0 dataset“Chinese Academy of Sciences,Institute of Automation”which is a publicly available dataset for forgery classification.The experimental results show that,for image splicing forgery detection,the proposed Sonine functions-derived convex-based features and deep features outperform state-of-the-art techniques in terms of accuracy,precision,and recall.Overall,the obtained detection accuracy attests to the benefit of using the Sonine functions alongside deep feature representations.Finding the regions or locations where image tampering has taken place is limited by the study.Future research will need to look into advanced image analysis techniques that can offer a higher degree of accuracy in identifying and localizing tampering regions. 展开更多
关键词 Image forgery image splicing deep learning Sonine functions
下载PDF
Weber Law Based Approach for Multi-Class Image Forgery Detection
13
作者 Arslan Akram Javed Rashid +3 位作者 Arfan Jaffar Fahima Hajjej Waseem Iqbal Nadeem Sarwar 《Computers, Materials & Continua》 SCIE EI 2024年第1期145-166,共22页
Today’s forensic science introduces a new research area for digital image analysis formultimedia security.So,Image authentication issues have been raised due to the wide use of image manipulation software to obtain a... Today’s forensic science introduces a new research area for digital image analysis formultimedia security.So,Image authentication issues have been raised due to the wide use of image manipulation software to obtain an illegitimate benefit or createmisleading publicity by using tempered images.Exiting forgery detectionmethods can classify only one of the most widely used Copy-Move and splicing forgeries.However,an image can contain one or more types of forgeries.This study has proposed a hybridmethod for classifying Copy-Move and splicing images using texture information of images in the spatial domain.Firstly,images are divided into equal blocks to get scale-invariant features.Weber law has been used for getting texture features,and finally,XGBOOST is used to classify both Copy-Move and splicing forgery.The proposed method classified three types of forgeries,i.e.,splicing,Copy-Move,and healthy.Benchmarked(CASIA 2.0,MICCF200)and RCMFD datasets are used for training and testing.On average,the proposed method achieved 97.3% accuracy on benchmarked datasets and 98.3% on RCMFD datasets by applying 10-fold cross-validation,which is far better than existing methods. 展开更多
关键词 copy-move and splicing non-overlapping block division texture features weber law spatial domain xgboost
下载PDF
同源视频Copy-Move篡改检测及恢复 被引量:2
14
作者 陈智文 黄添强 +2 位作者 吴铁浩 袁秀娟 苏伟峰 《计算机系统应用》 2013年第9期102-110,共9页
针对同源视频序列的copy-move篡改方式,提出一种通过度量图像内容间的相关性,来实现对视频序列的copy-move篡改检测并恢复的方法.首先将视频帧内容转化为一系列连续的图像帧,对图像分块,提取每帧图像的8个特征矢量,再利用欧氏距离计算... 针对同源视频序列的copy-move篡改方式,提出一种通过度量图像内容间的相关性,来实现对视频序列的copy-move篡改检测并恢复的方法.首先将视频帧内容转化为一系列连续的图像帧,对图像分块,提取每帧图像的8个特征矢量,再利用欧氏距离计算帧间相关性,并通过添加偏差矩阵构造动态偏差阈值,检测出copy-move篡改序列且精确至帧,从而实现对视频序列的篡改检测与恢复.实验表明,该算法对同源视频序列的copy-move篡改检测及恢复能够取得理想的效果. 展开更多
关键词 视频篡改 序列copy-move 偏差矩阵 视频恢复
下载PDF
基于不变矩的Copy-Move型篡改图像盲检测方法 被引量:14
15
作者 王睿 方勇 《中国图象图形学报》 CSCD 北大核心 2008年第10期1938-1941,共4页
拷贝粘贴(Copy-Move)是极为常见的图像篡改方式之一。为了快速有效地检测这种图像篡改,该文提出了一种基于不变矩的Copy-Move型篡改图像盲认证方法,实验结果表明,此方法不仅可以检测传统的Copy-Move型篡改,而且可以检测出经过旋转、镜... 拷贝粘贴(Copy-Move)是极为常见的图像篡改方式之一。为了快速有效地检测这种图像篡改,该文提出了一种基于不变矩的Copy-Move型篡改图像盲认证方法,实验结果表明,此方法不仅可以检测传统的Copy-Move型篡改,而且可以检测出经过旋转、镜像以及缩放的Copy-Move型篡改,同时,为降低算法的复杂度,还提出利用块迭代划分方法来有效减少搜索计算量。仿真实验结果表明,该方法是有效的。 展开更多
关键词 不变矩 图像认证 篡改检测
下载PDF
基于双树复数小波四元数卷积网络的Copy-move盲取证算法 被引量:1
16
作者 李策 李兰 +2 位作者 靳山岗 高伟哲 许大有 《兰州理工大学学报》 CAS 北大核心 2021年第2期87-96,共10页
随着图像编辑软件的普及与完善,使得人们通过Copy-move操作便可伪造图像,而现有的Copy-move盲取证算法很难提取到彩色图像的一致性特征,且结果依赖于手动调节参数,难以定位到准确的篡改区域.为此,利用四元数卷积网络提取彩色图像空间一... 随着图像编辑软件的普及与完善,使得人们通过Copy-move操作便可伪造图像,而现有的Copy-move盲取证算法很难提取到彩色图像的一致性特征,且结果依赖于手动调节参数,难以定位到准确的篡改区域.为此,利用四元数卷积网络提取彩色图像空间一致性信息和双树复数小波提取图像局部信息的优势,提出了一种基于双树复数小波四元数卷积网络的Copy-move盲取证算法.首先,将图像表示为四元数并输入到四元数卷积网络中,提取彩色图像的颜色一致性特征,并将双树复数小波变换的高频子带与卷积网络的特征图联合学习图像的局部特征.其次,计算特征向量之间的相似性分数.然后,利用卷积网络提取较高分数的特征,定位相似区域,在一定程度上解决了匹配时手动调节参数的问题;并构建了一个仅定位粘贴区域的辅助分支来区分相似区域.最后,融合了相似和粘贴区域得到能够区分复制和粘贴位置的结果.在CoMoFoD和CASIA CMFD数据集上的主客观实验表明,该算法提升了Copy-move盲取证的定位性能. 展开更多
关键词 copy-move盲取证 四元数卷积 双树复数小波
下载PDF
基于FMT的快速Copy-Move篡改检测 被引量:4
17
作者 张广群 汪杭军 《计算机工程与设计》 CSCD 北大核心 2010年第15期3530-3532,3536,共4页
为了对图像篡改中常用的复制-移动伪造进行检测,基于傅里叶-梅林变换的平移、旋转和缩放的不变性提出一种快速图像区域分割和匹配的高效篡改检测算法。不同于以往模板匹配方式中按照单像素点移动得到重叠块划分方法,该算法采用相邻图像... 为了对图像篡改中常用的复制-移动伪造进行检测,基于傅里叶-梅林变换的平移、旋转和缩放的不变性提出一种快速图像区域分割和匹配的高效篡改检测算法。不同于以往模板匹配方式中按照单像素点移动得到重叠块划分方法,该算法采用相邻图像块的图像区域分割方式来减少整个图像块的数量。通过相似性匹配检测,得到初步的复制图像区域,然后利用边缘处理的方法处理改善篡改区域,从而达到改进篡改检测算法的效率和准确性。最后通过实验验证了该算法的有效性。 展开更多
关键词 复制-移动伪造 图像篡改 傅里叶-梅林变换 篡改检测 区域分割
下载PDF
同幅数字图像中Copy-Move型篡改的盲检测 被引量:1
18
作者 何德龙 倪林 吴巧玲 《数据采集与处理》 CSCD 北大核心 2013年第2期149-154,共6页
为了快速有效地检测复制-粘贴(Copy-Move)图像篡改,提出了一种基于重叠块统计值的Copy-Move型篡改图像盲认证方式。该算法先将图像进行一次离散小波变换(Discrete wavelet transform,DWT)并取其低频部分分解为重叠块,接着统计各重叠块的... 为了快速有效地检测复制-粘贴(Copy-Move)图像篡改,提出了一种基于重叠块统计值的Copy-Move型篡改图像盲认证方式。该算法先将图像进行一次离散小波变换(Discrete wavelet transform,DWT)并取其低频部分分解为重叠块,接着统计各重叠块的7个统计值并计算重叠块间的相似性找出相似块,最后返回原篡改图像找出篡改部分。仿真结果表明,该方法能快速有效地检测出篡改部分经过JPEG有损压缩、高斯白噪声污染和这两者结合的篡改图像。 展开更多
关键词 离散小波变换 复制-粘贴篡改 篡改检测 重叠块
下载PDF
基于Tamura纹理特征的Copy-Move图像篡改盲检测 被引量:3
19
作者 赵伟 汪涛 +2 位作者 吕皖丽 汤进 罗斌 《计算机工程与应用》 CSCD 2014年第3期177-180,共4页
针对图像盲认证中一种常见的Copy-Move型图像篡改,提出了基于图像的Tamura纹理特征的Copy-Move型篡改区域的检测和定位算法。该算法提取每一图像块的Tamura纹理特征组成图像的特征向量,用字典排序法对特征向量进行排序,利用欧式距离计... 针对图像盲认证中一种常见的Copy-Move型图像篡改,提出了基于图像的Tamura纹理特征的Copy-Move型篡改区域的检测和定位算法。该算法提取每一图像块的Tamura纹理特征组成图像的特征向量,用字典排序法对特征向量进行排序,利用欧式距离计算图像块的相似性,以检测和定位被篡改的图像区域。实验结果表明,该算法能有效地检测和定位被篡改的图像区域。 展开更多
关键词 Tamura纹理特征 盲检测 copy-move型篡改 字典排序
下载PDF
基于小波和不变矩的图像copy-move篡改盲检测
20
作者 周治平 张小祥 孙子文 《信息网络安全》 2009年第7期35-37,共3页
针对数字图像取证中一类常见的复制粘贴图像伪造,本文提出了一种基于小波变换和不变矩提取的检测算法。该算法利用小波变换提取图像的低频分量,对低频分量分块进行不变矩特征提取,然后将特征矢量进行按行字典排序,并且配合图像块的偏移... 针对数字图像取证中一类常见的复制粘贴图像伪造,本文提出了一种基于小波变换和不变矩提取的检测算法。该算法利用小波变换提取图像的低频分量,对低频分量分块进行不变矩特征提取,然后将特征矢量进行按行字典排序,并且配合图像块的偏移位置信息,进行图像复制伪造区域的检测和定位。实验表明该算法能够较精确地定位出复制和粘贴的图像伪造区域,并有效地减少了运算量,提高了检测效率。 展开更多
关键词 图像取证 小波变换 不变矩 复制伪造区域
下载PDF
上一页 1 2 43 下一页 到第
使用帮助 返回顶部