期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
图像抠图与copy-paste结合的数据增强方法 被引量:1
1
作者 杨天成 杨建红 陈伟鑫 《华侨大学学报(自然科学版)》 CAS 2023年第2期243-249,共7页
提出一种基于图像抠图与copy-paste结合的数据增强方法(matting-paste),采用图像抠图法获取单个垃圾实例的准确轮廓,并对单个实例进行旋转和亮度变换.根据物体轮廓信息,把实例粘贴到背景图上,无需额外的人工标注即可生成新的带有标注的... 提出一种基于图像抠图与copy-paste结合的数据增强方法(matting-paste),采用图像抠图法获取单个垃圾实例的准确轮廓,并对单个实例进行旋转和亮度变换.根据物体轮廓信息,把实例粘贴到背景图上,无需额外的人工标注即可生成新的带有标注的数据,从而提高数据集的多样性和复杂性.结果表明:数据集扩充后的mask比数据集扩充前的识别精度提高了0.039,matting-paste能在已有数据集上有效地扩充数据,进一步提高模型的识别精度. 展开更多
关键词 数据增强 图像抠图 copy-paste 实例分割
下载PDF
Passive detection of copy-paste forgery between JPEG images 被引量:5
2
作者 李香花 赵于前 +2 位作者 廖苗 F.Y.Shih Y.Q.Shi 《Journal of Central South University》 SCIE EI CAS 2012年第10期2839-2851,共13页
A blind digital image forensic method for detecting copy-paste forgery between JPEG images was proposed.Two copy-paste tampering scenarios were introduced at first:the tampered image was saved in an uncompressed forma... A blind digital image forensic method for detecting copy-paste forgery between JPEG images was proposed.Two copy-paste tampering scenarios were introduced at first:the tampered image was saved in an uncompressed format or in a JPEG compressed format.Then the proposed detection method was analyzed and simulated for all the cases of the two tampering scenarios.The tampered region is detected by computing the averaged sum of absolute difference(ASAD) images between the examined image and a resaved JPEG compressed image at different quality factors.The experimental results show the advantages of the proposed method:capability of detecting small and/or multiple tampered regions,simple computation,and hence fast speed in processing. 展开更多
关键词 image forensic JPEG compression copy-paste tbrgery passive detection tampered image compressed image
下载PDF
基于深度学习的瓷砖表面缺陷检测数据增强方法
3
作者 杨学先 《自动化与信息工程》 2024年第6期59-63,共5页
瓷砖表面缺陷不仅影响外观,还可能缩短使用寿命并带来装修安全隐患。针对YOLOv8深度模型进行瓷砖表面缺陷检测时,需构建有效的训练数据集以保证模型的稳定性,提出基于深度学习的瓷砖表面缺陷检测数据增强方法。首先,通过高分辨率线阵相... 瓷砖表面缺陷不仅影响外观,还可能缩短使用寿命并带来装修安全隐患。针对YOLOv8深度模型进行瓷砖表面缺陷检测时,需构建有效的训练数据集以保证模型的稳定性,提出基于深度学习的瓷砖表面缺陷检测数据增强方法。首先,通过高分辨率线阵相机采集瓷砖图像,并结合公共的纹理瓷砖数据集,构建瓷砖数据集;然后,利用Copy-Paste算法对瓷砖图像的缺陷目标进行分割、变换并粘贴到新的背景图像中,以提高YOLOv8深度模型的表面缺陷检测性能。实验结果表明,该方法构建并增强的瓷砖数据集可有效提高YOLOv8深度模型的瓷砖表面缺陷检测能力。 展开更多
关键词 瓷砖表面缺陷检测 深度学习 数据增强 copy-paste算法 YOLOv8深度模型
下载PDF
Detecting Shifted Double JPEG Compression Tampering Utilizing Both Intra-Block and Inter-Block Correlations 被引量:1
4
作者 张玉金 李生红 王士林 《Journal of Shanghai Jiaotong university(Science)》 EI 2013年第1期7-16,共10页
Copy-paste forgery is a very common type of forgery in JPEG images.The tampered patch has always suffered from JPEG compression twice with inconsistent block segmentation.This phenomenon in JPEG image forgeries is cal... Copy-paste forgery is a very common type of forgery in JPEG images.The tampered patch has always suffered from JPEG compression twice with inconsistent block segmentation.This phenomenon in JPEG image forgeries is called the shifted double JPEG(SDJPEG) compression.Detection of SDJPEG compressed image patches can make crucial contribution to detect and locate the tampered region.However,the existing SDJPEG compression tampering detection methods cannot achieve satisfactory results especially when the tampered region is small.In this paper,an effective SDJPEG compression tampering detection method utilizing both intra-block and inter-block correlations is proposed.Statistical artifacts are left by the SDJPEG compression among the magnitudes of JPEG quantized discrete cosine transform(DCT) coefficients.Firstly,difference 2D arrays,which describe the differences between the magnitudes of neighboring JPEG quantized DCT coefficients on the intrablock and inter-block,are used to enhance the SDJPEG compression artifacts.Then,the thresholding technique is used to deal with these difference 2D arrays for reducing computational cost.After that,co-occurrence matrix is used to model these difference 2D arrays so as to take advantage of second-order statistics.All elements of these co-occurrence matrices are served as features for SDJPEG compression tampering detection.Finally,support vector machine(SVM) classifier is employed to distinguish the SDJPEG compressed image patches from the single JPEG compressed image patches using the developed feature set.Experimental results demonstrate the efficiency of the proposed method. 展开更多
关键词 passive image forensics copy-paste forgery shifted double JPEG (SDJPEG) compression co-occurrence matrix support vector machine (SVM)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部