Material composition and structural design are important factors influencing the electromagnetic wave(EMW)absorption performance of materials.To alleviate the impedance mismatch attributed to the high dielectric const...Material composition and structural design are important factors influencing the electromagnetic wave(EMW)absorption performance of materials.To alleviate the impedance mismatch attributed to the high dielectric constant of Ti_(3)C_(2)T_(x)MXene,we have successfully synthesized core‐shell structured SiO_(2)@MXene@MoS_(2)nanospheres.This architecture,comprising SiO_(2) as the core,MXene as the intermediate layer,and MoS_(2) as the outer shell,is achieved through an electrostatic self‐assembly method combined with a hydrothermal process.This complex core‐shell structure not only provides a variety of loss mechanisms that effectively dissipate electromagnetic energy but also prevents self‐aggregation of MXene and MoS_(2) nanosheets.Notably,the synergistic combination of SiO_(2) and MoS_(2) with highly conductive MXene enables the suitable dielectric constant of the composites,ensuring optimal impedance matching.Therefore,the core‐shell structured SiO_(2)@MXene@MoS_(2) nanospheres exhibit excellent EMW absorption performance,featuring a remarkable minimum reflection loss(RL_(min))of−52.11 dB(2.4 mm).It is noteworthy that these nanospheres achieve an ultra‐wide effective absorption bandwidth(EAB)of 6.72 GHz.This work provides a novel approach for designing and synthesizing high‐performance EMW absorbers characterized by“wide bandwidth and strong reflection loss.”展开更多
Magnetically separable bismuth ferrite(BiFeO3)nanoparticles were fabricated by a citrate self‐combustion method and coated with titanium dioxide(TiO2)by hydrolysis of titanium butoxide(Ti(OBu)4)to form BiFeO3@TiO2cor...Magnetically separable bismuth ferrite(BiFeO3)nanoparticles were fabricated by a citrate self‐combustion method and coated with titanium dioxide(TiO2)by hydrolysis of titanium butoxide(Ti(OBu)4)to form BiFeO3@TiO2core-shell nanocomposites with different mass ratios of TiO2to BiFeO3.The photocatalytic performance of the catalysts was comprehensively investigated via photocatalytic oxidation of methyl violet(MV)under both ultraviolet and visible‐light irradiation.The BiFeO3@TiO2samples exhibited better photocatalytic performance than either BiFeO3or TiO2alone,and a BiFeO3@TiO2sample with a mass ratio of1:1and TiO2shell thickness of50-100nm showed the highest photo‐oxidation activity of the catalysts.The enhanced photocatalytic activity was ascribed to the formation of a p‐n junction of BiFeO3and TiO2with high charge separation efficiency as well as strong light absorption ability.Photoelectrochemical Mott-Schottky(MS)measurements revealed that both the charge carrier transportation and donor density of BiFeO3were markedly enhanced after introduction of TiO2.The mechanism of MV degradation is mainly attributed to hydroxyl radicals and photogenerated electrons based on energy band theory and the formation of an internal electrostatic field.In addition,the unique core-shell structure of BiFeO3@TiO2also promotes charge transfer at the BiFeO3/TiO2interface by increasing the contact area between BiFeO3and TiO2.Finally,the photocatalytic activity of BiFeO3@TiO2was further confirmed by degradation of other industrial dyes under visible‐light irradiation.展开更多
In this paper, Fe30Pt70/Fe3O4 core/shell nanoparticles were synthesized by chemical routine and the layered polyethylenimine (PEI)-Fe30Pt70/Fe3O4 structure was constructed by molecule-mediated self-assembly techniqu...In this paper, Fe30Pt70/Fe3O4 core/shell nanoparticles were synthesized by chemical routine and the layered polyethylenimine (PEI)-Fe30Pt70/Fe3O4 structure was constructed by molecule-mediated self-assembly technique. The dimension of core/shell structured nanoparticles was that of 4nm core and 2 nm shell. After annealing under a flow of forming gas (50%Ar2+30%H2) for 1 h at or above 400℃, the iron oxide shell was reduced to Fe and diffused to Pt-rieh core, which leaded to the formation of L1. phase FePt at low temperature. The x-ray diffraction results and magnetic properties measurement showed that the chemical ordering temperature of Fe30Pt70/Fe3O4 core/shell nanoparticles assembly can be reduced to as low as 400℃. The sample annealed at 400℃ showed the eoereivity of 4KOe with the applied field of 1.5T. The core/shell structure was suggested to be an effective way to reduce the ordering temperature obviously.展开更多
LaF^3+ Yb^3+ , Er^3+ nanoparticles were successfully synthesized using solvothermal treatment, and LaF^3+ Yb^3+ , Er^3+/SiO2 core/shell nanoparticles were also prepared with reverse microemulsion technique. The ...LaF^3+ Yb^3+ , Er^3+ nanoparticles were successfully synthesized using solvothermal treatment, and LaF^3+ Yb^3+ , Er^3+/SiO2 core/shell nanoparticles were also prepared with reverse microemulsion technique. The crystal structure, morphology and photoluminescence properties of as-prepared core/shell nanoparticles were in- vestigated by X-ray diffraction, transmission electron microscopy and fluorescence spectrophotometer. The re- sults showed thatLaF^3+ Yb^3+ , Er^3+ nanoparticles are of hexagonal structure and SiO2 shell is amorphous. The size ofLaF^3+ Yb^3+ , Er^3+. nanoparticles is 13 nm and the LaF^3+ Yb^3+ , Er^3+/SiO2 nanoparticles present clearly a core/shell structure with 12 nm shell thickness. The solubility of LaF^3+ Yb^3+ , Er^3+ nanocrystals in water and the biocompatibility are both improved by the SiO2 shell. The upconversion luminescence spectra suggested that the SiO~ shell has small effect on the upconversion luminescence properties of the LaF^3+ Yb^3+ , Er^3+ nanocrys- tals. The core/shell structure LaF^3+ Yb^3+ , Er^3+ /SiO2. nanopartlcles are expected to be used in biological appli- cations.展开更多
Bacterial infection is a major threat to public health.Nanotechnology offers a solu-tion by combining nanomaterials with antibacterial agents.The development of an effective nanocomposite against drug-resistant bacter...Bacterial infection is a major threat to public health.Nanotechnology offers a solu-tion by combining nanomaterials with antibacterial agents.The development of an effective nanocomposite against drug-resistant bacteria such as methicillin-resistant Staphylococcus aureus(MRSA)is highly important yet challenging.Here,an anti-MRSA core–shell structure is designed,containing antibacterial zeolitic imidazolate framework-8(ZIF-8)as the core and bactericidal benzalkonium chloride(BAC)templated rough-surface mesostructured silica nanocomposite(RMSN)as the shell.The resultant ZIF-8@RMSN nanocomposite exhibits sustained release of BAC and zinc ions,effective disruption of the bacterial membrane,generation of oxidative damage of bacterial DNA,leakage of intracellular components,andfinally bacte-rial death.Furthermore,the synergistic antibacterial mechanisms lead to enhanced biofilm elimination performance.In addition,the ZIF-8@RMSN-modified band-aid effectively combats MRSA infection in vivo.This work has provided a promising nanocomposite against MRSA-related infections.展开更多
The purpose of this study is to explore the adsorption performance of meso-2,3-dimercaptosuccinic acid(DMSA)modified Fe3O4@SiO2 magnetic nanocomposite(Fe3O4@SiO2@DMSA)for Pb2+ions removal from aqueous solutions.The ef...The purpose of this study is to explore the adsorption performance of meso-2,3-dimercaptosuccinic acid(DMSA)modified Fe3O4@SiO2 magnetic nanocomposite(Fe3O4@SiO2@DMSA)for Pb2+ions removal from aqueous solutions.The effects of solution pH,initial concentration of Pb2+ions,contact time,and temperature on the amount of Pb2+adsorbed were investigated.Adsorption isotherms,adsorption kinetics,and thermodynamic analysis were also studied.The results showed that the maximum adsorption capacity of the Fe3O4@SiO2@DMSA composite is 50.5 mg/g at 298 K,which is higher than that of Fe3O4 and Fe3O4@SiO2 magnetic nanoparticles.The adsorption process agreed well with Langmuir adsorption isotherm models and pseudo second-order kinetics.The thermodynamic analysis revealed that the adsorption was spontaneous,endothermic and energetically driven in nature.展开更多
Rational construction of highly efficient and cheap bifunctional electrocatalysts to boost both oxygen evolution reaction(OER)and oxygen reduction reaction(ORR)is extremely essential for the wide application of rechar...Rational construction of highly efficient and cheap bifunctional electrocatalysts to boost both oxygen evolution reaction(OER)and oxygen reduction reaction(ORR)is extremely essential for the wide application of rechargeable metal-air battery.In this work,we design a core-shell structural catalyst of CoNi dual-metal embedded in nitrogen doped porous carbon(NPC,CoNi@NPC),which is developed via the pyrolysis of CoNiMOFs,assisting by mesoporous SiO_(2) to effectively inhibit the aggregation of metal sites.Consequently,the asprepared CoNi@NPC manifests good ORR activity with half-wave potential up to 0.77 V.Specifically,the CoNi@NPC gives a very low OER over-potential of merely 101 mV in 6 M KOH along with high stability,outperforming the commercial Pt/C-RuO_(2).Moreover,the home-made zinc air battery with CoNi@NPC air cathode demonstrates excellent stability over long-term charging–discharging test,and delivers the maximum power density of 224 mW cm^(-2).The enhanced high performance of CoNi@NPC bifunctional catalyst for both ORR and OER can be ascribed to its unique core-shell structure and strong synergistic effect between the dual-bimetal active sites and the heteroatom doped carbon.This work opens a new avenue for the rational design of nonprecious metal bifunctional catalysts for rechargeable metal-air battery.展开更多
The hydrogenation of CO_(2) into methanol has attracted much attention and In_(2)O_(3) is a promising catalyst.Introducing metal elements into In_(2)O_(3)(M/In_(2)O_(3))is one of the main strategies to improve its per...The hydrogenation of CO_(2) into methanol has attracted much attention and In_(2)O_(3) is a promising catalyst.Introducing metal elements into In_(2)O_(3)(M/In_(2)O_(3))is one of the main strategies to improve its performance.However,its mechanism and active sites remain unclear and need to be further elucidated.Here,the noble‐metal‐free In_(x)‐Co_(y) oxides catalysts were prepared.Much‐improved performance and obvious product selectivity shift were observed.The optimized catalyst(In_(1)‐Co_(4))(9.7 mmol g_(cat)^(–1) h^(–1))showed five times methanol yields than pure In_(2)O_(3)(2.2 mmol g_(cat)^(–1) h^(–1))(P=4.0 MPa,T=300°C,GHSV=24000 cm^(3)_(STP) g_(cat)^(–1) h^(–1),H_(2):CO_(2)=3).And the cobalt‐catalyzed CO_(2) methanation activity was suppressed,although cobalt was most of the metal element.To unravel this selectivity shift,detailed catalysts performance evaluation,together with several in‐situ and ex‐situ characterizations,were employed on cobalt and In‐Co for comparative study.The results indicated CO_(2) hydrogenation on cobalt and In‐Co catalyst both followed the formate pathway,and In‐Co reconstructed and generated a surface In_(2)O_(3)‐enriched core‐shell‐like structure under a reductive atmosphere.The enriched In_(2)O_(3) at the surface significantly enhanced CO_(2) adsorption capacity and well stabilized the intermediates of CO_(2) hydrogenation.CO_(2) and carbon‐containing intermediates adsorbed much stronger on In‐Co than cobalt led to a feasible surface C/H ratio,thus allowing the*CH_(3)O to desorb to produce CH_(3)OH instead of being over‐hydrogenated to CH_(4).展开更多
Rupturing the alumina shell(shell-breaking)is a prerequisite for releasing energy from aluminum powder.Thermal stress overload in a high-temperature environment is an important factor in the rupture of the alumina she...Rupturing the alumina shell(shell-breaking)is a prerequisite for releasing energy from aluminum powder.Thermal stress overload in a high-temperature environment is an important factor in the rupture of the alumina shell.COMSOL Multiphysics was used to simulate and analyze the shell-breaking response of micron-scale aluminum particles with different particle sizes at 650℃in vacuum.The simulation results show that the thermal stability time and shell-breaking response time of 10μm–100μm aluminum particles are 0.15μs–11.44μs and 0.08μs–3.94μs,respectively.They also reveal the direct causes of shell breaking for aluminum particles with different particle sizes.When the particle size is less than 80μm,the shell-breaking response is a direct result of compressive stress overload.When the particle size is between80μm and 100μm,the shell-breaking response is a direct result of tensile stress overload.This article provides useful guidance for research into the energy release of aluminum powder.展开更多
The bind-free carbon cloth-supported electrodes hold the promises for high-performance electrochemical capacitors with high specific capacitance and good cyclic stability.Considering the close connection between their...The bind-free carbon cloth-supported electrodes hold the promises for high-performance electrochemical capacitors with high specific capacitance and good cyclic stability.Considering the close connection between their performance and the amount of carbon material loaded on the electrodes,in this work,NiCo_(2)O_(4) nanowires were firstly grown on the substrate of active carbon cloth to provide the necessary surface area in the longitudinal direction.Then,the quinone-rich nitrogen-doped carbon shell structure was formed around NiCo_(2)O_(4) nanowires,and the obtained composite was used as electrode for electric double layer capacitor.The results showed that the composite electrode displayed an area-specific capacitance of 1794 mF·cm^(-2) at the current density of 1 mA·cm^(-2).The assembled symmetric electric double layer capacitor achieved a high energy density of 6.55 mW·h·cm^(-3) at a power density of 180 mW·cm^(-3).The assembled symmetric capacitor exhibited a capacitance retention of 88.96%after 10000 charge/discharge cycles at the current density of 20 mA·cm^(-2).These results indicated the potentials in the preparation of the carbon electrode materials with high energy density and good cycling stability.展开更多
Advanced biomaterial-based strategies for treatment of peripheral nerve injury require precise control over both topological and biological cues for facilitating rapid and directed nerve regeneration.As a highly bioac...Advanced biomaterial-based strategies for treatment of peripheral nerve injury require precise control over both topological and biological cues for facilitating rapid and directed nerve regeneration.As a highly bioactive and tissue-specifc natural material,decellularized extracellular matrix(dECM)derived from peripheral nerves(decellularized nerve matrix,DNM)has drawn increasing attention in the feld of regenerative medicine,due to its outstanding capabilities in facilitating neurite outgrowth and remyelination.To induce and maintain sufcient topological guidance,electrospinning was conducted for fabrication of axially aligned nanofbers consisting of DNM and poly(ε-caprolactone)(PCL).Core–shell structured fbers were prepared by coaxial electrospinning using DNM as the shell and PCL as the core.Compared to the aligned electrospun fbers using preblended DNM/PCL,the core–shell structured fbers exhibited lower tensile strength,faster degradation,but considerable toughness for nerve guidance conduit preparation and relatively intact fbrous structure after long-term degradation.More importantly,the full DNM surface coverage of the aligned core–shell fbers efectively promoted axonal extension and Schwann cells migration.The DNM contents further triggered neurite bundling and myelin formation toward nerve fber maturation and functionalization.Herein,we not only pursue a multi-functional scafold design for nerve regeneration,a detailed comparison between core–shell structured and preblended electrospinning of DNM/PCL composites was also provided as an applicable paradigm for advanced tissue-engineered strategies using dECM-based biomaterials.展开更多
In this paper,we use microwave reduction strategy to synthesize a new bi-functional sulfur host material at the service of cathode substrate for lithium-sulfur batteries(LSBs),the composite is made of hierarchical por...In this paper,we use microwave reduction strategy to synthesize a new bi-functional sulfur host material at the service of cathode substrate for lithium-sulfur batteries(LSBs),the composite is made of hierarchical porous carbon foam supported carbon-encapsulated chromium carbide nano-particles(Cr_(3)C_(2)@C/HPCF),in which the well-distributed conductive Cr_(3)C_(2) nano-particles can act as powerful chemical adsorbent and are effective in restraining the shuttle effect of lithium polysulfides(LiPSs).Test results show that the Cr_(3)C_(2)@C/HPCF based sulfur electrodes with 75 wt.%of sulfur exhibit a high initial discharging capacity of 1,321.1 mAh·g^(−1) at 0.1 C(3.5 mg·cm^(−2)),and a reversible capacity can still maintain stability at 1,002.1 mAh·g^(−1) after 150 cycles.Even increasing the areal sulfur loading to 4 mg·cm^(−2),the electrodes can still deliver an initial discharging capacity of 948.0 mAh·g^(−1) at 0.5 C with ultra-slow capacity decay rate of 0.075%per cycle during 500 cycles.Furthermore,the adsorption energy between the Cr_(3)C_(2) surface and LiPSs as well as theoretic analysis based on first-principles is also investigated.展开更多
Crystalline Fe/MnO@C core–shell nanocapsules inlaid in porous amorphous carbon matrix(FMCA)was synthesized successfully with a novel confinement strategy.The heterogeneous Fe/MnO nanocrystals are with approximate sin...Crystalline Fe/MnO@C core–shell nanocapsules inlaid in porous amorphous carbon matrix(FMCA)was synthesized successfully with a novel confinement strategy.The heterogeneous Fe/MnO nanocrystals are with approximate single-domain size which gives rise to natural resonance in 2–18 GHz.The addition of MnO2 confines degree of graphitization catalyzed by iron and contributes to the formation of amorphous carbon.The heterogeneous materials composed of crystalline–amorphous structures disperse evenly and its density is significantly reduced on account of porous properties.Meanwhile,adjustable dielectric loss is achieved by interrupting Fe core aggregation and stacking graphene conductive network.The dielectric loss synergistically with magnetic loss endows the FMCA enhanced absorption.The optimal reflection loss(RL)is up to−45 dB,and the effective bandwidth(RL<−10 dB)is 5.0 GHz with 2.0 mm thickness.The proposed confinement strategy not only lays the foundation for designing high-performance microwave absorber,but also offers a general duty synthesis method for heterogeneous crystalline–amorphous composites with tunable composition in other fields.展开更多
Nickel cobalt sulfides (Ni-Co-S) have attracted extensive attention for application in electronic devices owing to their excellent conductivity and high electrochemical capacitance. To facilitate the large-scale pra...Nickel cobalt sulfides (Ni-Co-S) have attracted extensive attention for application in electronic devices owing to their excellent conductivity and high electrochemical capacitance. To facilitate the large-scale practical application of Ni-Co-S, the excellent rate capability and cyclic stability of these compounds must be fully exploited. Thus, hierarchical Ni-Co-S@Ni-W-O (Ni-Co-S-W) core/shell hybrid nanosheet arrays on nickel foam were designed and synthesized herein via a facile three-step hydrothermal method, followed by annealing in a tubular furnace under argon atmosphere. The hybrid structure was directly assembled as a free-standing electrode, which exhibited a high specific capacitance of 1,988 F·g^-1 at 2 A·g^-1 and retained an excellent capacitance of approximately 1,500 F·g^-1 at 30 A·g^-1, which is superior to the performance of the pristine Ni-Co-S nanosheet electrode. The assembled asymmetric supercapacitors achieved high specific capacitance (155 F·g^-1 at 1 A·g^-1), electrochemical stability, and a high energy density of 55.1 W·h·kg^-1 at a power density of 799.8 W·kg^-1 with the optimized Ni-Co-S-W core/shell nanosheets as the positive electrode, activated carbon as the negative electrode, and 6 M KOH as the electrolyte.展开更多
In the presence of Fe3O4 nano-particles, a new type of super-paramagnetic Fe3O4/Au microspheres with core/shell structures was prepared by reduction of Au3+ with hydroxylamine. The formation mechanism of the core/shel...In the presence of Fe3O4 nano-particles, a new type of super-paramagnetic Fe3O4/Au microspheres with core/shell structures was prepared by reduction of Au3+ with hydroxylamine. The formation mechanism of the core/shell microspheres was studied in some detail. It was shown that the formation of the complex microspheres can be divided into two periods, that is, surface reaction-controlled process and diffusion-controlled process. The relative time lasted by either process depends upon the amount of Fe3O4 added and the initial concentration of Au3+. XPS analysis revealed that along with increasing in coating amount, the strength of the characteristic peaks of Au increased, and the Auger peaks of Fe weakened and even disappeared. Size distribution analysis showed that the core/shell microspheres are of an average diameter of 180 nm, a little bit larger than those before coating.展开更多
Electrode material based on a novel core–shell structure consisting of NiCoS(NCS) solid fiber core and Mn S(MS) sheet shell(NCS@MS) in situ grown on carbon cloth(CC) has been successfully prepared by a simple...Electrode material based on a novel core–shell structure consisting of NiCoS(NCS) solid fiber core and Mn S(MS) sheet shell(NCS@MS) in situ grown on carbon cloth(CC) has been successfully prepared by a simple sulfurization-assisted hydrothermal method for high performance supercapacitor. The synthesized NiCoS@Mn S/CC electrode shows high capacitance of 1908.3 F gat a current density of 0.5 A gwhich is higher than those of NiCoSand Mn S at the same current density. A flexible all-solid-state asymmetric supercapacitor(ASC) is constructed by using NiCoS@Mn S/CC as positive electrode, active carbon/CC as negative electrode and KOH/poly(vinyl alcohol)(PVA) as electrolyte. The optimized ASC shows a maximum energy density of 23.3 Wh kgat 1 A g, a maximum power density of about7.5 kw kgat 10 A gand remarkable cycling stability. After 9000 cycles, the ASC still exhibited67.8% retention rate and largely unchanged charge/discharge curves. The excellent electrochemical properties are resulted from the novel core–shell structure of the NiCoS@Mn S/CC electrode, which possesses both high surface area for Faraday redox reaction and superior kinetics of charge transport. The NiCoS@Mn S/CC electrode shows a promising potential for energy storage applications in the future.展开更多
Two sets of(Mg,Y)-doped BaTiO_(3)samples were prepared to investigate the effects of the core/shell volumetric ratio on the dielectric-temperature behavior of BaTiO3:one set with samples of the same grain size but dif...Two sets of(Mg,Y)-doped BaTiO_(3)samples were prepared to investigate the effects of the core/shell volumetric ratio on the dielectric-temperature behavior of BaTiO3:one set with samples of the same grain size but different core sizes and the other with samples of the same core size but different shell thicknesses.The microstructural variation of the samples was characterized and their dielectric properties were measured.For both sets of samples,the temperature stability of the dielectric properties was generally improved with a reduction of the volumetric shell ratio regardless of the grain and core sizes.There existed,however,a limit of the reduction;for the studied range,shell thickness of one third of the core radius appeared to be an optimum thickness for the given amounts of dopants.It was concluded that the volumetric shell ratio should be optimized so as not to exceed a specific limit,for our case two thirds of the grain volume,to secure temperature stability of the dielectric properties of BaTiO_(3).展开更多
Conversion-type anode materials with a high charge storage capability generally su er from large volume expansion, poor electron conductivity, and sluggish metal ion transport kinetics. The electrode material describe...Conversion-type anode materials with a high charge storage capability generally su er from large volume expansion, poor electron conductivity, and sluggish metal ion transport kinetics. The electrode material described in this paper, namely cobalt sulphide nanoparticles encapsulated in carbon cages(Co9S8@NC), can circumvent these problems. This electrode material exhibited a reversible sodium-ion storage capacity of 705 mAh g^-1 at 100 mA g^-1 with an extraordinary rate capability and good cycling stability. Mechanistic study using the in situ transmission electron microscope technique revealed that the volumetric expansion of the Co9S8 nanoparticles is bu ered by the carbon cages, enabling a stable electrode–electrolyte interface. In addition, the carbon shell with high-content doped nitrogen significantly enhances the electron conductivity of the Co9S8@NC electrode material and provides doping-induced active sites to accommodate sodium ions. By integrating the Co9S8@NC as negative electrode with a cellulose-derived porous hard carbon/graphene oxide composite as positive electrode and 1 M NaPF6 in diglyme as the electrolyte, the sodium-ion capacitor full cell can achieve energy densities of 101.4 and 45.8 Wh kg^-1 at power densities of 200 and 10,000 W kg^-1, respectively.展开更多
Elemental state matter-heteroatom-doped carbon composites are of great importance for the development of anode in lithium ion batteries(LIBs).In this article,metal–organic frameworks(MOFs)are adopted as precursor to ...Elemental state matter-heteroatom-doped carbon composites are of great importance for the development of anode in lithium ion batteries(LIBs).In this article,metal–organic frameworks(MOFs)are adopted as precursor to prepare Co composites via metallurgical pyrolysis under controllable conditions.The obtained nitrogen-doped porous carbon-Co nanocomposite possesses core–shell structure(Co@C–N).Co@C–N exhibits the best Li storage performances as anode active matter.After the 200th cycles at current density of 0.2 A g^(-1),a reversible capacity of 870 mAh g^(-1)is retained.A reversible capacity of 275 mAh g^(-1)still maintains with 5 A g^(-1).Co@C–N presents a high reversible capacity with excellent cycle stability.Considering the corresponding experimental and theoretical results,the Co0-based N-doped porous carbon composite is proposed to work as LIBs anode matter.These results provide a new design idea for electrode matters of metallic ion battery,and demonstrate that MOFs pyrolysis is an effective method for the construction of elemental state anode materials.展开更多
基金Joint Fund of Research and Development Program of Henan Province,Grant/Award Number:222301420002National Natural Science Foundation of China,Grant/Award Number:U21A2064Scientific and Technological Innovation Talents in Colleges and Universities in Henan Province,Grant/Award Number:22HASTIT001。
文摘Material composition and structural design are important factors influencing the electromagnetic wave(EMW)absorption performance of materials.To alleviate the impedance mismatch attributed to the high dielectric constant of Ti_(3)C_(2)T_(x)MXene,we have successfully synthesized core‐shell structured SiO_(2)@MXene@MoS_(2)nanospheres.This architecture,comprising SiO_(2) as the core,MXene as the intermediate layer,and MoS_(2) as the outer shell,is achieved through an electrostatic self‐assembly method combined with a hydrothermal process.This complex core‐shell structure not only provides a variety of loss mechanisms that effectively dissipate electromagnetic energy but also prevents self‐aggregation of MXene and MoS_(2) nanosheets.Notably,the synergistic combination of SiO_(2) and MoS_(2) with highly conductive MXene enables the suitable dielectric constant of the composites,ensuring optimal impedance matching.Therefore,the core‐shell structured SiO_(2)@MXene@MoS_(2) nanospheres exhibit excellent EMW absorption performance,featuring a remarkable minimum reflection loss(RL_(min))of−52.11 dB(2.4 mm).It is noteworthy that these nanospheres achieve an ultra‐wide effective absorption bandwidth(EAB)of 6.72 GHz.This work provides a novel approach for designing and synthesizing high‐performance EMW absorbers characterized by“wide bandwidth and strong reflection loss.”
基金supported by the Australian Research Council(ARC DP150103026)the National Natural Science Foundation of China(51278242)~~
文摘Magnetically separable bismuth ferrite(BiFeO3)nanoparticles were fabricated by a citrate self‐combustion method and coated with titanium dioxide(TiO2)by hydrolysis of titanium butoxide(Ti(OBu)4)to form BiFeO3@TiO2core-shell nanocomposites with different mass ratios of TiO2to BiFeO3.The photocatalytic performance of the catalysts was comprehensively investigated via photocatalytic oxidation of methyl violet(MV)under both ultraviolet and visible‐light irradiation.The BiFeO3@TiO2samples exhibited better photocatalytic performance than either BiFeO3or TiO2alone,and a BiFeO3@TiO2sample with a mass ratio of1:1and TiO2shell thickness of50-100nm showed the highest photo‐oxidation activity of the catalysts.The enhanced photocatalytic activity was ascribed to the formation of a p‐n junction of BiFeO3and TiO2with high charge separation efficiency as well as strong light absorption ability.Photoelectrochemical Mott-Schottky(MS)measurements revealed that both the charge carrier transportation and donor density of BiFeO3were markedly enhanced after introduction of TiO2.The mechanism of MV degradation is mainly attributed to hydroxyl radicals and photogenerated electrons based on energy band theory and the formation of an internal electrostatic field.In addition,the unique core-shell structure of BiFeO3@TiO2also promotes charge transfer at the BiFeO3/TiO2interface by increasing the contact area between BiFeO3and TiO2.Finally,the photocatalytic activity of BiFeO3@TiO2was further confirmed by degradation of other industrial dyes under visible‐light irradiation.
基金Project supported by the National Natural Science Foundation of China (Grant No 50641006) and the Science Foundation of Education Commission of Beijing, China.
文摘In this paper, Fe30Pt70/Fe3O4 core/shell nanoparticles were synthesized by chemical routine and the layered polyethylenimine (PEI)-Fe30Pt70/Fe3O4 structure was constructed by molecule-mediated self-assembly technique. The dimension of core/shell structured nanoparticles was that of 4nm core and 2 nm shell. After annealing under a flow of forming gas (50%Ar2+30%H2) for 1 h at or above 400℃, the iron oxide shell was reduced to Fe and diffused to Pt-rieh core, which leaded to the formation of L1. phase FePt at low temperature. The x-ray diffraction results and magnetic properties measurement showed that the chemical ordering temperature of Fe30Pt70/Fe3O4 core/shell nanoparticles assembly can be reduced to as low as 400℃. The sample annealed at 400℃ showed the eoereivity of 4KOe with the applied field of 1.5T. The core/shell structure was suggested to be an effective way to reduce the ordering temperature obviously.
文摘LaF^3+ Yb^3+ , Er^3+ nanoparticles were successfully synthesized using solvothermal treatment, and LaF^3+ Yb^3+ , Er^3+/SiO2 core/shell nanoparticles were also prepared with reverse microemulsion technique. The crystal structure, morphology and photoluminescence properties of as-prepared core/shell nanoparticles were in- vestigated by X-ray diffraction, transmission electron microscopy and fluorescence spectrophotometer. The re- sults showed thatLaF^3+ Yb^3+ , Er^3+ nanoparticles are of hexagonal structure and SiO2 shell is amorphous. The size ofLaF^3+ Yb^3+ , Er^3+. nanoparticles is 13 nm and the LaF^3+ Yb^3+ , Er^3+/SiO2 nanoparticles present clearly a core/shell structure with 12 nm shell thickness. The solubility of LaF^3+ Yb^3+ , Er^3+ nanocrystals in water and the biocompatibility are both improved by the SiO2 shell. The upconversion luminescence spectra suggested that the SiO~ shell has small effect on the upconversion luminescence properties of the LaF^3+ Yb^3+ , Er^3+ nanocrys- tals. The core/shell structure LaF^3+ Yb^3+ , Er^3+ /SiO2. nanopartlcles are expected to be used in biological appli- cations.
基金National Natural Science Foundation of China,Grant/Award Number:32171414Natural Science Foundation of Shanghai,Grant/Award Number:23ZR1419500Nature Science Foundation of Chongqing,Grant/Award Number:CSTB2022NSCQ-MSX0461。
文摘Bacterial infection is a major threat to public health.Nanotechnology offers a solu-tion by combining nanomaterials with antibacterial agents.The development of an effective nanocomposite against drug-resistant bacteria such as methicillin-resistant Staphylococcus aureus(MRSA)is highly important yet challenging.Here,an anti-MRSA core–shell structure is designed,containing antibacterial zeolitic imidazolate framework-8(ZIF-8)as the core and bactericidal benzalkonium chloride(BAC)templated rough-surface mesostructured silica nanocomposite(RMSN)as the shell.The resultant ZIF-8@RMSN nanocomposite exhibits sustained release of BAC and zinc ions,effective disruption of the bacterial membrane,generation of oxidative damage of bacterial DNA,leakage of intracellular components,andfinally bacte-rial death.Furthermore,the synergistic antibacterial mechanisms lead to enhanced biofilm elimination performance.In addition,the ZIF-8@RMSN-modified band-aid effectively combats MRSA infection in vivo.This work has provided a promising nanocomposite against MRSA-related infections.
基金Project(2013DFA51290)supported by International S&T Cooperation Program of China
文摘The purpose of this study is to explore the adsorption performance of meso-2,3-dimercaptosuccinic acid(DMSA)modified Fe3O4@SiO2 magnetic nanocomposite(Fe3O4@SiO2@DMSA)for Pb2+ions removal from aqueous solutions.The effects of solution pH,initial concentration of Pb2+ions,contact time,and temperature on the amount of Pb2+adsorbed were investigated.Adsorption isotherms,adsorption kinetics,and thermodynamic analysis were also studied.The results showed that the maximum adsorption capacity of the Fe3O4@SiO2@DMSA composite is 50.5 mg/g at 298 K,which is higher than that of Fe3O4 and Fe3O4@SiO2 magnetic nanoparticles.The adsorption process agreed well with Langmuir adsorption isotherm models and pseudo second-order kinetics.The thermodynamic analysis revealed that the adsorption was spontaneous,endothermic and energetically driven in nature.
基金supported by National Natural Science Foundation of China(21972017)the“Scientific and Technical Innovation Action Plan”Hong Kong,MacaoTaiwan Science&Technology Cooperation Project of Shanghai Science and Technology Committee(19160760600).
文摘Rational construction of highly efficient and cheap bifunctional electrocatalysts to boost both oxygen evolution reaction(OER)and oxygen reduction reaction(ORR)is extremely essential for the wide application of rechargeable metal-air battery.In this work,we design a core-shell structural catalyst of CoNi dual-metal embedded in nitrogen doped porous carbon(NPC,CoNi@NPC),which is developed via the pyrolysis of CoNiMOFs,assisting by mesoporous SiO_(2) to effectively inhibit the aggregation of metal sites.Consequently,the asprepared CoNi@NPC manifests good ORR activity with half-wave potential up to 0.77 V.Specifically,the CoNi@NPC gives a very low OER over-potential of merely 101 mV in 6 M KOH along with high stability,outperforming the commercial Pt/C-RuO_(2).Moreover,the home-made zinc air battery with CoNi@NPC air cathode demonstrates excellent stability over long-term charging–discharging test,and delivers the maximum power density of 224 mW cm^(-2).The enhanced high performance of CoNi@NPC bifunctional catalyst for both ORR and OER can be ascribed to its unique core-shell structure and strong synergistic effect between the dual-bimetal active sites and the heteroatom doped carbon.This work opens a new avenue for the rational design of nonprecious metal bifunctional catalysts for rechargeable metal-air battery.
文摘The hydrogenation of CO_(2) into methanol has attracted much attention and In_(2)O_(3) is a promising catalyst.Introducing metal elements into In_(2)O_(3)(M/In_(2)O_(3))is one of the main strategies to improve its performance.However,its mechanism and active sites remain unclear and need to be further elucidated.Here,the noble‐metal‐free In_(x)‐Co_(y) oxides catalysts were prepared.Much‐improved performance and obvious product selectivity shift were observed.The optimized catalyst(In_(1)‐Co_(4))(9.7 mmol g_(cat)^(–1) h^(–1))showed five times methanol yields than pure In_(2)O_(3)(2.2 mmol g_(cat)^(–1) h^(–1))(P=4.0 MPa,T=300°C,GHSV=24000 cm^(3)_(STP) g_(cat)^(–1) h^(–1),H_(2):CO_(2)=3).And the cobalt‐catalyzed CO_(2) methanation activity was suppressed,although cobalt was most of the metal element.To unravel this selectivity shift,detailed catalysts performance evaluation,together with several in‐situ and ex‐situ characterizations,were employed on cobalt and In‐Co for comparative study.The results indicated CO_(2) hydrogenation on cobalt and In‐Co catalyst both followed the formate pathway,and In‐Co reconstructed and generated a surface In_(2)O_(3)‐enriched core‐shell‐like structure under a reductive atmosphere.The enriched In_(2)O_(3) at the surface significantly enhanced CO_(2) adsorption capacity and well stabilized the intermediates of CO_(2) hydrogenation.CO_(2) and carbon‐containing intermediates adsorbed much stronger on In‐Co than cobalt led to a feasible surface C/H ratio,thus allowing the*CH_(3)O to desorb to produce CH_(3)OH instead of being over‐hydrogenated to CH_(4).
基金the National Natural Science Foundation of China(Grant No.11802160)。
文摘Rupturing the alumina shell(shell-breaking)is a prerequisite for releasing energy from aluminum powder.Thermal stress overload in a high-temperature environment is an important factor in the rupture of the alumina shell.COMSOL Multiphysics was used to simulate and analyze the shell-breaking response of micron-scale aluminum particles with different particle sizes at 650℃in vacuum.The simulation results show that the thermal stability time and shell-breaking response time of 10μm–100μm aluminum particles are 0.15μs–11.44μs and 0.08μs–3.94μs,respectively.They also reveal the direct causes of shell breaking for aluminum particles with different particle sizes.When the particle size is less than 80μm,the shell-breaking response is a direct result of compressive stress overload.When the particle size is between80μm and 100μm,the shell-breaking response is a direct result of tensile stress overload.This article provides useful guidance for research into the energy release of aluminum powder.
基金the Natural Science Foundation of Shandong Province of China (Grant No.ZR2020MB024)for financially supporting this work.
文摘The bind-free carbon cloth-supported electrodes hold the promises for high-performance electrochemical capacitors with high specific capacitance and good cyclic stability.Considering the close connection between their performance and the amount of carbon material loaded on the electrodes,in this work,NiCo_(2)O_(4) nanowires were firstly grown on the substrate of active carbon cloth to provide the necessary surface area in the longitudinal direction.Then,the quinone-rich nitrogen-doped carbon shell structure was formed around NiCo_(2)O_(4) nanowires,and the obtained composite was used as electrode for electric double layer capacitor.The results showed that the composite electrode displayed an area-specific capacitance of 1794 mF·cm^(-2) at the current density of 1 mA·cm^(-2).The assembled symmetric electric double layer capacitor achieved a high energy density of 6.55 mW·h·cm^(-3) at a power density of 180 mW·cm^(-3).The assembled symmetric capacitor exhibited a capacitance retention of 88.96%after 10000 charge/discharge cycles at the current density of 20 mA·cm^(-2).These results indicated the potentials in the preparation of the carbon electrode materials with high energy density and good cycling stability.
基金The authors thank Dr.Hong Zhai for her technical support in material characterizationsThis work was funded by National Key R&D Program of China(No.2018YFC1106001)+2 种基金National Natural Science Foundation of China(51903255 and 52073314)The Key Areas Research and Development Program of Guangdong(2020B1111150003 and 2019B020235001)Science and Technology Program of Guangzhou City(201904010364).
文摘Advanced biomaterial-based strategies for treatment of peripheral nerve injury require precise control over both topological and biological cues for facilitating rapid and directed nerve regeneration.As a highly bioactive and tissue-specifc natural material,decellularized extracellular matrix(dECM)derived from peripheral nerves(decellularized nerve matrix,DNM)has drawn increasing attention in the feld of regenerative medicine,due to its outstanding capabilities in facilitating neurite outgrowth and remyelination.To induce and maintain sufcient topological guidance,electrospinning was conducted for fabrication of axially aligned nanofbers consisting of DNM and poly(ε-caprolactone)(PCL).Core–shell structured fbers were prepared by coaxial electrospinning using DNM as the shell and PCL as the core.Compared to the aligned electrospun fbers using preblended DNM/PCL,the core–shell structured fbers exhibited lower tensile strength,faster degradation,but considerable toughness for nerve guidance conduit preparation and relatively intact fbrous structure after long-term degradation.More importantly,the full DNM surface coverage of the aligned core–shell fbers efectively promoted axonal extension and Schwann cells migration.The DNM contents further triggered neurite bundling and myelin formation toward nerve fber maturation and functionalization.Herein,we not only pursue a multi-functional scafold design for nerve regeneration,a detailed comparison between core–shell structured and preblended electrospinning of DNM/PCL composites was also provided as an applicable paradigm for advanced tissue-engineered strategies using dECM-based biomaterials.
基金The authors appreciate support by the Natural Science Foundation of Anhui Province(No.1908085ME147)Projects of International Cooperation and Exchanges in Anhui Provincial Key Project of Research(No.202004b11020010)+2 种基金Shenzhen Basic Research Program(Nos.JCYJ20190808141611189,JCYJ20170818100134570,and JCYJ20160422091418366)Basic and applied basic research fund of Guangdong Province(No.2020A1515011018)we are grateful to Instrumental Analysis Center of Shenzhen University(Xili Campus)for the help with TEM,and thanks for technical support by Ceshigo Research Service Agency(www.ceshigo.com)for XAS,ACSTEM and DFT/MD.
文摘In this paper,we use microwave reduction strategy to synthesize a new bi-functional sulfur host material at the service of cathode substrate for lithium-sulfur batteries(LSBs),the composite is made of hierarchical porous carbon foam supported carbon-encapsulated chromium carbide nano-particles(Cr_(3)C_(2)@C/HPCF),in which the well-distributed conductive Cr_(3)C_(2) nano-particles can act as powerful chemical adsorbent and are effective in restraining the shuttle effect of lithium polysulfides(LiPSs).Test results show that the Cr_(3)C_(2)@C/HPCF based sulfur electrodes with 75 wt.%of sulfur exhibit a high initial discharging capacity of 1,321.1 mAh·g^(−1) at 0.1 C(3.5 mg·cm^(−2)),and a reversible capacity can still maintain stability at 1,002.1 mAh·g^(−1) after 150 cycles.Even increasing the areal sulfur loading to 4 mg·cm^(−2),the electrodes can still deliver an initial discharging capacity of 948.0 mAh·g^(−1) at 0.5 C with ultra-slow capacity decay rate of 0.075%per cycle during 500 cycles.Furthermore,the adsorption energy between the Cr_(3)C_(2) surface and LiPSs as well as theoretic analysis based on first-principles is also investigated.
基金Supported by Program for the National Natural Science Foundation of China (Nos. 51577021 and U1704253)the Fundamental Research Funds for the Central Universities (DUT17GF107)
文摘Crystalline Fe/MnO@C core–shell nanocapsules inlaid in porous amorphous carbon matrix(FMCA)was synthesized successfully with a novel confinement strategy.The heterogeneous Fe/MnO nanocrystals are with approximate single-domain size which gives rise to natural resonance in 2–18 GHz.The addition of MnO2 confines degree of graphitization catalyzed by iron and contributes to the formation of amorphous carbon.The heterogeneous materials composed of crystalline–amorphous structures disperse evenly and its density is significantly reduced on account of porous properties.Meanwhile,adjustable dielectric loss is achieved by interrupting Fe core aggregation and stacking graphene conductive network.The dielectric loss synergistically with magnetic loss endows the FMCA enhanced absorption.The optimal reflection loss(RL)is up to−45 dB,and the effective bandwidth(RL<−10 dB)is 5.0 GHz with 2.0 mm thickness.The proposed confinement strategy not only lays the foundation for designing high-performance microwave absorber,but also offers a general duty synthesis method for heterogeneous crystalline–amorphous composites with tunable composition in other fields.
基金This work was supported by the National Natural Science Foundation of China (No. 51672109), National Basic Research Program of China (No. 2015CB932600), Program for HUST Interdisciplinary Innovation Team (No. 2015ZDTD038) and the Fundamental Research Funds for the Central University (No. 2017KFKJXX007), Natural Science Foundation of Shandong Province for Excellent Young Scholars (No. ZR2016JL015), Scientific Research Foundation of Zhejiang A&F University (No. 2014FR077).
文摘Nickel cobalt sulfides (Ni-Co-S) have attracted extensive attention for application in electronic devices owing to their excellent conductivity and high electrochemical capacitance. To facilitate the large-scale practical application of Ni-Co-S, the excellent rate capability and cyclic stability of these compounds must be fully exploited. Thus, hierarchical Ni-Co-S@Ni-W-O (Ni-Co-S-W) core/shell hybrid nanosheet arrays on nickel foam were designed and synthesized herein via a facile three-step hydrothermal method, followed by annealing in a tubular furnace under argon atmosphere. The hybrid structure was directly assembled as a free-standing electrode, which exhibited a high specific capacitance of 1,988 F·g^-1 at 2 A·g^-1 and retained an excellent capacitance of approximately 1,500 F·g^-1 at 30 A·g^-1, which is superior to the performance of the pristine Ni-Co-S nanosheet electrode. The assembled asymmetric supercapacitors achieved high specific capacitance (155 F·g^-1 at 1 A·g^-1), electrochemical stability, and a high energy density of 55.1 W·h·kg^-1 at a power density of 799.8 W·kg^-1 with the optimized Ni-Co-S-W core/shell nanosheets as the positive electrode, activated carbon as the negative electrode, and 6 M KOH as the electrolyte.
基金Acknowledgements This work was supported by the National Natural Science Foundation of China (Grant No. 29973024), University Key Teacher Plan and the State Key Laboratory Visiting Scholar Foundation of the Ministry of Education of China.
文摘In the presence of Fe3O4 nano-particles, a new type of super-paramagnetic Fe3O4/Au microspheres with core/shell structures was prepared by reduction of Au3+ with hydroxylamine. The formation mechanism of the core/shell microspheres was studied in some detail. It was shown that the formation of the complex microspheres can be divided into two periods, that is, surface reaction-controlled process and diffusion-controlled process. The relative time lasted by either process depends upon the amount of Fe3O4 added and the initial concentration of Au3+. XPS analysis revealed that along with increasing in coating amount, the strength of the characteristic peaks of Au increased, and the Auger peaks of Fe weakened and even disappeared. Size distribution analysis showed that the core/shell microspheres are of an average diameter of 180 nm, a little bit larger than those before coating.
基金supported by the Grant-in-Aid for Scientific Research (KAKENHI) program, Japan (C, Grant Number 15K05597)Takahashi Industrial and Economic Research Foundation (Takahashi Grant Number 06-003-154)
文摘Electrode material based on a novel core–shell structure consisting of NiCoS(NCS) solid fiber core and Mn S(MS) sheet shell(NCS@MS) in situ grown on carbon cloth(CC) has been successfully prepared by a simple sulfurization-assisted hydrothermal method for high performance supercapacitor. The synthesized NiCoS@Mn S/CC electrode shows high capacitance of 1908.3 F gat a current density of 0.5 A gwhich is higher than those of NiCoSand Mn S at the same current density. A flexible all-solid-state asymmetric supercapacitor(ASC) is constructed by using NiCoS@Mn S/CC as positive electrode, active carbon/CC as negative electrode and KOH/poly(vinyl alcohol)(PVA) as electrolyte. The optimized ASC shows a maximum energy density of 23.3 Wh kgat 1 A g, a maximum power density of about7.5 kw kgat 10 A gand remarkable cycling stability. After 9000 cycles, the ASC still exhibited67.8% retention rate and largely unchanged charge/discharge curves. The excellent electrochemical properties are resulted from the novel core–shell structure of the NiCoS@Mn S/CC electrode, which possesses both high surface area for Faraday redox reaction and superior kinetics of charge transport. The NiCoS@Mn S/CC electrode shows a promising potential for energy storage applications in the future.
基金supported by the Samsung Electro-Mechanics Co.Ltd.through the Center for Advanced MLCC-Manufacturing Processes and also by the Priority Research Centers Program(Grant No.2012-048034)through the National Research Foundation of Korea(NRF)funded by the Ministry of Education,Science and Technology(MEST),Korea.
文摘Two sets of(Mg,Y)-doped BaTiO_(3)samples were prepared to investigate the effects of the core/shell volumetric ratio on the dielectric-temperature behavior of BaTiO3:one set with samples of the same grain size but different core sizes and the other with samples of the same core size but different shell thicknesses.The microstructural variation of the samples was characterized and their dielectric properties were measured.For both sets of samples,the temperature stability of the dielectric properties was generally improved with a reduction of the volumetric shell ratio regardless of the grain and core sizes.There existed,however,a limit of the reduction;for the studied range,shell thickness of one third of the core radius appeared to be an optimum thickness for the given amounts of dopants.It was concluded that the volumetric shell ratio should be optimized so as not to exceed a specific limit,for our case two thirds of the grain volume,to secure temperature stability of the dielectric properties of BaTiO_(3).
基金supported by The Australian Research Council(ARC)under project FL170100101The University of Queensland for o ering UQI Scholarship
文摘Conversion-type anode materials with a high charge storage capability generally su er from large volume expansion, poor electron conductivity, and sluggish metal ion transport kinetics. The electrode material described in this paper, namely cobalt sulphide nanoparticles encapsulated in carbon cages(Co9S8@NC), can circumvent these problems. This electrode material exhibited a reversible sodium-ion storage capacity of 705 mAh g^-1 at 100 mA g^-1 with an extraordinary rate capability and good cycling stability. Mechanistic study using the in situ transmission electron microscope technique revealed that the volumetric expansion of the Co9S8 nanoparticles is bu ered by the carbon cages, enabling a stable electrode–electrolyte interface. In addition, the carbon shell with high-content doped nitrogen significantly enhances the electron conductivity of the Co9S8@NC electrode material and provides doping-induced active sites to accommodate sodium ions. By integrating the Co9S8@NC as negative electrode with a cellulose-derived porous hard carbon/graphene oxide composite as positive electrode and 1 M NaPF6 in diglyme as the electrolyte, the sodium-ion capacitor full cell can achieve energy densities of 101.4 and 45.8 Wh kg^-1 at power densities of 200 and 10,000 W kg^-1, respectively.
基金the National Natural Science Foundation of China(Nos.31530010 and 21401168)the Special Project of Guangdong Province to Introduce Innovation and Entrepreneurship Team(No.2016ZT06N467)is acknowledged.
文摘Elemental state matter-heteroatom-doped carbon composites are of great importance for the development of anode in lithium ion batteries(LIBs).In this article,metal–organic frameworks(MOFs)are adopted as precursor to prepare Co composites via metallurgical pyrolysis under controllable conditions.The obtained nitrogen-doped porous carbon-Co nanocomposite possesses core–shell structure(Co@C–N).Co@C–N exhibits the best Li storage performances as anode active matter.After the 200th cycles at current density of 0.2 A g^(-1),a reversible capacity of 870 mAh g^(-1)is retained.A reversible capacity of 275 mAh g^(-1)still maintains with 5 A g^(-1).Co@C–N presents a high reversible capacity with excellent cycle stability.Considering the corresponding experimental and theoretical results,the Co0-based N-doped porous carbon composite is proposed to work as LIBs anode matter.These results provide a new design idea for electrode matters of metallic ion battery,and demonstrate that MOFs pyrolysis is an effective method for the construction of elemental state anode materials.