Covariance functions have been proposed as an alternative to model longitudinal data in animal breeding because of their various merits in comparison to the classical analytical methods.In practical estimation,differe...Covariance functions have been proposed as an alternative to model longitudinal data in animal breeding because of their various merits in comparison to the classical analytical methods.In practical estimation,different models and polynomial orders fitted can influence the estimates of covariance functions and thus genetic parameters.The objective of this study was to select model for estimation of covariance functions for body weights of Angora goats at 7 time points.Covariance functions were estimated by fitting 6 random regression models with birth year,birth month,sex,age of dam,birth type,and relative birth date as fixed effects.Random effects involved were direct and maternal additive genetic,and animal and maternal permanent environmental effects with different orders of fit.Selection of model and orders of fit were carried out by likelihood ratio test and 4 types of information criteria.The results showed that model with 6 orders of polynomial fit for direct additive genetic and animal permanent environmental effects and 4 and 5 orders for maternal genetic and permanent environmental effects,respectively,were preferable for estimation of covariance functions.Models with and without maternal effects influenced the estimates of covariance functions greatly.Maternal permanent environmental effect does not explain the variation of all permanent environments,well suggesting different sources of permanent environmental effects also has large influence on covariance function estimates.展开更多
The covariant density functional theory(CDFT)and five-dimensional collective Hamiltonian(5DCH)are used to analyze the experimental deformation parameters and moments of inertia(MoIs)of 12 triaxial nuclei as extracted ...The covariant density functional theory(CDFT)and five-dimensional collective Hamiltonian(5DCH)are used to analyze the experimental deformation parameters and moments of inertia(MoIs)of 12 triaxial nuclei as extracted by Allmond and Wood[J.M.Allmond and J.L.Wood,Phys.Lett.B 767,226(2017)].We find that the CDFT MoIs are generally smaller than the experimental values but exhibit qualitative consistency with the irrotational flow and experimental data for the relative MoIs,indicating that the intermediate axis exhibites the largest MoI.Additionally,it is found that the pairing interaction collapse could result in nuclei behaving as a rigid-body flow,as exhibited in the^(186-192)Os case.Furthermore,by incorporating enhanced CDFT MoIs(factor of f≈1.55)into the 5DCH,the experimental low-lying energy spectra and deformation parameters are reproduced successfully.Compared with both CDFT and the triaxial rotor model,the 5DCH demonstrates superior agreement with the experimental deformation parameters and low-lying energy spectra,respectively,emphasizing the importance of considering shape fluctuations.展开更多
The octupole deformation and collectivity in octupole double-magic nucleus 144Ba are investigated using the Cranking covariant density functional theory in a three-dimensional lattice space.The reduced B(E3)transition...The octupole deformation and collectivity in octupole double-magic nucleus 144Ba are investigated using the Cranking covariant density functional theory in a three-dimensional lattice space.The reduced B(E3)transition probability is implemented for the first time in semiclassical approximation based on the microscopically calculated electric octupole moments.The available data,including the I-ωrelation and electric transitional probabilities B(E2)and B(E3)are well reproduced.Furthermore,it is shown that the ground state of 144Ba exhibits axial octupole and quadrupole deformations that persist up to high spins(I≈24h).展开更多
In this study,a microscopic method for calculating the nuclear level density(NLD)based on the covariant density functional theory(CDFT)is developed.The particle-hole state density is calculated by a combinatorial meth...In this study,a microscopic method for calculating the nuclear level density(NLD)based on the covariant density functional theory(CDFT)is developed.The particle-hole state density is calculated by a combinatorial method using single-particle level schemes obtained from the CDFT,and the level densities are then obtained by considering collective effects such as vibration and rotation.Our results are compared with those of other NLD models,including phenomenological,microstatisti-cal and nonrelativistic Hartree–Fock–Bogoliubov combinatorial models.This comparison suggests that the general trends among these models are essentially the same,except for some deviations among the different NLD models.In addition,the NLDs obtained using the CDFT combinatorial method with normalization are compared with experimental data,including the observed cumulative number of levels at low excitation energies and the measured NLDs.The CDFT combinatorial method yields results that are in reasonable agreement with the existing experimental data.展开更多
Spatial optimization as part of spatial modeling has been facilitated significantly by integration with GIS techniques. However, for certain research topics, applying standard GIS techniques may create problems which ...Spatial optimization as part of spatial modeling has been facilitated significantly by integration with GIS techniques. However, for certain research topics, applying standard GIS techniques may create problems which require attention. This paper serves as a cautionary note to demonstrate two problems associated with applying GIS in spatial optimization, using a capacitated p-median facility location optimization problem as an example. The first problem involves errors in interpolating spatial variations of travel costs from using kriging, a common set of techniques for raster files. The second problem is inaccuracy in routing performed on a graph directly created from polyline shapefiles, a common vector file type. While revealing these problems, the paper also suggests remedies. Specifically, interpolation errors can be eliminated by using agent-based spatial modeling while the inaccuracy in routing can be improved through altering the graph topology by splitting the long edges of the shapefile. These issues suggest the need for caution in applying GIS in spatial optimization study.展开更多
The self-consistent tilted axis cranking covariant density functional theory based on the point-coupling interaction is applied to investigate the tilted axis rotation in ^57 Mn. The observed data for band C are repro...The self-consistent tilted axis cranking covariant density functional theory based on the point-coupling interaction is applied to investigate the tilted axis rotation in ^57 Mn. The observed data for band C are reproduced well with the assigned configuration eonfig 1. The shears mechanism for magnetic rotation is examined by investigating microscopically the orientation of angular momentum and the corresponding contributions. It is found that config 1 and config 3 correspond to a rotation of high-K character. Config 2 corresponds to a rotation of magnetic character. However, due to the presence of electromagnetic transition B(M1) and B(E2), collective rotation plays an essential role in the competition with magnetic rotation.展开更多
Spatio-temporal models are valuable tools for disease mapping and understanding the geographical distribution of diseases and temporal dynamics. Spatio-temporal models have been proven empirically to be very complex a...Spatio-temporal models are valuable tools for disease mapping and understanding the geographical distribution of diseases and temporal dynamics. Spatio-temporal models have been proven empirically to be very complex and this complexity has led many to oversimply and model the spatial and temporal dependencies independently. Unlike common practice, this study formulated a new spatio-temporal model in a Bayesian hierarchical framework that accounts for spatial and temporal dependencies jointly. The spatial and temporal dependencies were dynamically modelled via the matern exponential covariance function. The temporal aspect was captured by the parameters of the exponential with a first-order autoregressive structure. Inferences about the parameters were obtained via Markov Chain Monte Carlo (MCMC) techniques and the spatio-temporal maps were obtained by mapping stable posterior means from the specific location and time from the best model that includes the significant risk factors. The model formulated was fitted to both simulation data and Kenya meningitis incidence data from 2013 to 2019 along with two covariates;Gross County Product (GCP) and average rainfall. The study found that both average rainfall and GCP had a significant positive association with meningitis occurrence. Also, regarding geographical distribution, the spatio-temporal maps showed that meningitis is not evenly distributed across the country as some counties reported a high number of cases compared with other counties.展开更多
Based on the covariant density functional theory,by employing the core–quasiparticle coupling(CQC)model,the nuclear level density of odd-A nuclei at the saddle point is achieved.The total level density is calculated ...Based on the covariant density functional theory,by employing the core–quasiparticle coupling(CQC)model,the nuclear level density of odd-A nuclei at the saddle point is achieved.The total level density is calculated via the convolution of the intrinsic level density and the collective level density.The intrinsic level densities are obtained in the finite-temperature covariant density functional theory,which takes into account the nuclear deformation and pairing self-consistently.For saddle points on the free energy surface in the(β_(2),γ)plane,the entropy and the associated intrinsic level density are compared with those of the global minima.By introducing a quasiparticle to the two neighboring even–even core nuclei,whose properties are determined by the five-dimensional collective Hamiltonian model,the collective levels of the odd-A nuclei are obtained via the CQC model.The total level densities of the^(234-240)U agree well with the available experimental data and Hilaire’s result.Furthermore,the ratio of the total level densities at the saddle points to those at the global minima and the ratio of the total level densities to the intrinsic level densities are discussed separately.展开更多
Growth of commercial forestry is highly dependent on the availability of fast-growing planting materials. Consequently, the efficient utilization of fastgrowing plantations can greatly impact productivity. The objecti...Growth of commercial forestry is highly dependent on the availability of fast-growing planting materials. Consequently, the efficient utilization of fastgrowing plantations can greatly impact productivity. The objectives of this study were to evaluate variations in the growth potential of two clones and to estimate the average stem radial growth advantage of a fast-growing clone using data obtained from Sappi landholdings in eastern South Africa and a mixed modelling approach that permits the incorporation of covariance structure into the statistical model. During the first 2 years of growth, the stem radius of nine trees each of two clones was measured using dendrometer attached to the tree. A second-degree fractional polynomial model was chosen to show the functional relationship between stem radius and tree age. Growth of the two hybrid clones differed significantly. The Eucalyptus grandis×Eucalyptus urophylla clone grew faster than the E. grandis×camaldulensis clone, indicating better genetic potential for rapid growth and yield. This study can be considered as starting point to further compare the potential for rapid growth of several hybrid clones using the longitudinal data modelling approach.展开更多
Research of the practical 4-D integrated geodesy(IG) and strain analysis is presented in this paper.The practical model and basic observation equation are established by using IG and dynamic adjustment.Furthermore,the...Research of the practical 4-D integrated geodesy(IG) and strain analysis is presented in this paper.The practical model and basic observation equation are established by using IG and dynamic adjustment.Furthermore,the observation equations about gravity vector,zenith distance,azimuth angle,difference are derived and determination of local gravity field covariance solved.The 3-D strain formular is derived and the strain parameters calculated from it.The improvement of the OPERA software of Landan and Hem etc,FRG has been done to get a new software in Fortran Language which implements in MASSCOMP computer.Using the software,the integrated adjustment of two term observation data of triangle chain, triangle net,gravity,level,astronomic observation and strain analysis are established.The result is satisfactory.展开更多
We calculate the three-dimensional potential energy surface(PES)for the fission of the compound nucleus^(236)U using covariant density functional theory with constraints on the axial quadrupole and octupole deformatio...We calculate the three-dimensional potential energy surface(PES)for the fission of the compound nucleus^(236)U using covariant density functional theory with constraints on the axial quadrupole and octupole deformations(β_(2),β_(3))coexistence of the elongated and compact fission modes is predicted for comes shallow across a large range of quadrupole and octupole deformations for small scission line in the(β_(2),β_(3))plane extends to a shallow band,leading to fluctuations of several to ten MeV in the estimated total kinetic energies and of several to approximately ten nucleons in the fragment masses.展开更多
Magicity,or shell closure,plays an important role in our understanding of complex nuclear phenomena.In this work,we employ one of the state-of-the-art density functional theories,the deformed relativistic Hartree-Bogo...Magicity,or shell closure,plays an important role in our understanding of complex nuclear phenomena.In this work,we employ one of the state-of-the-art density functional theories,the deformed relativistic Hartree-Bogoliubov theory in continuum(DRHBc)with the density functional PC-PK1,to investigate the evolution of the N=20,28,50 shell closures in the 20≤Z≤30 region.We show how these three conventional shell closures evolve from the proton drip line to the neutron drip line by studying the charge radii,two-neutron separation energies,two-neutron gaps,quadrupole deformations,and single-particle levels.In particular,we find that in the 21≤Z≤27 region,the N=50 shell closure disappears or becomes quenched,mainly due to the deformation effects.Similarly,both experimental data and theoretical predictions indicate that the N=28 shell closure disappears in the Mn isotopic chain,mainly due to the deformation effects.The DRHBc theory predicts the existence of the N=20 shell closure in the Ca,Sc,and Ti isotopic chains,but the existing data for the Ti isotopes suggest the contrary,and therefore further research is needed.展开更多
The α-cluster structures for 12^C and 16^O are investigated in the framework of the covariant density functional theory, where the pairing correlation is treated with a particle number conserving shell-model-like app...The α-cluster structures for 12^C and 16^O are investigated in the framework of the covariant density functional theory, where the pairing correlation is treated with a particle number conserving shell-model-like approach. The ground states of 12^C and 160 have been calculated and the density distributions demonstrate an equilateral triangle 3α clustering for 12^C and a regular tetrahedron 4α clustering for 16^O The existence of linear nα chain structure of both 12^C and 16^O is revealed at high quadrupole deformation.展开更多
Nuclear magnetic moment is an important physical variable and serves as a useful tool for the stringent test of nuclear models. For the past decades, the covariant density functional theory and its extension have been...Nuclear magnetic moment is an important physical variable and serves as a useful tool for the stringent test of nuclear models. For the past decades, the covariant density functional theory and its extension have been proved to be successful in describing the nuclear ground-states and excited states properties. However, a long-standing problem is its failure to predict magnetic moments. This article reviews the recent progress in the description of the nuclear magnetic moments within the covariant density functional theory. In particular, the magnetic moments of spherical odd-A nuclei with doubly closed shell core plus or minus one nucleon and deformed odd-A nuclei.展开更多
We report a comprehensive study on low-lying parity doublet states of ^(224)Rn by mixing both quadrupole-and octupoleshaped configurations in multireference covariant density functional theory,in which broken symmetri...We report a comprehensive study on low-lying parity doublet states of ^(224)Rn by mixing both quadrupole-and octupoleshaped configurations in multireference covariant density functional theory,in which broken symmetries in configurations are restored using projection techniques.The low-lying energy spectrum is reasonably reproduced when the shape fluctuations in both the quadrupole and octupole shapes are considered.Electric octupole transition strength in ^(224)Rn is found to be B(E3;3_(1)^(-)→0_(1)^(+))=43 W.u.,comparable to that in ^(224)Ra,whose data are 42(3)W.u..Our results indicate that ^(224)Rn shares similar low-energy structure with ^(224)Ra despite the excitation energy of first 3^(−)state of the former nucleus is higher than that of the latter.This study suggests ^(224)Rn is a candidate for the search for permanent electric dipole moment.展开更多
The effects of pairing correlation in Yb isotopes are investigated by covariant density functional theory with pairing correlations and blocking effects treated exactly by a shell model like approach (SLAP). Experim...The effects of pairing correlation in Yb isotopes are investigated by covariant density functional theory with pairing correlations and blocking effects treated exactly by a shell model like approach (SLAP). Experimental one- and two-neutron separation energies are reproduced quite well. The traditional BCS calculations always give larger pairing energies than those given by SLAP calculations, particularly for the nuclei near the proton and neutron drip lines. This may be caused because many of the single particle orbits above the Fermi surface are involved in the BCS calculations, but many of them are excluded in the SLAP calculations.展开更多
The ground-state properties,especially the magnetic moments,of odd-A aluminum isotopes have been studied and well reproduced in covariant density functional theory after considering the rotational coupling.The present...The ground-state properties,especially the magnetic moments,of odd-A aluminum isotopes have been studied and well reproduced in covariant density functional theory after considering the rotational coupling.The present calculations support the rotational structure in the ground state of odd-A aluminum isotopes,i.e.the ground state 5/2^+is built on the intrinsic state 5/2[202].In addition,the contribution from the time-odd fields is also discussed.展开更多
Center-of-mass(c.m.) correction and rotational correction in even-even Ge isotopes are systematically investigated within the triaxially deformed relativistic Hartree-Bogoliubov model using the PC-PK1 force. The she...Center-of-mass(c.m.) correction and rotational correction in even-even Ge isotopes are systematically investigated within the triaxially deformed relativistic Hartree-Bogoliubov model using the PC-PK1 force. The shell effect and deformation effect on the microscopic c.m. correction and rotational correction are discussed, and the importance of both corrections on reproducing the binding energy is demonstrated.展开更多
Nuclear masses of even-even nuclei with the proton number 8≤Z≤50(O to Sn isotopes)from the proton drip line to neutron drip line are investigated using the triaxial relativistic Hartree-Bogoliubov theory with the re...Nuclear masses of even-even nuclei with the proton number 8≤Z≤50(O to Sn isotopes)from the proton drip line to neutron drip line are investigated using the triaxial relativistic Hartree-Bogoliubov theory with the relativistic density functional PC-PK1.Further,the dynamical correlation energies(DCEs)associated with the rotational motion and quadrupole-shaped vibrational motion are taken into account by the five-dimensional collective Hamiltonian(5DCH)method.The root-mean-square deviation with respect to the experimental masses reduces from 2.50 to 1.59 MeV after the consideration of DCEs.The inclusion of DCEs has little influence on the position of drip lines,and the predicted numbers of bound even-even nuclei between proton and neutron drip lines from O to Sn isotopes are 569 and 564 with and without DCEs,respectively.展开更多
Estimation of the extreme conditional quantiles with functional covariate is an important problem in quantile regression. The existing methods, however, are only applicable for heavy-tailed distributions with a positi...Estimation of the extreme conditional quantiles with functional covariate is an important problem in quantile regression. The existing methods, however, are only applicable for heavy-tailed distributions with a positive conditional tail index. In this paper, we propose a new framework for estimating the extreme conditional quantiles with functional covariate that combines the nonparametric modeling techniques and extreme value theory systematically. Our proposed method is widely applicable, no matter whether the conditional distribution of a response variable Y given a vector of functional covariates X is short, light or heavy-tailed. It thus enriches the existing literature.展开更多
基金funded by the Young Academic Leaders Supporting Project in Institutions of Higher Education of Shanxi Province,China
文摘Covariance functions have been proposed as an alternative to model longitudinal data in animal breeding because of their various merits in comparison to the classical analytical methods.In practical estimation,different models and polynomial orders fitted can influence the estimates of covariance functions and thus genetic parameters.The objective of this study was to select model for estimation of covariance functions for body weights of Angora goats at 7 time points.Covariance functions were estimated by fitting 6 random regression models with birth year,birth month,sex,age of dam,birth type,and relative birth date as fixed effects.Random effects involved were direct and maternal additive genetic,and animal and maternal permanent environmental effects with different orders of fit.Selection of model and orders of fit were carried out by likelihood ratio test and 4 types of information criteria.The results showed that model with 6 orders of polynomial fit for direct additive genetic and animal permanent environmental effects and 4 and 5 orders for maternal genetic and permanent environmental effects,respectively,were preferable for estimation of covariance functions.Models with and without maternal effects influenced the estimates of covariance functions greatly.Maternal permanent environmental effect does not explain the variation of all permanent environments,well suggesting different sources of permanent environmental effects also has large influence on covariance function estimates.
基金supported by the National Natural Science Foundation of China(No.12205103)。
文摘The covariant density functional theory(CDFT)and five-dimensional collective Hamiltonian(5DCH)are used to analyze the experimental deformation parameters and moments of inertia(MoIs)of 12 triaxial nuclei as extracted by Allmond and Wood[J.M.Allmond and J.L.Wood,Phys.Lett.B 767,226(2017)].We find that the CDFT MoIs are generally smaller than the experimental values but exhibit qualitative consistency with the irrotational flow and experimental data for the relative MoIs,indicating that the intermediate axis exhibites the largest MoI.Additionally,it is found that the pairing interaction collapse could result in nuclei behaving as a rigid-body flow,as exhibited in the^(186-192)Os case.Furthermore,by incorporating enhanced CDFT MoIs(factor of f≈1.55)into the 5DCH,the experimental low-lying energy spectra and deformation parameters are reproduced successfully.Compared with both CDFT and the triaxial rotor model,the 5DCH demonstrates superior agreement with the experimental deformation parameters and low-lying energy spectra,respectively,emphasizing the importance of considering shape fluctuations.
基金supported by the National Natural Science Foundation of China(NSFC)(No.12205097)the Fundamental Research Funds for the Central Universities(No.2024MS071)。
文摘The octupole deformation and collectivity in octupole double-magic nucleus 144Ba are investigated using the Cranking covariant density functional theory in a three-dimensional lattice space.The reduced B(E3)transition probability is implemented for the first time in semiclassical approximation based on the microscopically calculated electric octupole moments.The available data,including the I-ωrelation and electric transitional probabilities B(E2)and B(E3)are well reproduced.Furthermore,it is shown that the ground state of 144Ba exhibits axial octupole and quadrupole deformations that persist up to high spins(I≈24h).
基金supported by the Natural Science Foundation of Jilin Province(No.20220101017JC)National Natural Science Foundation of China(No.11675063)Key Laboratory of Nuclear Data Foundation(JCKY2020201C157).
文摘In this study,a microscopic method for calculating the nuclear level density(NLD)based on the covariant density functional theory(CDFT)is developed.The particle-hole state density is calculated by a combinatorial method using single-particle level schemes obtained from the CDFT,and the level densities are then obtained by considering collective effects such as vibration and rotation.Our results are compared with those of other NLD models,including phenomenological,microstatisti-cal and nonrelativistic Hartree–Fock–Bogoliubov combinatorial models.This comparison suggests that the general trends among these models are essentially the same,except for some deviations among the different NLD models.In addition,the NLDs obtained using the CDFT combinatorial method with normalization are compared with experimental data,including the observed cumulative number of levels at low excitation energies and the measured NLDs.The CDFT combinatorial method yields results that are in reasonable agreement with the existing experimental data.
文摘Spatial optimization as part of spatial modeling has been facilitated significantly by integration with GIS techniques. However, for certain research topics, applying standard GIS techniques may create problems which require attention. This paper serves as a cautionary note to demonstrate two problems associated with applying GIS in spatial optimization, using a capacitated p-median facility location optimization problem as an example. The first problem involves errors in interpolating spatial variations of travel costs from using kriging, a common set of techniques for raster files. The second problem is inaccuracy in routing performed on a graph directly created from polyline shapefiles, a common vector file type. While revealing these problems, the paper also suggests remedies. Specifically, interpolation errors can be eliminated by using agent-based spatial modeling while the inaccuracy in routing can be improved through altering the graph topology by splitting the long edges of the shapefile. These issues suggest the need for caution in applying GIS in spatial optimization study.
基金Supported by the National Natural Science Foundation of China under Grant No 11461141002the Open Project Program of State Key Laboratory of Theoretical Physics of Institute of Theoretical Physics of Chinese Academy of Sciences under Grant No Y4KF041CJ1
文摘The self-consistent tilted axis cranking covariant density functional theory based on the point-coupling interaction is applied to investigate the tilted axis rotation in ^57 Mn. The observed data for band C are reproduced well with the assigned configuration eonfig 1. The shears mechanism for magnetic rotation is examined by investigating microscopically the orientation of angular momentum and the corresponding contributions. It is found that config 1 and config 3 correspond to a rotation of high-K character. Config 2 corresponds to a rotation of magnetic character. However, due to the presence of electromagnetic transition B(M1) and B(E2), collective rotation plays an essential role in the competition with magnetic rotation.
文摘Spatio-temporal models are valuable tools for disease mapping and understanding the geographical distribution of diseases and temporal dynamics. Spatio-temporal models have been proven empirically to be very complex and this complexity has led many to oversimply and model the spatial and temporal dependencies independently. Unlike common practice, this study formulated a new spatio-temporal model in a Bayesian hierarchical framework that accounts for spatial and temporal dependencies jointly. The spatial and temporal dependencies were dynamically modelled via the matern exponential covariance function. The temporal aspect was captured by the parameters of the exponential with a first-order autoregressive structure. Inferences about the parameters were obtained via Markov Chain Monte Carlo (MCMC) techniques and the spatio-temporal maps were obtained by mapping stable posterior means from the specific location and time from the best model that includes the significant risk factors. The model formulated was fitted to both simulation data and Kenya meningitis incidence data from 2013 to 2019 along with two covariates;Gross County Product (GCP) and average rainfall. The study found that both average rainfall and GCP had a significant positive association with meningitis occurrence. Also, regarding geographical distribution, the spatio-temporal maps showed that meningitis is not evenly distributed across the country as some counties reported a high number of cases compared with other counties.
基金supported by the China Institute of Atomic Energy(No.401Y-FW-GKXJ-21-1496)the Natural Science Foundation of Henan Province(No.202300410480 and 202300410479)+1 种基金the Open Project of Guangxi Key Laboratory of Nuclear Physics and Nuclear Technology(No.NLK2021-01)the National Natural Science Foundation of China(No.U2032141).
文摘Based on the covariant density functional theory,by employing the core–quasiparticle coupling(CQC)model,the nuclear level density of odd-A nuclei at the saddle point is achieved.The total level density is calculated via the convolution of the intrinsic level density and the collective level density.The intrinsic level densities are obtained in the finite-temperature covariant density functional theory,which takes into account the nuclear deformation and pairing self-consistently.For saddle points on the free energy surface in the(β_(2),γ)plane,the entropy and the associated intrinsic level density are compared with those of the global minima.By introducing a quasiparticle to the two neighboring even–even core nuclei,whose properties are determined by the five-dimensional collective Hamiltonian model,the collective levels of the odd-A nuclei are obtained via the CQC model.The total level densities of the^(234-240)U agree well with the available experimental data and Hilaire’s result.Furthermore,the ratio of the total level densities at the saddle points to those at the global minima and the ratio of the total level densities to the intrinsic level densities are discussed separately.
文摘Growth of commercial forestry is highly dependent on the availability of fast-growing planting materials. Consequently, the efficient utilization of fastgrowing plantations can greatly impact productivity. The objectives of this study were to evaluate variations in the growth potential of two clones and to estimate the average stem radial growth advantage of a fast-growing clone using data obtained from Sappi landholdings in eastern South Africa and a mixed modelling approach that permits the incorporation of covariance structure into the statistical model. During the first 2 years of growth, the stem radius of nine trees each of two clones was measured using dendrometer attached to the tree. A second-degree fractional polynomial model was chosen to show the functional relationship between stem radius and tree age. Growth of the two hybrid clones differed significantly. The Eucalyptus grandis×Eucalyptus urophylla clone grew faster than the E. grandis×camaldulensis clone, indicating better genetic potential for rapid growth and yield. This study can be considered as starting point to further compare the potential for rapid growth of several hybrid clones using the longitudinal data modelling approach.
文摘Research of the practical 4-D integrated geodesy(IG) and strain analysis is presented in this paper.The practical model and basic observation equation are established by using IG and dynamic adjustment.Furthermore,the observation equations about gravity vector,zenith distance,azimuth angle,difference are derived and determination of local gravity field covariance solved.The 3-D strain formular is derived and the strain parameters calculated from it.The improvement of the OPERA software of Landan and Hem etc,FRG has been done to get a new software in Fortran Language which implements in MASSCOMP computer.Using the software,the integrated adjustment of two term observation data of triangle chain, triangle net,gravity,level,astronomic observation and strain analysis are established.The result is satisfactory.
基金Supported by the National Natural Science Foundation of China(11875225,11790325,11790320)the Special Fund from the China Nuclear Data Center+1 种基金the Fundamental Research Funds for the Central Universitiesthe Fok Ying-Tong Education Foundation。
文摘We calculate the three-dimensional potential energy surface(PES)for the fission of the compound nucleus^(236)U using covariant density functional theory with constraints on the axial quadrupole and octupole deformations(β_(2),β_(3))coexistence of the elongated and compact fission modes is predicted for comes shallow across a large range of quadrupole and octupole deformations for small scission line in the(β_(2),β_(3))plane extends to a shallow band,leading to fluctuations of several to ten MeV in the estimated total kinetic energies and of several to approximately ten nucleons in the fragment masses.
基金Supported in part by the National Natural Science Foundation of China(NSFC)(11975041,11961141004)Xiang-Xiang Sun is supported in part by NSFC(12205308)the Deutsche Forschungsgemeinschaft(DFG)and NSFC through the funds provided to the Sino-German Collaborative Research Center TRR110"Symmetries and the Emergence of Structure in QCD"(NSFC Grant No.12070131001,DFG Project-ID 196253076)。
文摘Magicity,or shell closure,plays an important role in our understanding of complex nuclear phenomena.In this work,we employ one of the state-of-the-art density functional theories,the deformed relativistic Hartree-Bogoliubov theory in continuum(DRHBc)with the density functional PC-PK1,to investigate the evolution of the N=20,28,50 shell closures in the 20≤Z≤30 region.We show how these three conventional shell closures evolve from the proton drip line to the neutron drip line by studying the charge radii,two-neutron separation energies,two-neutron gaps,quadrupole deformations,and single-particle levels.In particular,we find that in the 21≤Z≤27 region,the N=50 shell closure disappears or becomes quenched,mainly due to the deformation effects.Similarly,both experimental data and theoretical predictions indicate that the N=28 shell closure disappears in the Mn isotopic chain,mainly due to the deformation effects.The DRHBc theory predicts the existence of the N=20 shell closure in the Ca,Sc,and Ti isotopic chains,but the existing data for the Ti isotopes suggest the contrary,and therefore further research is needed.
基金Supported by Major State Basic Research Development (973) Program (2007CB815000)NSFC (11175002,11105005)Research Fund for the Doctoral Program of Higher Education (20110001110087)
文摘The α-cluster structures for 12^C and 16^O are investigated in the framework of the covariant density functional theory, where the pairing correlation is treated with a particle number conserving shell-model-like approach. The ground states of 12^C and 160 have been calculated and the density distributions demonstrate an equilateral triangle 3α clustering for 12^C and a regular tetrahedron 4α clustering for 16^O The existence of linear nα chain structure of both 12^C and 16^O is revealed at high quadrupole deformation.
文摘Nuclear magnetic moment is an important physical variable and serves as a useful tool for the stringent test of nuclear models. For the past decades, the covariant density functional theory and its extension have been proved to be successful in describing the nuclear ground-states and excited states properties. However, a long-standing problem is its failure to predict magnetic moments. This article reviews the recent progress in the description of the nuclear magnetic moments within the covariant density functional theory. In particular, the magnetic moments of spherical odd-A nuclei with doubly closed shell core plus or minus one nucleon and deformed odd-A nuclei.
基金supported by the National Natural Science Foundation of China(Nos.12465020,12005802,12005109)the Jiangxi Provincial Natural Science Foundation(20202BAB211008)+3 种基金he Jiangxi Normal University(JXNU)Initial Research Foundation Grant to Doctor(12019504)the Young Talents Program under JXNU(12019870)the PhD Foundation of Chongqing Normal University(No.23XLB010)the Science and Technology Research Program of Chongqing Municipal Education Commission(No.KJQN202300509).
文摘We report a comprehensive study on low-lying parity doublet states of ^(224)Rn by mixing both quadrupole-and octupoleshaped configurations in multireference covariant density functional theory,in which broken symmetries in configurations are restored using projection techniques.The low-lying energy spectrum is reasonably reproduced when the shape fluctuations in both the quadrupole and octupole shapes are considered.Electric octupole transition strength in ^(224)Rn is found to be B(E3;3_(1)^(-)→0_(1)^(+))=43 W.u.,comparable to that in ^(224)Ra,whose data are 42(3)W.u..Our results indicate that ^(224)Rn shares similar low-energy structure with ^(224)Ra despite the excitation energy of first 3^(−)state of the former nucleus is higher than that of the latter.This study suggests ^(224)Rn is a candidate for the search for permanent electric dipole moment.
基金Supported by"the Fundamental Research Funds for the Central Universities"(JUSRP1035)NSFC(11305077,11335002)
文摘The effects of pairing correlation in Yb isotopes are investigated by covariant density functional theory with pairing correlations and blocking effects treated exactly by a shell model like approach (SLAP). Experimental one- and two-neutron separation energies are reproduced quite well. The traditional BCS calculations always give larger pairing energies than those given by SLAP calculations, particularly for the nuclei near the proton and neutron drip lines. This may be caused because many of the single particle orbits above the Fermi surface are involved in the BCS calculations, but many of them are excluded in the SLAP calculations.
基金supported by the National Natural Science Foundation of China under Grants No.11675063,No.11205068,No.11475072,and No.11847310。
文摘The ground-state properties,especially the magnetic moments,of odd-A aluminum isotopes have been studied and well reproduced in covariant density functional theory after considering the rotational coupling.The present calculations support the rotational structure in the ground state of odd-A aluminum isotopes,i.e.the ground state 5/2^+is built on the intrinsic state 5/2[202].In addition,the contribution from the time-odd fields is also discussed.
基金Supported by Major State Basic Research Development(973)(201310635059)NSFC(11175002,11105110,11475140)Research Fund for the Doctoral Program of Higher Education(20110001110087)
文摘Center-of-mass(c.m.) correction and rotational correction in even-even Ge isotopes are systematically investigated within the triaxially deformed relativistic Hartree-Bogoliubov model using the PC-PK1 force. The shell effect and deformation effect on the microscopic c.m. correction and rotational correction are discussed, and the importance of both corrections on reproducing the binding energy is demonstrated.
基金Supported by the National Key R&D Program of China(2018YFA0404400,2017YFE0116700)the National Natural Science Foundation of China(11621131001,11875075,11935003,11975031)
文摘Nuclear masses of even-even nuclei with the proton number 8≤Z≤50(O to Sn isotopes)from the proton drip line to neutron drip line are investigated using the triaxial relativistic Hartree-Bogoliubov theory with the relativistic density functional PC-PK1.Further,the dynamical correlation energies(DCEs)associated with the rotational motion and quadrupole-shaped vibrational motion are taken into account by the five-dimensional collective Hamiltonian(5DCH)method.The root-mean-square deviation with respect to the experimental masses reduces from 2.50 to 1.59 MeV after the consideration of DCEs.The inclusion of DCEs has little influence on the position of drip lines,and the predicted numbers of bound even-even nuclei between proton and neutron drip lines from O to Sn isotopes are 569 and 564 with and without DCEs,respectively.
基金Supported by the National Natural Science Foundation of China(Grant No.11671338)the Hong Kong Baptist University(Grant Nos.FRG1/16-17/018 and FRG2/16-17/074)
文摘Estimation of the extreme conditional quantiles with functional covariate is an important problem in quantile regression. The existing methods, however, are only applicable for heavy-tailed distributions with a positive conditional tail index. In this paper, we propose a new framework for estimating the extreme conditional quantiles with functional covariate that combines the nonparametric modeling techniques and extreme value theory systematically. Our proposed method is widely applicable, no matter whether the conditional distribution of a response variable Y given a vector of functional covariates X is short, light or heavy-tailed. It thus enriches the existing literature.