The virtual power plant(VPP)is a new and efficient solution to manage the integration of distributed energy resources(DERs)into the power system.Considering the unpredictable output of stochastic DERs,conventional sch...The virtual power plant(VPP)is a new and efficient solution to manage the integration of distributed energy resources(DERs)into the power system.Considering the unpredictable output of stochastic DERs,conventional scheduling strategies always set plenty of reserve aside in order to guarantee the reliability of operation,which is too conservative to gain more benefits.Thus,it is significant to research the scheduling strategies of VPPs,which can coordinate the risks and benefits of VPP operation.This paper presents a fuzzy chance-constrained scheduling model which utilizes fuzzy variables to describe uncertain features of distributed generators(DGs).Based on credibility theory,the concept of the confidence level is introduced to quantify the feasibility of the conditions,which reflects the risk tolerance of VPP operation.By transforming the fuzzy chance constraints into their equivalent forms,traditional optimization algorithms can be used to solve the optimal scheduling problem.An IEEE 6-node system is employed to prove the feasibility of the proposed scheduling model.Case studies demonstrate that the fuzzy chance strategy is superior to conservative scheduling strategies in realizing the right balance between risks and benefits.展开更多
An industrial park is one of the typical en ergy con sumption schemes in power systems owing to the heavy in dustrial loads and their abilities to resp ond to electricity price cha nges.Therefore,en ergy in tegrati on...An industrial park is one of the typical en ergy con sumption schemes in power systems owing to the heavy in dustrial loads and their abilities to resp ond to electricity price cha nges.Therefore,en ergy in tegrati on in the industrial sector is significant.Accordingly,the concept of industrial virtual power plant(IVPP)has been proposed to deal with such problems.This study demonstrates an IVPP model to man age resources in an eco-i ndustrial park,including en ergy storage systems,dema nd resp onse(DR)resources,and distributed energies.In addition,fuzzy theory is used to cha nge the deterministic system constraints to fuzzy parameters,considering the uncertainty of renewable energy,and fuzzy chance constraints are then set based on the credibility theory.By maximizi ng the daily ben efits of the IVPP owners in day-ahead markets,DR and energy storage systems can be scheduled economically.Therefore,the energy between the grid and IVPP can flow in both directions:the surplus renewable electricity of IVPP can be sold in the market;when the electricity gen erated in side IVPP is not enough for its use,IVPP can also purchase power through the market.Case studies based on three win d-level scenarios dem on strate the efficie nt syn ergies betwee n IVPP resources.The validatio n results indicate that IVPP can optimize the supply and demand resources in in dustrial parks,thereby decarbonizing the power systems.展开更多
A new type of vehicle routing problem (VRP), multiple vehicle routing problem integrated reverse logistics (MVRPRL), is studied. In this problem, there is delivery or pickup (or both) and uncertain features in t...A new type of vehicle routing problem (VRP), multiple vehicle routing problem integrated reverse logistics (MVRPRL), is studied. In this problem, there is delivery or pickup (or both) and uncertain features in the demands of the clients. The deliveries of every client as uncertain parameters are expressed as triangular fuzzy numbers. In order to describe MVRPRL, a multi-objective fuzzy programming model with credibility measure theory is constructed. Then the simulationbased tabu search algorithm combining inter-route and intra-route neighborhoods and embedded restarts are designed to solve it. Computational results show that the tabu search algorithm developed is superior to sweep algorithms and that compared with handling each on separate routes, the transportation costs can be reduced by 43% through combining pickups with deliveries.展开更多
基金supported by the National Natural Science Foundation of China(No.51577115).
文摘The virtual power plant(VPP)is a new and efficient solution to manage the integration of distributed energy resources(DERs)into the power system.Considering the unpredictable output of stochastic DERs,conventional scheduling strategies always set plenty of reserve aside in order to guarantee the reliability of operation,which is too conservative to gain more benefits.Thus,it is significant to research the scheduling strategies of VPPs,which can coordinate the risks and benefits of VPP operation.This paper presents a fuzzy chance-constrained scheduling model which utilizes fuzzy variables to describe uncertain features of distributed generators(DGs).Based on credibility theory,the concept of the confidence level is introduced to quantify the feasibility of the conditions,which reflects the risk tolerance of VPP operation.By transforming the fuzzy chance constraints into their equivalent forms,traditional optimization algorithms can be used to solve the optimal scheduling problem.An IEEE 6-node system is employed to prove the feasibility of the proposed scheduling model.Case studies demonstrate that the fuzzy chance strategy is superior to conservative scheduling strategies in realizing the right balance between risks and benefits.
基金Department of Science and Technology of Guangdong Province(Project 2019B0909011001).
文摘An industrial park is one of the typical en ergy con sumption schemes in power systems owing to the heavy in dustrial loads and their abilities to resp ond to electricity price cha nges.Therefore,en ergy in tegrati on in the industrial sector is significant.Accordingly,the concept of industrial virtual power plant(IVPP)has been proposed to deal with such problems.This study demonstrates an IVPP model to man age resources in an eco-i ndustrial park,including en ergy storage systems,dema nd resp onse(DR)resources,and distributed energies.In addition,fuzzy theory is used to cha nge the deterministic system constraints to fuzzy parameters,considering the uncertainty of renewable energy,and fuzzy chance constraints are then set based on the credibility theory.By maximizi ng the daily ben efits of the IVPP owners in day-ahead markets,DR and energy storage systems can be scheduled economically.Therefore,the energy between the grid and IVPP can flow in both directions:the surplus renewable electricity of IVPP can be sold in the market;when the electricity gen erated in side IVPP is not enough for its use,IVPP can also purchase power through the market.Case studies based on three win d-level scenarios dem on strate the efficie nt syn ergies betwee n IVPP resources.The validatio n results indicate that IVPP can optimize the supply and demand resources in in dustrial parks,thereby decarbonizing the power systems.
基金The National Natural Science Foundation of China(No.70772059)Youth Science and Technology Innovation Foundation of Nanjing Agriculture University(No.KJ06029)
文摘A new type of vehicle routing problem (VRP), multiple vehicle routing problem integrated reverse logistics (MVRPRL), is studied. In this problem, there is delivery or pickup (or both) and uncertain features in the demands of the clients. The deliveries of every client as uncertain parameters are expressed as triangular fuzzy numbers. In order to describe MVRPRL, a multi-objective fuzzy programming model with credibility measure theory is constructed. Then the simulationbased tabu search algorithm combining inter-route and intra-route neighborhoods and embedded restarts are designed to solve it. Computational results show that the tabu search algorithm developed is superior to sweep algorithms and that compared with handling each on separate routes, the transportation costs can be reduced by 43% through combining pickups with deliveries.