In this paper, we study the multiplicity results of positive solutions for a class of quasi-linear elliptic equations involving critical Sobolev exponent. With the help of Nehari manifold and a mini-max principle, we ...In this paper, we study the multiplicity results of positive solutions for a class of quasi-linear elliptic equations involving critical Sobolev exponent. With the help of Nehari manifold and a mini-max principle, we prove that problem admits at least two or three positive solutions under different conditions.展开更多
This paper deals with the Neumann problem for a class of semilinear elliptic equations -△u + u =|u|2*-2u+ μ|u|q-2u in Ω, au/ar= |u|(?)*-2u on aΩ, where 2 = 2N/N-2, s=2(N-1)/N-2, 1 <q<2,N(?)3,μ>γ denotes...This paper deals with the Neumann problem for a class of semilinear elliptic equations -△u + u =|u|2*-2u+ μ|u|q-2u in Ω, au/ar= |u|(?)*-2u on aΩ, where 2 = 2N/N-2, s=2(N-1)/N-2, 1 <q<2,N(?)3,μ>γ denotes the unit outward normal to boundary aΩ. By vaxiational method and dual fountain theorem, the existence of infinitely many solutions with negative energy is proved.展开更多
In this article,we study the following fractional(p,q)-Laplacian equations involving the critical Sobolev exponent:(Pμ,λ){(−Δ)s 1 p u+(−Δ)s 2 q u=μ|u|q−2 u+λ|u|p−2 u+|u|p∗s 1−2 u,u=0,inΩ,in R N∖Ω,whereΩ⊂R N i...In this article,we study the following fractional(p,q)-Laplacian equations involving the critical Sobolev exponent:(Pμ,λ){(−Δ)s 1 p u+(−Δ)s 2 q u=μ|u|q−2 u+λ|u|p−2 u+|u|p∗s 1−2 u,u=0,inΩ,in R N∖Ω,whereΩ⊂R N is a smooth and bounded domain,λ,μ>0,0<s 2<s 1<1,1<q<p<Ns 1.We establish the existence of a non-negative nontrivial weak solution to(Pμ,λ)by using the Mountain Pass Theorem.The lack of compactness associated with problems involving critical Sobolev exponents is overcome by working with certain asymptotic estimates for minimizers.展开更多
In this paper, it is proved that the following boundary value problem [GRAPHICS] admits infinitely many solution for 0 < lambda < lambda-1, n greater-than-or-equal-to 5 and for ball regions OMEGA = B(R)(0).
Abstract: Let Ω belong to R^N be a smooth bounded domain such that 0 ∈ Ω, N ≥ 5, 2^* :2N/N-4 is the critical Sobolev exponent, and f(x) is a given function. By using the variational methods, the paper proves ...Abstract: Let Ω belong to R^N be a smooth bounded domain such that 0 ∈ Ω, N ≥ 5, 2^* :2N/N-4 is the critical Sobolev exponent, and f(x) is a given function. By using the variational methods, the paper proves the existence of solutions for the singular critical in the homogeneous problem △^u-μ u/{x}^4=|μ|^2*-2u+f(x) with Dirichlet boundary condition on 偏dΩ under some assumptions on f(x) and μ.展开更多
In this paper we consider the existence and asymptotic estimates of global solutions and finite time blowup of local solutions of quasilinear parabolic equation with critical Sobolev exponent and with lower energy ini...In this paper we consider the existence and asymptotic estimates of global solutions and finite time blowup of local solutions of quasilinear parabolic equation with critical Sobolev exponent and with lower energy initial value; we also describe the asymptotic behavior of global solutions with high energy initial value.展开更多
In this paper,by an approximating argument,we obtain two disjoint and infinite sets of solutions for the following elliptic equation with critical Hardy-Sobolev exponents■whereΩis a smooth bounded domain in RN with ...In this paper,by an approximating argument,we obtain two disjoint and infinite sets of solutions for the following elliptic equation with critical Hardy-Sobolev exponents■whereΩis a smooth bounded domain in RN with 0∈?Ωand all the principle curvatures of?Ωat 0 are negative,a∈C1(Ω,R*+),μ>0,0<s<2,1<q<2 and N>2(q+1)/(q-1).By2*:=2N/(N-2)and 2*(s):(2(N-s))/(N-2)we denote the critical Sobolev exponent and Hardy-Sobolev exponent,respectively.展开更多
This paper concerns the existence and multiplicity of solutions for some semilinear elliptic equations with critical Sobolev exponent, Hardy term and the sublinear nonlinearity at origin. By using Ekeland,s variationa...This paper concerns the existence and multiplicity of solutions for some semilinear elliptic equations with critical Sobolev exponent, Hardy term and the sublinear nonlinearity at origin. By using Ekeland,s variational principle, we conclude the existence of nontrivial solution for this problem, the Clark's critical point theorem is used to prove the existence of infinitely many solutions for this problem with odd nonlinearity.展开更多
The authors consider the problem:-div(p△u)=u^q-1+λu,u〉0 in Ωmu=0 on эΩ,where Ω is a bounded domain in R^n,n≥3,p:^-Ω→R is a given positive weight such that p∈H^1(Ω)∩С(^-Ω),λ is a real constant ...The authors consider the problem:-div(p△u)=u^q-1+λu,u〉0 in Ωmu=0 on эΩ,where Ω is a bounded domain in R^n,n≥3,p:^-Ω→R is a given positive weight such that p∈H^1(Ω)∩С(^-Ω),λ is a real constant and q=2n/n-2,and stydu the effect of the behavior of p near its minima and the impact of the geometry of domain on the existence of solutions for the above problem.展开更多
In this paper, we discuss the problem of solving a class of nonhomogeneous semilinear elliptic system with critical Sobolev exponent changing into one of critical points of some given functional. Using Nehari techniqu...In this paper, we discuss the problem of solving a class of nonhomogeneous semilinear elliptic system with critical Sobolev exponent changing into one of critical points of some given functional. Using Nehari technique, the given functional attain its minimum by adding suitable constraints, and the minimal point becomes a critical point of the original functional after eliminating the added constraints, thus the solution of the nonhomogeneous elliptic system is obtained.展开更多
In this paper, we study the existence result for degenerate elliptic equations with singular potential and critical cone sobolev exponents on singular manifolds. With the help of the variational method and the theory ...In this paper, we study the existence result for degenerate elliptic equations with singular potential and critical cone sobolev exponents on singular manifolds. With the help of the variational method and the theory of genus, we obtain several results under different conditions.展开更多
This paper is concerned with the following nonlinear Dirichlet problem:where △pu = div(| ▽u|p- 2 ▽u) is the p-Laplacian of u, Ω is a bounded domain in Rn (n > 3), 1 < p < n, p = -pn/n-p is the critical ex...This paper is concerned with the following nonlinear Dirichlet problem:where △pu = div(| ▽u|p- 2 ▽u) is the p-Laplacian of u, Ω is a bounded domain in Rn (n > 3), 1 < p < n, p = -pn/n-p is the critical exponent for the Sobolev imbedding, λ > 0 and f(x, u) satisfies some conditions. It reaches the conclusion that this problem has infinitely many solutions. Some results as p = 2 or f(x,u) = |u|q-2u, where 1 < q < p, are generalized.展开更多
In this paper, we consider the following nonlinear elliptic problem : △2u =|u|n-4^-u+u|u|q-1u,in Ω,△u=u=0 on ЭΩ,where Ω is a bounded and smooth domain in R^n,n∈{5,6,7},u is a parameter and q∈]4/(n-4)...In this paper, we consider the following nonlinear elliptic problem : △2u =|u|n-4^-u+u|u|q-1u,in Ω,△u=u=0 on ЭΩ,where Ω is a bounded and smooth domain in R^n,n∈{5,6,7},u is a parameter and q∈]4/(n-4),(12-n)/(n-4)].We study the solutions which concentrate around two points of Ω. We prove that the concentration speeOs are the same order and the distances of the concentration points from each other and from the boundary are bounded. For Ω=(Ωa)a a smooth ringshaped open set, we establish the existence of positive solutions which concentrate at two points of Ω. Finally, we show that for u〉0, large enough, the problem has at least many positive solutions as the Ljusternik-Schnirelman category of Ω.展开更多
The existence and multiplicity of positive solutions are studied for a class of quasi- linear elliptic equations involving Sobolev critical exponents with mixed Dirichlet-Neumann boundary conditions by the variational...The existence and multiplicity of positive solutions are studied for a class of quasi- linear elliptic equations involving Sobolev critical exponents with mixed Dirichlet-Neumann boundary conditions by the variational methods and some analytical techniques.展开更多
This paper considers the quasilinear elliptic equation where , and 0 < m < p-1 < q < +∞, Ω is a bounded domain in RN(N 3).λ is a positive number. Object is to estimate exactly the magnitute of λ* su...This paper considers the quasilinear elliptic equation where , and 0 < m < p-1 < q < +∞, Ω is a bounded domain in RN(N 3).λ is a positive number. Object is to estimate exactly the magnitute of λ* such that (1)λ has at least one positive solution if λ ∈ (0, λ*) and no positive solutions if λ > λ*. Furthermore, (1)λ has at least one positive solution when λ = λ*, and at least two positive solutions when λ ∈ (0, λ*) and . Finally, the authors obtain a multiplicity result with positive energy of (1)λ when 0 < m < p - 1 < q = (Np)/(N-p) - 1.展开更多
On a compact Riemannian manifold, we prove a decomposition theorem for arbitrarily bounded energy sequence of solutions of a singular elliptic equation.
The authors show the regularity of weak solutions for some typical quasi-linear elliptic systems governed by two p-Laplacian operators. The weak solutions of the following problem with lack of compactness are proved t...The authors show the regularity of weak solutions for some typical quasi-linear elliptic systems governed by two p-Laplacian operators. The weak solutions of the following problem with lack of compactness are proved to be regular when α(x) and α,β,p, q satisfy some conditions: where Ω (?) RN (N≥3) is a smooth bounded domain.展开更多
We consider the problem of conformal metrics equivalent to the Euclidean metric, with zero scalar curvature and prescribed mean curvature on the boundary of the ball Bn, n ≥ 4. By variational methods, we prove the ex...We consider the problem of conformal metrics equivalent to the Euclidean metric, with zero scalar curvature and prescribed mean curvature on the boundary of the ball Bn, n ≥ 4. By variational methods, we prove the existence of two peak solutions that concentrate around a strict local maximum points of the mean curvature under certain conditions.展开更多
In this paper,we consider the following Schrodinger-Poisson system{-Δu+ηΦu=f(x,μ)+μ^(5),x∈Ω,-ΔФ=μ^(2),x∈Ω,μ=Φ=0,x∈■Ω,whereΩis a smooth bounded domain in R^(3),η=±1 and the continuous function f...In this paper,we consider the following Schrodinger-Poisson system{-Δu+ηΦu=f(x,μ)+μ^(5),x∈Ω,-ΔФ=μ^(2),x∈Ω,μ=Φ=0,x∈■Ω,whereΩis a smooth bounded domain in R^(3),η=±1 and the continuous function f satisfies some suitable conditions.Based on the Mountain pass theorem,we prove the existence of positive ground state solutions.展开更多
In this paper,we study a class of the fractional Schrodinger equations involving logarithmic and critical nonlinearities.By using the Nehari manifold method and the concentration compactness principle,we show that the...In this paper,we study a class of the fractional Schrodinger equations involving logarithmic and critical nonlinearities.By using the Nehari manifold method and the concentration compactness principle,we show that the above problem admits at least one ground state solution and one ground state sign-changing solution.Moreover,by using variational methods,we prove that how the coefficient function of the critical nonlinearity affects the number of positive solutions.The main feature which distinguishes this paper from other related works lies in the fact that it is the first attempt to study the existence and multiplicity for the above problem involving both logarithmic and critical nonlinearities.展开更多
文摘In this paper, we study the multiplicity results of positive solutions for a class of quasi-linear elliptic equations involving critical Sobolev exponent. With the help of Nehari manifold and a mini-max principle, we prove that problem admits at least two or three positive solutions under different conditions.
文摘This paper deals with the Neumann problem for a class of semilinear elliptic equations -△u + u =|u|2*-2u+ μ|u|q-2u in Ω, au/ar= |u|(?)*-2u on aΩ, where 2 = 2N/N-2, s=2(N-1)/N-2, 1 <q<2,N(?)3,μ>γ denotes the unit outward normal to boundary aΩ. By vaxiational method and dual fountain theorem, the existence of infinitely many solutions with negative energy is proved.
基金National Natural Science Foundation of China(11501252 and 11571176)。
文摘In this article,we study the following fractional(p,q)-Laplacian equations involving the critical Sobolev exponent:(Pμ,λ){(−Δ)s 1 p u+(−Δ)s 2 q u=μ|u|q−2 u+λ|u|p−2 u+|u|p∗s 1−2 u,u=0,inΩ,in R N∖Ω,whereΩ⊂R N is a smooth and bounded domain,λ,μ>0,0<s 2<s 1<1,1<q<p<Ns 1.We establish the existence of a non-negative nontrivial weak solution to(Pμ,λ)by using the Mountain Pass Theorem.The lack of compactness associated with problems involving critical Sobolev exponents is overcome by working with certain asymptotic estimates for minimizers.
文摘In this paper, it is proved that the following boundary value problem [GRAPHICS] admits infinitely many solution for 0 < lambda < lambda-1, n greater-than-or-equal-to 5 and for ball regions OMEGA = B(R)(0).
文摘Abstract: Let Ω belong to R^N be a smooth bounded domain such that 0 ∈ Ω, N ≥ 5, 2^* :2N/N-4 is the critical Sobolev exponent, and f(x) is a given function. By using the variational methods, the paper proves the existence of solutions for the singular critical in the homogeneous problem △^u-μ u/{x}^4=|μ|^2*-2u+f(x) with Dirichlet boundary condition on 偏dΩ under some assumptions on f(x) and μ.
基金Supported by NSF(No:10171083 and 10371021)of China Laboratory of Mathematics for Nonlinear Sciences of Fudan University
文摘In this paper we consider the existence and asymptotic estimates of global solutions and finite time blowup of local solutions of quasilinear parabolic equation with critical Sobolev exponent and with lower energy initial value; we also describe the asymptotic behavior of global solutions with high energy initial value.
文摘In this paper,by an approximating argument,we obtain two disjoint and infinite sets of solutions for the following elliptic equation with critical Hardy-Sobolev exponents■whereΩis a smooth bounded domain in RN with 0∈?Ωand all the principle curvatures of?Ωat 0 are negative,a∈C1(Ω,R*+),μ>0,0<s<2,1<q<2 and N>2(q+1)/(q-1).By2*:=2N/(N-2)and 2*(s):(2(N-s))/(N-2)we denote the critical Sobolev exponent and Hardy-Sobolev exponent,respectively.
基金Supported by National Natural Science Foundation of China(No. 10471113) and Research Award Program for 0utstanding Young Teachers in Higher Education Institutions of M0E, P.R.C. and by Doctor Foundation of Southwest Normal University(No. SWNUB2005021).
文摘This paper concerns the existence and multiplicity of solutions for some semilinear elliptic equations with critical Sobolev exponent, Hardy term and the sublinear nonlinearity at origin. By using Ekeland,s variational principle, we conclude the existence of nontrivial solution for this problem, the Clark's critical point theorem is used to prove the existence of infinitely many solutions for this problem with odd nonlinearity.
文摘The authors consider the problem:-div(p△u)=u^q-1+λu,u〉0 in Ωmu=0 on эΩ,where Ω is a bounded domain in R^n,n≥3,p:^-Ω→R is a given positive weight such that p∈H^1(Ω)∩С(^-Ω),λ is a real constant and q=2n/n-2,and stydu the effect of the behavior of p near its minima and the impact of the geometry of domain on the existence of solutions for the above problem.
基金This research is supported by the NNSF of China under Grant (69972036)the Youth Science Foundation of USST under Grant (04XQN018).
文摘In this paper, we discuss the problem of solving a class of nonhomogeneous semilinear elliptic system with critical Sobolev exponent changing into one of critical points of some given functional. Using Nehari technique, the given functional attain its minimum by adding suitable constraints, and the minimal point becomes a critical point of the original functional after eliminating the added constraints, thus the solution of the nonhomogeneous elliptic system is obtained.
文摘In this paper, we study the existence result for degenerate elliptic equations with singular potential and critical cone sobolev exponents on singular manifolds. With the help of the variational method and the theory of genus, we obtain several results under different conditions.
基金Supported by NSFC(10171032) NSF of Guangdong Proviance (011606)
文摘This paper is concerned with the following nonlinear Dirichlet problem:where △pu = div(| ▽u|p- 2 ▽u) is the p-Laplacian of u, Ω is a bounded domain in Rn (n > 3), 1 < p < n, p = -pn/n-p is the critical exponent for the Sobolev imbedding, λ > 0 and f(x, u) satisfies some conditions. It reaches the conclusion that this problem has infinitely many solutions. Some results as p = 2 or f(x,u) = |u|q-2u, where 1 < q < p, are generalized.
文摘In this paper, we consider the following nonlinear elliptic problem : △2u =|u|n-4^-u+u|u|q-1u,in Ω,△u=u=0 on ЭΩ,where Ω is a bounded and smooth domain in R^n,n∈{5,6,7},u is a parameter and q∈]4/(n-4),(12-n)/(n-4)].We study the solutions which concentrate around two points of Ω. We prove that the concentration speeOs are the same order and the distances of the concentration points from each other and from the boundary are bounded. For Ω=(Ωa)a a smooth ringshaped open set, we establish the existence of positive solutions which concentrate at two points of Ω. Finally, we show that for u〉0, large enough, the problem has at least many positive solutions as the Ljusternik-Schnirelman category of Ω.
基金Supported by National Natural Science Foundation of China (11071198 11101347)+2 种基金Postdoctor Foundation of China (2012M510363)the Key Project in Science and Technology Research Plan of the Education Department of Hubei Province (D20112605 D20122501)
文摘The existence and multiplicity of positive solutions are studied for a class of quasi- linear elliptic equations involving Sobolev critical exponents with mixed Dirichlet-Neumann boundary conditions by the variational methods and some analytical techniques.
文摘This paper considers the quasilinear elliptic equation where , and 0 < m < p-1 < q < +∞, Ω is a bounded domain in RN(N 3).λ is a positive number. Object is to estimate exactly the magnitute of λ* such that (1)λ has at least one positive solution if λ ∈ (0, λ*) and no positive solutions if λ > λ*. Furthermore, (1)λ has at least one positive solution when λ = λ*, and at least two positive solutions when λ ∈ (0, λ*) and . Finally, the authors obtain a multiplicity result with positive energy of (1)λ when 0 < m < p - 1 < q = (Np)/(N-p) - 1.
文摘On a compact Riemannian manifold, we prove a decomposition theorem for arbitrarily bounded energy sequence of solutions of a singular elliptic equation.
基金Project supported by the National Natural Science Foundation of China (No.10271077).
文摘The authors show the regularity of weak solutions for some typical quasi-linear elliptic systems governed by two p-Laplacian operators. The weak solutions of the following problem with lack of compactness are proved to be regular when α(x) and α,β,p, q satisfy some conditions: where Ω (?) RN (N≥3) is a smooth bounded domain.
文摘We consider the problem of conformal metrics equivalent to the Euclidean metric, with zero scalar curvature and prescribed mean curvature on the boundary of the ball Bn, n ≥ 4. By variational methods, we prove the existence of two peak solutions that concentrate around a strict local maximum points of the mean curvature under certain conditions.
基金Supported by the Fundamental Research Funds of China West Normal University(No.18B015)Natural Science Foundation of Sichuan(No.23NSFSC1720).
文摘In this paper,we consider the following Schrodinger-Poisson system{-Δu+ηΦu=f(x,μ)+μ^(5),x∈Ω,-ΔФ=μ^(2),x∈Ω,μ=Φ=0,x∈■Ω,whereΩis a smooth bounded domain in R^(3),η=±1 and the continuous function f satisfies some suitable conditions.Based on the Mountain pass theorem,we prove the existence of positive ground state solutions.
基金The first author is supported by the National Natural Science Foundation of China(Grant No.12101599)the China Postdoctoral Science Foundation(Grant No.2021M703506)+2 种基金the second author is supported by National Natural Science Foundation of China(Grant Nos.11871199 and 12171152)Shandong Provincial Natural Science Foundation,P.R.China(Grant No.ZR2020MA006)Cultivation Project of Young and Innovative Talents in Universities of Shandong Province。
文摘In this paper,we study a class of the fractional Schrodinger equations involving logarithmic and critical nonlinearities.By using the Nehari manifold method and the concentration compactness principle,we show that the above problem admits at least one ground state solution and one ground state sign-changing solution.Moreover,by using variational methods,we prove that how the coefficient function of the critical nonlinearity affects the number of positive solutions.The main feature which distinguishes this paper from other related works lies in the fact that it is the first attempt to study the existence and multiplicity for the above problem involving both logarithmic and critical nonlinearities.