Analyzed the support instable mode of sliding,tripping,and so on,and believed the key point of the support stability control of fully mechanized coal caving face with steep coal seams was to maintain that the seam tru...Analyzed the support instable mode of sliding,tripping,and so on,and believed the key point of the support stability control of fully mechanized coal caving face with steep coal seams was to maintain that the seam true angle was less than the hydraulic support instability critical angle.Through the layout of oblique face,the improvement of support setting load,the control of mining height and nonskid platform,the group support system of end face,the advance optimization of conveyor and support,and the other control tech- nical measures,the true angle of the seam is reduced and the instable critical angle of the support is increased,the hydraulic support stability of fully mechanized coal caving face with steep coal seams is effectively controlled.展开更多
The critical angle is the angle at which the contrast of oil slicks reverse their contrasts against the surrounding oil-free seawater under sunglint.Accurate determination of the critical angle can help estimate surfa...The critical angle is the angle at which the contrast of oil slicks reverse their contrasts against the surrounding oil-free seawater under sunglint.Accurate determination of the critical angle can help estimate surface roughness and refractive index of the oil slicks.Although it’s difficult to determine a certain critical angle,the potential critical angle range help to improve the estimation accuracy.In this study,the angle between the viewing direction and the direction of mirror reflection is used as an indicator for quantifying the critical angle and could be calculated from the solar/viewing geometry from observations of the Moderate Resolution Imaging Spectroradiometer(MODIS).The natural seep oil slicks in the Gulf of Mexico were first delineated using a customized segmentation approach to remove noise and apply a morphological filter.On the basis of the histograms of the brightness values of the delineated oil slicks,the potential range of the critical angle was determined,and then an optimal critical angle between oil slicks and seawater was then determined from statistical and regression analyses in this range.This critical angle corresponds to the best fitting between the modeled and observed surface roughness of seep oil slicks and seawater.展开更多
Two problems of a one-dimensional(1D)piezoelectric quasicrystal(QC)wedge are investigated,i.e.,the two sides of the wedge subject to uniform tractions and the wedge apex subject to the concentrated force.By virtue of ...Two problems of a one-dimensional(1D)piezoelectric quasicrystal(QC)wedge are investigated,i.e.,the two sides of the wedge subject to uniform tractions and the wedge apex subject to the concentrated force.By virtue of the Stroh formalism and Barnett-Lothe matrices,the analytical expressions of the displacements and stresses are derived,and the generalized solutions for the critical wedge angles are discussed.Numerical examples are given to present the mechanical behaviors of the wedge in each field.The results indicate that the effects of the uniform tractions and the concentrated force on the phonon field displacement are larger than those on the phason field.展开更多
BACKGROUND The critical shoulder angle(CSA)is a radiographic measurement that provides an assessment of both glenoid inclination and acromial length.Higher values may correlate with the presence of rotator cuff tears....BACKGROUND The critical shoulder angle(CSA)is a radiographic measurement that provides an assessment of both glenoid inclination and acromial length.Higher values may correlate with the presence of rotator cuff tears.However,it is difficult to obtain a high-quality true anteroposterior(AP)radiograph of the shoulder,with any excess scapular version or flexion/extension resulting in deviation from the true CSA value.Three-dimensional(3D)bony reconstructions of computed tomography(CT)shoulder scans may be able to be rotated to obtain a similar view to that of true AP radiographs.AIM To compare CSA measurements performed on 3D bony CT reconstructions,with those on corresponding true AP radiographs.METHODS CT shoulder scans were matched with true AP radiographs that were classified as either Suter-Henninger type A or C quality.3D bony reconstructions were segmented from the CT scans,and rotated to replicate an ideal true AP view.Two observers performed CSA measurements using both CT and radiographic images.Measurements were repeated after a one week interval.Reliability was assessed using intraclass correlation coefficients(ICCs)and Bland-Altman plots[bias,limits of agreement(LOA)].RESULTS Twenty CT shoulder scans were matched.The mean CSA values were 32.55°(±4.26°)with radiographs and 29.82°(±3.49°)with the CT-based method[mean difference 2.73°(±2.86°);P<0.001;bias+2.73°;LOA-2.17°to+7.63°].There was a strong correlation between the two methods(r=0.748;P<0.001).Intra-observer reliability was similar,but the best intra-observer values were achieved by the most experienced observer using the CT-based method[ICC:0.983(0.958-0.993);bias+0.03°,LOA-1.28°to+1.34°].Inter-observer reliability was better with the CT-based method[ICC:0.897(0.758-0.958),bias+0.24°,LOA-2.93°to+3.41°].CONCLUSION The described CT-based method may be a suitable alternative for critical shoulder angle measurement,as it overcomes the difficulty in obtaining a true AP radiographic view.展开更多
Based on the principle of minimal energy and the coherent rotation model, two types of the jump phenomena, complete and incomplete jump phenomenon, are proved to exist in the angular dependence of the exchange bias wi...Based on the principle of minimal energy and the coherent rotation model, two types of the jump phenomena, complete and incomplete jump phenomenon, are proved to exist in the angular dependence of the exchange bias with noncollinear unidirectional and uniaxial anisotropies. It is found that the transition between complete and incomplete jump phenomena occurs on condition that the exchange-coupling constant exceeds a critical value. Additionally, two different modes of the magnetization rotation, the whole-plane rotation, and the half-plane rotation are present in the magnetization reversal process, and they are dependent on the direction of the external field. Furthermore, the equations of the critical angle, at which orientation the exchange bias field reaches a maximum value and the coercivity disappears, are also derived in this paper. The numerical calculations in this paper are consistent with the relevant experimental observations, indicating that our method to study the angular dependence of the exchange bias as well as the magnetization reversal behaviors is valid. Our discussion about the jump phenomenon, the critical angle, and the modes of the magnetization reversal can explain the observed differences in results between different experiments.展开更多
The space effects of deep pit slope are analyzed by an elastic mechanics principle. The interaction among the critical slide angle, the friction coefficient, the cohesion, and the horizontal radius of the deep pits is...The space effects of deep pit slope are analyzed by an elastic mechanics principle. The interaction among the critical slide angle, the friction coefficient, the cohesion, and the horizontal radius of the deep pits is derived in this paper. It indicates that the deeper the pit is excavated, the greater the critical slide angle is. Both the theory for reducing stripping waste rock in deep pit and the approach to determining the configuration of the stable slope are developed from the interaction. The theory in this paper comprises the preceding principles of stability analysis of slopes and is suitable for analyzing that of deep pit.展开更多
In this paper,the fow physics and impact dynamics of a sphere bouncing on a water surface are studied experimentally.During the experiments,high-speed camera photography techniques are used to capture the cavity and f...In this paper,the fow physics and impact dynamics of a sphere bouncing on a water surface are studied experimentally.During the experiments,high-speed camera photography techniques are used to capture the cavity and free surface evolution when the sphere impacts and skips on the water surface.The infuences of the impact velocity(v_(1))and impact angle(θ_(1))of the sphere on the bouncing fow physics are also investigated,including the cavitation evolution,motion characteristics,and bounding law.Regulations for the relationship between v_(1)andθ_(1)to judge whether the sphere can bounce on the water surface are presented and analyzed by summarizing a large amount of experimental data.In addition,the efect ofθ_(1)on the energy loss of the sphere is also analyzed and discussed.The experiment results show that there is a ftted curve of v_(1)=17.5θ_(1)−45.5 determining the relationship between the critical initial velocity and angle whether the sphere bounces on the water surface.展开更多
Particle morphology has been regarded as an important factor affecting shear behaviors of sands,and covers three important aspects,i.e.global form(overall shape),local roundness(large-scale smoothness),and surface tex...Particle morphology has been regarded as an important factor affecting shear behaviors of sands,and covers three important aspects,i.e.global form(overall shape),local roundness(large-scale smoothness),and surface texture(roughness)in terms of different observation scales.Shape features of different aspects can be independent of each other but might have coupled effects on the bulk behavior of sands,which has been not explored thoroughly yet.This paper presents a systematic investigation of the coupled effects of the particle overall regularity(OR)and sliding friction on the shear behavior of dense sands using three-dimensional(3D)discrete element method(DEM).The representative volume elements consisting of ideal spheres and irregular clumps of different mass proportions are prepared to conduct drained triaxial compression simulations.A well-defined shape descriptor named OR is adopted to quantify particle shape differences of numerical samples at both form and roundness aspects,and the particle sliding friction coefficient varies from 0.001 to 1 to consider the surface roughness effect equivalently in DEM.The stress-strain relationships as well as peak and critical friction angles of these assemblies are examined systematically.Moreover,contact network and anisotropic fabric characteristics within different granular assemblies are analyzed to explore the microscopic origins of the multi-scale shape-dependent shear strength.This study helps to improve the current understanding with respect to the influence of the particle shape on the shear behavior of sands from different shape aspects.展开更多
The partial derivative equations of Zoeppritz equations are established and the derivatives of each matrix entry with respect to wave vectors are derived in this paper.By solving the partial derivative equations we ob...The partial derivative equations of Zoeppritz equations are established and the derivatives of each matrix entry with respect to wave vectors are derived in this paper.By solving the partial derivative equations we obtained the partial derivatives of seismic wave reflection coefficients with respect to wave vectors,and computed the Goos-Hnchen shift for reflected P-and VS-waves.By plotting the curves of Goos-Hnchen shift,we gained some new insight into the lateral shift of seismic reflection wave.The lateral shifts are very large for glancing wave or the wave of the incidence angle near the critical angle,meaning that the seismic wave propagates a long distance along the reflection interface before returning to the first medium.For the reflection waves of incidence angles away from the critical angle,the lateral shift is in the same order of magnitude as the wavelength.The lateral shift varies significantly with different reflection interfaces.For example,the reflected P-wave has a negative shift at the reflection interface between mudstone and sandstone.The reflected VS-wave has a large lateral shift at or near the critical angle.The lateral shift of the reflected VS-wave tends to be zero when the incidence angle approaches 90°.These observations suggest that Goos-Hnchen effect has a great influence on the reflection wave of wide-angles.The correction for the error caused by Goos-Hnchen effect,therefore,should be made before seismic data processing,such as the depth migration and the normal-moveout correction.With the theoretical foundation established in this paper,we can further study the correction of Goos-Hnchen effect for the reflection wave of large incidence angle.展开更多
Complicated terrain was considered and simplified as two-dimensional(2D)terrain in a dynamical downscaling model and a parametric wind field model for typhoons developed by the Shanghai Typhoon Institute.The 2D terrai...Complicated terrain was considered and simplified as two-dimensional(2D)terrain in a dynamical downscaling model and a parametric wind field model for typhoons developed by the Shanghai Typhoon Institute.The 2D terrain was further modeled as uphill and downhill segments with various slope angles relative to the incoming flow.The wind speed ratios and pressure characteristics around the 2D terrain were numerically and experimentally investigated in this study.Aerodynamic characteristics of the 2D terrain with a limitedlength upper surface were first investigated in the wind tunnel with sheared incoming flow.The corresponding numerical investigation was also conducted by using the commercial computational fluid dynamics code FLUENT with the realizable k-ε turbulence model.Special efforts were made to maintain the inflow boundary conditions throughout the computational domain.Aerodynamic characteristics were then investigated for the ideal 2D terrain with an unlimited-length upper surface by using a numerical method with uniform incoming flow.Comparisons of the different terrain models and incoming flows from the above studies show that the wind pressure coefficients and the wind speed ratios are both affected by the slope angle.A negative peak value of the wind pressure coefficients exists at the escarpment point,where flow separation occurs,for the uphill and downhill terrain models with slope angles of 40°and 30°,respectively.Correspondingly,the streamwise wind speed ratios at the points above the escarpment point for the uphill terrain model increase with increasing slope angle,reach their peak values at the slope angle of a=40°and decrease when the slope angle increases further.For the downhill terrain model,similar trends exist at the points above the escarpment point with the exception that the critical slope angle is a=30°.展开更多
The seismic analysis of a viscoelastic half-space under two-dimensional(2D)oblique incident waves is carried out by the finite/infinite element method(FIEM).First,the frequency-domain exact solutions for the displacem...The seismic analysis of a viscoelastic half-space under two-dimensional(2D)oblique incident waves is carried out by the finite/infinite element method(FIEM).First,the frequency-domain exact solutions for the displacements and stresses of the free field are derived in general form for arbitrary incident P and SV waves.With the present formulation,no distinction needs to be made for SV waves with over-critical incident angles that make the reflected P waves disappear,while no critical angle exists for P waves.Next,the equivalent seismic forces of the earthquake(Taft Earthquake 1952)imposed on the near-field boundary are generated by combining the solutions for unit ground accelerations with the earthquake spectrum.Based on the asymmetric finite/infinite element model,the frequency-domain motion equations for seismic analysis are presented with the key parameters selected.The results obtained in frequency and time domain are verified against those of Wolf’s,Luco and de Barros’and for inversely computed ground motions.The parametric study indicated that distinct phase difference exists between the horizontal and vertical responses for SV waves with over-critical incident angles,but not for under-critical incident angles.Other observations were also made for the numerical results inside the text.展开更多
基金the National Natrual Science Foundation of China(50504014)
文摘Analyzed the support instable mode of sliding,tripping,and so on,and believed the key point of the support stability control of fully mechanized coal caving face with steep coal seams was to maintain that the seam true angle was less than the hydraulic support instability critical angle.Through the layout of oblique face,the improvement of support setting load,the control of mining height and nonskid platform,the group support system of end face,the advance optimization of conveyor and support,and the other control tech- nical measures,the true angle of the seam is reduced and the instable critical angle of the support is increased,the hydraulic support stability of fully mechanized coal caving face with steep coal seams is effectively controlled.
基金Natural Science Foundation of Jiangsu Province[Grant no.BK20160023] National Natural Science Foundation of China[Grant Nos.41771376,41371014,61675099]the National Key Research and Development Program of China[Grant no.2016YFC1400901].
文摘The critical angle is the angle at which the contrast of oil slicks reverse their contrasts against the surrounding oil-free seawater under sunglint.Accurate determination of the critical angle can help estimate surface roughness and refractive index of the oil slicks.Although it’s difficult to determine a certain critical angle,the potential critical angle range help to improve the estimation accuracy.In this study,the angle between the viewing direction and the direction of mirror reflection is used as an indicator for quantifying the critical angle and could be calculated from the solar/viewing geometry from observations of the Moderate Resolution Imaging Spectroradiometer(MODIS).The natural seep oil slicks in the Gulf of Mexico were first delineated using a customized segmentation approach to remove noise and apply a morphological filter.On the basis of the histograms of the brightness values of the delineated oil slicks,the potential range of the critical angle was determined,and then an optimal critical angle between oil slicks and seawater was then determined from statistical and regression analyses in this range.This critical angle corresponds to the best fitting between the modeled and observed surface roughness of seep oil slicks and seawater.
基金Project supported by the National Natural Science Foundation of China(Nos.11972365,12102458,11972354)the China Agricultural University Education Foundation(No.1101-2412001)。
文摘Two problems of a one-dimensional(1D)piezoelectric quasicrystal(QC)wedge are investigated,i.e.,the two sides of the wedge subject to uniform tractions and the wedge apex subject to the concentrated force.By virtue of the Stroh formalism and Barnett-Lothe matrices,the analytical expressions of the displacements and stresses are derived,and the generalized solutions for the critical wedge angles are discussed.Numerical examples are given to present the mechanical behaviors of the wedge in each field.The results indicate that the effects of the uniform tractions and the concentrated force on the phonon field displacement are larger than those on the phason field.
文摘BACKGROUND The critical shoulder angle(CSA)is a radiographic measurement that provides an assessment of both glenoid inclination and acromial length.Higher values may correlate with the presence of rotator cuff tears.However,it is difficult to obtain a high-quality true anteroposterior(AP)radiograph of the shoulder,with any excess scapular version or flexion/extension resulting in deviation from the true CSA value.Three-dimensional(3D)bony reconstructions of computed tomography(CT)shoulder scans may be able to be rotated to obtain a similar view to that of true AP radiographs.AIM To compare CSA measurements performed on 3D bony CT reconstructions,with those on corresponding true AP radiographs.METHODS CT shoulder scans were matched with true AP radiographs that were classified as either Suter-Henninger type A or C quality.3D bony reconstructions were segmented from the CT scans,and rotated to replicate an ideal true AP view.Two observers performed CSA measurements using both CT and radiographic images.Measurements were repeated after a one week interval.Reliability was assessed using intraclass correlation coefficients(ICCs)and Bland-Altman plots[bias,limits of agreement(LOA)].RESULTS Twenty CT shoulder scans were matched.The mean CSA values were 32.55°(±4.26°)with radiographs and 29.82°(±3.49°)with the CT-based method[mean difference 2.73°(±2.86°);P<0.001;bias+2.73°;LOA-2.17°to+7.63°].There was a strong correlation between the two methods(r=0.748;P<0.001).Intra-observer reliability was similar,but the best intra-observer values were achieved by the most experienced observer using the CT-based method[ICC:0.983(0.958-0.993);bias+0.03°,LOA-1.28°to+1.34°].Inter-observer reliability was better with the CT-based method[ICC:0.897(0.758-0.958),bias+0.24°,LOA-2.93°to+3.41°].CONCLUSION The described CT-based method may be a suitable alternative for critical shoulder angle measurement,as it overcomes the difficulty in obtaining a true AP radiographic view.
基金supported by the Fundamental Research Foundation of Shanxi Province,China(Grant No.2013021010-3)the Natural Science Foundation of Shanxi Normal University,China(Grant No.872014)
文摘Based on the principle of minimal energy and the coherent rotation model, two types of the jump phenomena, complete and incomplete jump phenomenon, are proved to exist in the angular dependence of the exchange bias with noncollinear unidirectional and uniaxial anisotropies. It is found that the transition between complete and incomplete jump phenomena occurs on condition that the exchange-coupling constant exceeds a critical value. Additionally, two different modes of the magnetization rotation, the whole-plane rotation, and the half-plane rotation are present in the magnetization reversal process, and they are dependent on the direction of the external field. Furthermore, the equations of the critical angle, at which orientation the exchange bias field reaches a maximum value and the coercivity disappears, are also derived in this paper. The numerical calculations in this paper are consistent with the relevant experimental observations, indicating that our method to study the angular dependence of the exchange bias as well as the magnetization reversal behaviors is valid. Our discussion about the jump phenomenon, the critical angle, and the modes of the magnetization reversal can explain the observed differences in results between different experiments.
文摘The space effects of deep pit slope are analyzed by an elastic mechanics principle. The interaction among the critical slide angle, the friction coefficient, the cohesion, and the horizontal radius of the deep pits is derived in this paper. It indicates that the deeper the pit is excavated, the greater the critical slide angle is. Both the theory for reducing stripping waste rock in deep pit and the approach to determining the configuration of the stable slope are developed from the interaction. The theory in this paper comprises the preceding principles of stability analysis of slopes and is suitable for analyzing that of deep pit.
基金the Fundamental Research Funds for the Central Universities(30918012201)the Fund of the State Key Laboratory(6142604190302).
文摘In this paper,the fow physics and impact dynamics of a sphere bouncing on a water surface are studied experimentally.During the experiments,high-speed camera photography techniques are used to capture the cavity and free surface evolution when the sphere impacts and skips on the water surface.The infuences of the impact velocity(v_(1))and impact angle(θ_(1))of the sphere on the bouncing fow physics are also investigated,including the cavitation evolution,motion characteristics,and bounding law.Regulations for the relationship between v_(1)andθ_(1)to judge whether the sphere can bounce on the water surface are presented and analyzed by summarizing a large amount of experimental data.In addition,the efect ofθ_(1)on the energy loss of the sphere is also analyzed and discussed.The experiment results show that there is a ftted curve of v_(1)=17.5θ_(1)−45.5 determining the relationship between the critical initial velocity and angle whether the sphere bounces on the water surface.
基金supported by the National Natural Science Foundation of China (Grant Nos. 42077238 and 41941019)the Guangdong Basic and Applied Basic Research Foundation, China (Grant No. 2020A1515011525)
文摘Particle morphology has been regarded as an important factor affecting shear behaviors of sands,and covers three important aspects,i.e.global form(overall shape),local roundness(large-scale smoothness),and surface texture(roughness)in terms of different observation scales.Shape features of different aspects can be independent of each other but might have coupled effects on the bulk behavior of sands,which has been not explored thoroughly yet.This paper presents a systematic investigation of the coupled effects of the particle overall regularity(OR)and sliding friction on the shear behavior of dense sands using three-dimensional(3D)discrete element method(DEM).The representative volume elements consisting of ideal spheres and irregular clumps of different mass proportions are prepared to conduct drained triaxial compression simulations.A well-defined shape descriptor named OR is adopted to quantify particle shape differences of numerical samples at both form and roundness aspects,and the particle sliding friction coefficient varies from 0.001 to 1 to consider the surface roughness effect equivalently in DEM.The stress-strain relationships as well as peak and critical friction angles of these assemblies are examined systematically.Moreover,contact network and anisotropic fabric characteristics within different granular assemblies are analyzed to explore the microscopic origins of the multi-scale shape-dependent shear strength.This study helps to improve the current understanding with respect to the influence of the particle shape on the shear behavior of sands from different shape aspects.
基金supported by Funding Project for Academic Human Resources Development in Institutions of Higher Learning (Grant No. PHR201107145)
文摘The partial derivative equations of Zoeppritz equations are established and the derivatives of each matrix entry with respect to wave vectors are derived in this paper.By solving the partial derivative equations we obtained the partial derivatives of seismic wave reflection coefficients with respect to wave vectors,and computed the Goos-Hnchen shift for reflected P-and VS-waves.By plotting the curves of Goos-Hnchen shift,we gained some new insight into the lateral shift of seismic reflection wave.The lateral shifts are very large for glancing wave or the wave of the incidence angle near the critical angle,meaning that the seismic wave propagates a long distance along the reflection interface before returning to the first medium.For the reflection waves of incidence angles away from the critical angle,the lateral shift is in the same order of magnitude as the wavelength.The lateral shift varies significantly with different reflection interfaces.For example,the reflected P-wave has a negative shift at the reflection interface between mudstone and sandstone.The reflected VS-wave has a large lateral shift at or near the critical angle.The lateral shift of the reflected VS-wave tends to be zero when the incidence angle approaches 90°.These observations suggest that Goos-Hnchen effect has a great influence on the reflection wave of wide-angles.The correction for the error caused by Goos-Hnchen effect,therefore,should be made before seismic data processing,such as the depth migration and the normal-moveout correction.With the theoretical foundation established in this paper,we can further study the correction of Goos-Hnchen effect for the reflection wave of large incidence angle.
基金The authors grateftilly acknowledge the support of the Ministry of Science and Technology of China(Grant Nos.2015CB452806 and 2018YFB1501104)the National Natural Science Foundation of China(Grant Nos.51408196 and 41805088)+1 种基金the Natural Science Foundation of Shanghai(Grant No.19ZR1469200)the Young Backbone Teacher Cultivation Program of Henan University of Technology.
文摘Complicated terrain was considered and simplified as two-dimensional(2D)terrain in a dynamical downscaling model and a parametric wind field model for typhoons developed by the Shanghai Typhoon Institute.The 2D terrain was further modeled as uphill and downhill segments with various slope angles relative to the incoming flow.The wind speed ratios and pressure characteristics around the 2D terrain were numerically and experimentally investigated in this study.Aerodynamic characteristics of the 2D terrain with a limitedlength upper surface were first investigated in the wind tunnel with sheared incoming flow.The corresponding numerical investigation was also conducted by using the commercial computational fluid dynamics code FLUENT with the realizable k-ε turbulence model.Special efforts were made to maintain the inflow boundary conditions throughout the computational domain.Aerodynamic characteristics were then investigated for the ideal 2D terrain with an unlimited-length upper surface by using a numerical method with uniform incoming flow.Comparisons of the different terrain models and incoming flows from the above studies show that the wind pressure coefficients and the wind speed ratios are both affected by the slope angle.A negative peak value of the wind pressure coefficients exists at the escarpment point,where flow separation occurs,for the uphill and downhill terrain models with slope angles of 40°and 30°,respectively.Correspondingly,the streamwise wind speed ratios at the points above the escarpment point for the uphill terrain model increase with increasing slope angle,reach their peak values at the slope angle of a=40°and decrease when the slope angle increases further.For the downhill terrain model,similar trends exist at the points above the escarpment point with the exception that the critical slope angle is a=30°.
基金sponsored by the following agencies:National Natural Science Foundation of China(Grant No.52078082)Chongqing Science and Technology Commission(No.cstc2019yszx-jcyjX0001,cstc2020yszx-jscxX0002,and cstc2021yszxjscxX0001).
文摘The seismic analysis of a viscoelastic half-space under two-dimensional(2D)oblique incident waves is carried out by the finite/infinite element method(FIEM).First,the frequency-domain exact solutions for the displacements and stresses of the free field are derived in general form for arbitrary incident P and SV waves.With the present formulation,no distinction needs to be made for SV waves with over-critical incident angles that make the reflected P waves disappear,while no critical angle exists for P waves.Next,the equivalent seismic forces of the earthquake(Taft Earthquake 1952)imposed on the near-field boundary are generated by combining the solutions for unit ground accelerations with the earthquake spectrum.Based on the asymmetric finite/infinite element model,the frequency-domain motion equations for seismic analysis are presented with the key parameters selected.The results obtained in frequency and time domain are verified against those of Wolf’s,Luco and de Barros’and for inversely computed ground motions.The parametric study indicated that distinct phase difference exists between the horizontal and vertical responses for SV waves with over-critical incident angles,but not for under-critical incident angles.Other observations were also made for the numerical results inside the text.