In this paper the experimental results associated until the phase separation and nucleation and crystallization of chalcogenidc glasses are described. Experi-ments demonstrate that the phas separation may be affected ...In this paper the experimental results associated until the phase separation and nucleation and crystallization of chalcogenidc glasses are described. Experi-ments demonstrate that the phas separation may be affected by small amount of additives. It has been found that some chalcogenide glasses could be converted into glass-ceramics without phase separation. The different mechanisms of nucleated crystallization of chalcogenide glasses are discussed and propossed.展开更多
The crystal growth and nucleation in glasses in the lithium silicate system have been investigated. Phase separation in ultimately homogenized glasses of the lithium silicate system xLi<sub>2</sub>O·(...The crystal growth and nucleation in glasses in the lithium silicate system have been investigated. Phase separation in ultimately homogenized glasses of the lithium silicate system xLi<sub>2</sub>O·(100 ﹣ x)SiO<sub>2</sub> (where x = 23.4, 26.0, 29.1, and 33.5 mol% Li<sub>2</sub>O) has been studied. The glasses of these compositions have been homogenized using the previously established special temperature-time conditions, which make it possible to provide a maximum dehydration and removal of bubbles from the glass melt. The parameters of nucleation and growth of phase separated in homogeneities and homogeneous crystal nucleation have been determined. The absolute values of the stationary nucleation rates I<sub>st</sub> of lithium disilicate crystals in the 23.4Li<sub>2</sub>O·76.6SiO<sub>2</sub>, 26Li<sub>2</sub>O·74SiO<sub>2</sub> and 29.1Li<sub>2</sub>O·70.9SiO<sub>2</sub> glasses with the compositions lying in the metastable phase separation region have been compared with the corresponding rates I<sub>st</sub> for the glass of the stoichiometric lithium disilicate composition 33.51Li<sub>2</sub>O·66.5SiO<sub>2</sub>. It has been found that the crystal growth rate has a tendency toward a monotonic increase with an increase in the temperature, whereas the dependences of the crystal growth rate on the time of low temperature heat treatment exhibit an oscillatory behavior with a monotonic decrease in the absolute value of oscillations. The character of crystallization in glasses with the compositions lying in the phase separation region of the Li<sub>2</sub>O-SiO<sub>2</sub> system is compared with that in the glass of the stoichiometric lithium disilicate composition. The conclusion has been made that the phase separation weakly affects the nucleation parameters of the lithium disilicate and has a strong effect on the crystal growth.展开更多
The structural evolution of Cu_(45)Zr_(45)Ag_(10) metallic glass was investigated by in situ transmission electron microscopy heating experiments. The relationship between phase separation and crystallization wa...The structural evolution of Cu_(45)Zr_(45)Ag_(10) metallic glass was investigated by in situ transmission electron microscopy heating experiments. The relationship between phase separation and crystallization was elucidated. Nucleation and growth-controlled nanoscale phase separation at early stage were seen to impede nanocrystallization, while a coarser phase separation via aggregation of Ag-rich nanospheres was found to promote the precipitation of Cu-rich nanocrystals.Coupling of composition and dynamics heterogeneities was supposed to play a key role during phase separation preceding crystallization.展开更多
文摘In this paper the experimental results associated until the phase separation and nucleation and crystallization of chalcogenidc glasses are described. Experi-ments demonstrate that the phas separation may be affected by small amount of additives. It has been found that some chalcogenide glasses could be converted into glass-ceramics without phase separation. The different mechanisms of nucleated crystallization of chalcogenide glasses are discussed and propossed.
文摘The crystal growth and nucleation in glasses in the lithium silicate system have been investigated. Phase separation in ultimately homogenized glasses of the lithium silicate system xLi<sub>2</sub>O·(100 ﹣ x)SiO<sub>2</sub> (where x = 23.4, 26.0, 29.1, and 33.5 mol% Li<sub>2</sub>O) has been studied. The glasses of these compositions have been homogenized using the previously established special temperature-time conditions, which make it possible to provide a maximum dehydration and removal of bubbles from the glass melt. The parameters of nucleation and growth of phase separated in homogeneities and homogeneous crystal nucleation have been determined. The absolute values of the stationary nucleation rates I<sub>st</sub> of lithium disilicate crystals in the 23.4Li<sub>2</sub>O·76.6SiO<sub>2</sub>, 26Li<sub>2</sub>O·74SiO<sub>2</sub> and 29.1Li<sub>2</sub>O·70.9SiO<sub>2</sub> glasses with the compositions lying in the metastable phase separation region have been compared with the corresponding rates I<sub>st</sub> for the glass of the stoichiometric lithium disilicate composition 33.51Li<sub>2</sub>O·66.5SiO<sub>2</sub>. It has been found that the crystal growth rate has a tendency toward a monotonic increase with an increase in the temperature, whereas the dependences of the crystal growth rate on the time of low temperature heat treatment exhibit an oscillatory behavior with a monotonic decrease in the absolute value of oscillations. The character of crystallization in glasses with the compositions lying in the phase separation region of the Li<sub>2</sub>O-SiO<sub>2</sub> system is compared with that in the glass of the stoichiometric lithium disilicate composition. The conclusion has been made that the phase separation weakly affects the nucleation parameters of the lithium disilicate and has a strong effect on the crystal growth.
基金supported by the National Natural Science Foundation of China (Grant No. 51101004)the financial support of China Scholarship Council. Z.Q. Liu is gratefulsupport by the IMR SYNL-T.S. Kê Research Fellowship
文摘The structural evolution of Cu_(45)Zr_(45)Ag_(10) metallic glass was investigated by in situ transmission electron microscopy heating experiments. The relationship between phase separation and crystallization was elucidated. Nucleation and growth-controlled nanoscale phase separation at early stage were seen to impede nanocrystallization, while a coarser phase separation via aggregation of Ag-rich nanospheres was found to promote the precipitation of Cu-rich nanocrystals.Coupling of composition and dynamics heterogeneities was supposed to play a key role during phase separation preceding crystallization.