Using the International Comprehensive Ocean-Atmosphere Data Set(ICOADS) and ERA-Interim data, spatial distributions of air-sea temperature difference(ASTD) in the South China Sea(SCS) for the past 35 years are compare...Using the International Comprehensive Ocean-Atmosphere Data Set(ICOADS) and ERA-Interim data, spatial distributions of air-sea temperature difference(ASTD) in the South China Sea(SCS) for the past 35 years are compared,and variations of spatial and temporal distributions of ASTD in this region are addressed using empirical orthogonal function decomposition and wavelet analysis methods. The results indicate that both ICOADS and ERA-Interim data can reflect actual distribution characteristics of ASTD in the SCS, but values of ASTD from the ERA-Interim data are smaller than those of the ICOADS data in the same region. In addition, the ASTD characteristics from the ERA-Interim data are not obvious inshore. A seesaw-type, north-south distribution of ASTD is dominant in the SCS; i.e., a positive peak in the south is associated with a negative peak in the north in November, and a negative peak in the south is accompanied by a positive peak in the north during April and May. Interannual ASTD variations in summer or autumn are decreasing. There is a seesaw-type distribution of ASTD between Beibu Bay and most of the SCS in summer, and the center of large values is in the Nansha Islands area in autumn. The ASTD in the SCS has a strong quasi-3a oscillation period in all seasons, and a quasi-11 a period in winter and spring. The ASTD is positively correlated with the Nio3.4 index in summer and autumn but negatively correlated in spring and winter.展开更多
A comparison study is performed to contrast the improvements in the tropical Pacific oceanic state of a low-resolution model respectively via data assimilation and by an increase in horizontal resolution. A low resolu...A comparison study is performed to contrast the improvements in the tropical Pacific oceanic state of a low-resolution model respectively via data assimilation and by an increase in horizontal resolution. A low resolution model (LR) (1°lat by 2°lon) and a high-resolution model (HR) (0.5°lat by 0.5°lon) are employed for the comparison. The authors perform 20-yr numerical experiments and analyze the annual mean fields of temperature and salinity. The results indicate that the low-resolution model with data assimilation behaves better than the high-resolution model in the estimation of ocean large-scale features. From 1990 to 2000, the average of HR's RMSE (root-mean-square error) relative to independent Tropical Atmosphere Ocean project (TAO) mooring data at randomly selected points is 0.97℃ compared to a RMSE of 0.56℃ for LR with temperature assimilation. Moreover, the LR with data assimilation is more frugal in computation. Although there is room to improve the high-resolution model, the low-resolution model with data assimilation may be an advisable choice in achieving a more realistic large-scale state of the ocean at the limited level of information provided by the current observational system.展开更多
The extraction of spectral parameters is very difficult because of the limited energy resolution for NaI (TI) gamma-ray detectors. For statistical fluctuation of radioactivity under complex environment, some smoothi...The extraction of spectral parameters is very difficult because of the limited energy resolution for NaI (TI) gamma-ray detectors. For statistical fluctuation of radioactivity under complex environment, some smoothing filtering methods are proposed to solve the problem. These methods include adopting method of arithmetic moving average, center of gravity, least squares of polynomial, slide converter of discrete funcion convolution etc. The process of spectrum data is realized, and the results are assessed in H/FWHM( Peak High/Full Width at Half Maximum) and peak area based on the Matlab programming. The results indicate that different methods smoothed spectrum have respective superiority in different ergoregion, but the Gaussian function theory in discrete function convolution slide method is used to filter the complex y-spectrum on Embedded system nlatform, and the statistical fluctuation of y-snectrum filtered wall.展开更多
Introduction: The present work compared the prediction power of the different data mining techniques used to develop the HIV testing prediction model. Four popular data mining algorithms (Decision tree, Naive Bayes, N...Introduction: The present work compared the prediction power of the different data mining techniques used to develop the HIV testing prediction model. Four popular data mining algorithms (Decision tree, Naive Bayes, Neural network, logistic regression) were used to build the model that predicts whether an individual was being tested for HIV among adults in Ethiopia using EDHS 2011. The final experimentation results indicated that the decision tree (random tree algorithm) performed the best with accuracy of 96%, the decision tree induction method (J48) came out to be the second best with a classification accuracy of 79%, followed by neural network (78%). Logistic regression has also achieved the least classification accuracy of 74%. Objectives: The objective of this study is to compare the prediction power of the different data mining techniques used to develop the HIV testing prediction model. Methods: Cross-Industry Standard Process for Data Mining (CRISP-DM) was used to predict the model for HIV testing and explore association rules between HIV testing and the selected attributes. Data preprocessing was performed and missing values for the categorical variable were replaced by the modal value of the variable. Different data mining techniques were used to build the predictive model. Results: The target dataset contained 30,625 study participants. Out of which 16,515 (54%) participants were women while the rest 14,110 (46%) were men. The age of the participants in the dataset ranged from 15 to 59 years old with modal age of 15 - 19 years old. Among the study participants, 17,719 (58%) have never been tested for HIV while the rest 12,906 (42%) had been tested. Residence, educational level, wealth index, HIV related stigma, knowledge related to HIV, region, age group, risky sexual behaviour attributes, knowledge about where to test for HIV and knowledge on family planning through mass media were found to be predictors for HIV testing. Conclusion and Recommendation: The results obtained from this research reveal that data mining is crucial in extracting relevant information for the effective utilization of HIV testing services which has clinical, community and public health importance at all levels. It is vital to apply different data mining techniques for the same settings and compare the model performances (based on accuracy, sensitivity, and specificity) with each other. Furthermore, this study would also invite interested researchers to explore more on the application of data mining techniques in healthcare industry or else in related and similar settings for the future.展开更多
Lakes are an important component of the earth climate system. They play an important role in the study of basin weather forecasting, air quality forecasting, and regional climate research. The accuracy of driving vari...Lakes are an important component of the earth climate system. They play an important role in the study of basin weather forecasting, air quality forecasting, and regional climate research. The accuracy of driving variables is the basic premise to ensure the rationality of lake mode simulation. Based on the in-situ observations at Bifenggang site of the Lake Taihu Eddy flux Network from 2012 to 2017, this paper investigated temporal variations in temperature, relative humidity, wind speed, radiation components at different time scales (hourly, seasonal and interannual). ERA5 reanalysis data were compared with in-situ observation to quantify the error and evaluate the performance of reanalysis data. The results show that: 1) On the hourly scale, the ERA5 reanalysis data described air temperature, and downward long-wave radiation more accurately. 2) On the seasonal variation scale, the ERA5 reanalysis data described air temperature, and downward long-wave radiation more accurately. However, the descriptions of wind speed, relative humidity and downward short-wave have large deviations. 3) On the interannual scale, the ERA5 reanalysis data show a good performance for temperature, followed by downward longwave radiation, downward shortwave radiation and relative humidity.展开更多
Recently land-use change has been the main concern for worldwide environment change and is being used by city and regional planners to design sustainable cities. Nakuru in the central Rift Valley of Kenya has undergon...Recently land-use change has been the main concern for worldwide environment change and is being used by city and regional planners to design sustainable cities. Nakuru in the central Rift Valley of Kenya has undergone rapid urban growth in last decade. This paper focused on urban growth using multi-sensor satellite imageries and explored the potential benefits of combining data from optical sensors (Landsat, Worldview-2) with Radar sensor data from Advanced Land Observing Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR) data for urban land-use mapping. Landsat has sufficient spectral bands allowing for better delineation of urban green and impervious surface, Worldview-2 has a higher spatial resolution and facilitates urban growth mapping while PALSAR has higher temporal resolution compared to other operational sensors and has the capability of penetrating clouds irrespective of weather conditions and time of day, a condition prevalent in Nakuru, because it lies in a tropical area. Several classical and modern classifiers namely maximum likelihood (ML) and support vector machine (SVM) were applied for image classification and their performance assessed. The land-use data of the years 1986, 2000 and 2010 were compiled and analyzed using post classification comparison (PCC). The value of combining multi-temporal Landsat imagery and PALSAR was explored and achieved in this research. Our research illustrated that SVM algorithm yielded better results compared to ML. The integration of Landsat and ALOS PALSAR gave good results compared to when ALOS PAL- SAR was classified alone. 19.70 km2 of land changed to urban land-use from non-urban land-use between the years 2000 to 2010 indicating rapid urban growth has taken place. Land-use information is useful for the comprehensive land-use planning and an integrated management of resources to ensure sustainability of land and to achieve social Eq- uity, economic efficiency and environmental sustainability.展开更多
基金National Natural Science Foundation of China(41475120)
文摘Using the International Comprehensive Ocean-Atmosphere Data Set(ICOADS) and ERA-Interim data, spatial distributions of air-sea temperature difference(ASTD) in the South China Sea(SCS) for the past 35 years are compared,and variations of spatial and temporal distributions of ASTD in this region are addressed using empirical orthogonal function decomposition and wavelet analysis methods. The results indicate that both ICOADS and ERA-Interim data can reflect actual distribution characteristics of ASTD in the SCS, but values of ASTD from the ERA-Interim data are smaller than those of the ICOADS data in the same region. In addition, the ASTD characteristics from the ERA-Interim data are not obvious inshore. A seesaw-type, north-south distribution of ASTD is dominant in the SCS; i.e., a positive peak in the south is associated with a negative peak in the north in November, and a negative peak in the south is accompanied by a positive peak in the north during April and May. Interannual ASTD variations in summer or autumn are decreasing. There is a seesaw-type distribution of ASTD between Beibu Bay and most of the SCS in summer, and the center of large values is in the Nansha Islands area in autumn. The ASTD in the SCS has a strong quasi-3a oscillation period in all seasons, and a quasi-11 a period in winter and spring. The ASTD is positively correlated with the Nio3.4 index in summer and autumn but negatively correlated in spring and winter.
基金This study is supported by the Key Program of Chinese Academy of Sciences KZCX3 SW-221the National Natural Science Foundation of China(Grant No.40233033 and 40221503).
文摘A comparison study is performed to contrast the improvements in the tropical Pacific oceanic state of a low-resolution model respectively via data assimilation and by an increase in horizontal resolution. A low resolution model (LR) (1°lat by 2°lon) and a high-resolution model (HR) (0.5°lat by 0.5°lon) are employed for the comparison. The authors perform 20-yr numerical experiments and analyze the annual mean fields of temperature and salinity. The results indicate that the low-resolution model with data assimilation behaves better than the high-resolution model in the estimation of ocean large-scale features. From 1990 to 2000, the average of HR's RMSE (root-mean-square error) relative to independent Tropical Atmosphere Ocean project (TAO) mooring data at randomly selected points is 0.97℃ compared to a RMSE of 0.56℃ for LR with temperature assimilation. Moreover, the LR with data assimilation is more frugal in computation. Although there is room to improve the high-resolution model, the low-resolution model with data assimilation may be an advisable choice in achieving a more realistic large-scale state of the ocean at the limited level of information provided by the current observational system.
基金Sponsored by the Natural Science Fundation of Jiangxi Province(Grant No.20114BAB211026 and 20122BAB201028)the Open Science Fund from Key Laboratory of Radioactive Geology and Exploration Technology Fundamental Science for National Defense,East China Institute of Technology(Grant No.2010RGET11)
文摘The extraction of spectral parameters is very difficult because of the limited energy resolution for NaI (TI) gamma-ray detectors. For statistical fluctuation of radioactivity under complex environment, some smoothing filtering methods are proposed to solve the problem. These methods include adopting method of arithmetic moving average, center of gravity, least squares of polynomial, slide converter of discrete funcion convolution etc. The process of spectrum data is realized, and the results are assessed in H/FWHM( Peak High/Full Width at Half Maximum) and peak area based on the Matlab programming. The results indicate that different methods smoothed spectrum have respective superiority in different ergoregion, but the Gaussian function theory in discrete function convolution slide method is used to filter the complex y-spectrum on Embedded system nlatform, and the statistical fluctuation of y-snectrum filtered wall.
文摘Introduction: The present work compared the prediction power of the different data mining techniques used to develop the HIV testing prediction model. Four popular data mining algorithms (Decision tree, Naive Bayes, Neural network, logistic regression) were used to build the model that predicts whether an individual was being tested for HIV among adults in Ethiopia using EDHS 2011. The final experimentation results indicated that the decision tree (random tree algorithm) performed the best with accuracy of 96%, the decision tree induction method (J48) came out to be the second best with a classification accuracy of 79%, followed by neural network (78%). Logistic regression has also achieved the least classification accuracy of 74%. Objectives: The objective of this study is to compare the prediction power of the different data mining techniques used to develop the HIV testing prediction model. Methods: Cross-Industry Standard Process for Data Mining (CRISP-DM) was used to predict the model for HIV testing and explore association rules between HIV testing and the selected attributes. Data preprocessing was performed and missing values for the categorical variable were replaced by the modal value of the variable. Different data mining techniques were used to build the predictive model. Results: The target dataset contained 30,625 study participants. Out of which 16,515 (54%) participants were women while the rest 14,110 (46%) were men. The age of the participants in the dataset ranged from 15 to 59 years old with modal age of 15 - 19 years old. Among the study participants, 17,719 (58%) have never been tested for HIV while the rest 12,906 (42%) had been tested. Residence, educational level, wealth index, HIV related stigma, knowledge related to HIV, region, age group, risky sexual behaviour attributes, knowledge about where to test for HIV and knowledge on family planning through mass media were found to be predictors for HIV testing. Conclusion and Recommendation: The results obtained from this research reveal that data mining is crucial in extracting relevant information for the effective utilization of HIV testing services which has clinical, community and public health importance at all levels. It is vital to apply different data mining techniques for the same settings and compare the model performances (based on accuracy, sensitivity, and specificity) with each other. Furthermore, this study would also invite interested researchers to explore more on the application of data mining techniques in healthcare industry or else in related and similar settings for the future.
文摘Lakes are an important component of the earth climate system. They play an important role in the study of basin weather forecasting, air quality forecasting, and regional climate research. The accuracy of driving variables is the basic premise to ensure the rationality of lake mode simulation. Based on the in-situ observations at Bifenggang site of the Lake Taihu Eddy flux Network from 2012 to 2017, this paper investigated temporal variations in temperature, relative humidity, wind speed, radiation components at different time scales (hourly, seasonal and interannual). ERA5 reanalysis data were compared with in-situ observation to quantify the error and evaluate the performance of reanalysis data. The results show that: 1) On the hourly scale, the ERA5 reanalysis data described air temperature, and downward long-wave radiation more accurately. 2) On the seasonal variation scale, the ERA5 reanalysis data described air temperature, and downward long-wave radiation more accurately. However, the descriptions of wind speed, relative humidity and downward short-wave have large deviations. 3) On the interannual scale, the ERA5 reanalysis data show a good performance for temperature, followed by downward longwave radiation, downward shortwave radiation and relative humidity.
文摘Recently land-use change has been the main concern for worldwide environment change and is being used by city and regional planners to design sustainable cities. Nakuru in the central Rift Valley of Kenya has undergone rapid urban growth in last decade. This paper focused on urban growth using multi-sensor satellite imageries and explored the potential benefits of combining data from optical sensors (Landsat, Worldview-2) with Radar sensor data from Advanced Land Observing Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR) data for urban land-use mapping. Landsat has sufficient spectral bands allowing for better delineation of urban green and impervious surface, Worldview-2 has a higher spatial resolution and facilitates urban growth mapping while PALSAR has higher temporal resolution compared to other operational sensors and has the capability of penetrating clouds irrespective of weather conditions and time of day, a condition prevalent in Nakuru, because it lies in a tropical area. Several classical and modern classifiers namely maximum likelihood (ML) and support vector machine (SVM) were applied for image classification and their performance assessed. The land-use data of the years 1986, 2000 and 2010 were compiled and analyzed using post classification comparison (PCC). The value of combining multi-temporal Landsat imagery and PALSAR was explored and achieved in this research. Our research illustrated that SVM algorithm yielded better results compared to ML. The integration of Landsat and ALOS PALSAR gave good results compared to when ALOS PAL- SAR was classified alone. 19.70 km2 of land changed to urban land-use from non-urban land-use between the years 2000 to 2010 indicating rapid urban growth has taken place. Land-use information is useful for the comprehensive land-use planning and an integrated management of resources to ensure sustainability of land and to achieve social Eq- uity, economic efficiency and environmental sustainability.