期刊文献+
共找到4,402篇文章
< 1 2 221 >
每页显示 20 50 100
A comparative study of data-driven battery capacity estimation based on partial charging curves 被引量:1
1
作者 Chuanping Lin Jun Xu +5 位作者 Delong Jiang Jiayang Hou Ying Liang Xianggong Zhang Enhu Li Xuesong Mei 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期409-420,I0010,共13页
With its generality and practicality, the combination of partial charging curves and machine learning(ML) for battery capacity estimation has attracted widespread attention. However, a clear classification,fair compar... With its generality and practicality, the combination of partial charging curves and machine learning(ML) for battery capacity estimation has attracted widespread attention. However, a clear classification,fair comparison, and performance rationalization of these methods are lacking, due to the scattered existing studies. To address these issues, we develop 20 capacity estimation methods from three perspectives:charging sequence construction, input forms, and ML models. 22,582 charging curves are generated from 44 cells with different battery chemistry and operating conditions to validate the performance. Through comprehensive and unbiased comparison, the long short-term memory(LSTM) based neural network exhibits the best accuracy and robustness. Across all 6503 tested samples, the mean absolute percentage error(MAPE) for capacity estimation using LSTM is 0.61%, with a maximum error of only 3.94%. Even with the addition of 3 m V voltage noise or the extension of sampling intervals to 60 s, the average MAPE remains below 2%. Furthermore, the charging sequences are provided with physical explanations related to battery degradation to enhance confidence in their application. Recommendations for using other competitive methods are also presented. This work provides valuable insights and guidance for estimating battery capacity based on partial charging curves. 展开更多
关键词 Lithium-ion battery Partial charging curves Capacity estimation data-driven Sampling frequency
下载PDF
Data-driven casting defect prediction model for sand casting based on random forest classification algorithm 被引量:1
2
作者 Bang Guan Dong-hong Wang +3 位作者 Da Shu Shou-qin Zhu Xiao-yuan Ji Bao-de Sun 《China Foundry》 SCIE EI CAS CSCD 2024年第2期137-146,共10页
The complex sand-casting process combined with the interactions between process parameters makes it difficult to control the casting quality,resulting in a high scrap rate.A strategy based on a data-driven model was p... The complex sand-casting process combined with the interactions between process parameters makes it difficult to control the casting quality,resulting in a high scrap rate.A strategy based on a data-driven model was proposed to reduce casting defects and improve production efficiency,which includes the random forest(RF)classification model,the feature importance analysis,and the process parameters optimization with Monte Carlo simulation.The collected data includes four types of defects and corresponding process parameters were used to construct the RF model.Classification results show a recall rate above 90% for all categories.The Gini Index was used to assess the importance of the process parameters in the formation of various defects in the RF model.Finally,the classification model was applied to different production conditions for quality prediction.In the case of process parameters optimization for gas porosity defects,this model serves as an experimental process in the Monte Carlo method to estimate a better temperature distribution.The prediction model,when applied to the factory,greatly improved the efficiency of defect detection.Results show that the scrap rate decreased from 10.16% to 6.68%. 展开更多
关键词 sand casting process data-driven method classification model quality prediction feature importance
下载PDF
Expert Experience and Data-Driven Based Hybrid Fault Diagnosis for High-SpeedWire Rod Finishing Mills 被引量:1
3
作者 Cunsong Wang Ningze Tang +3 位作者 Quanling Zhang Lixin Gao Haichen Yin Hao Peng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1827-1847,共21页
The reliable operation of high-speed wire rod finishing mills is crucial in the steel production enterprise.As complex system-level equipment,it is difficult for high-speed wire rod finishing mills to realize fault lo... The reliable operation of high-speed wire rod finishing mills is crucial in the steel production enterprise.As complex system-level equipment,it is difficult for high-speed wire rod finishing mills to realize fault location and real-time monitoring.To solve the above problems,an expert experience and data-driven-based hybrid fault diagnosis method for high-speed wire rod finishing mills is proposed in this paper.First,based on its mechanical structure,time and frequency domain analysis are improved in fault feature extraction.The approach of combining virtual value,peak value with kurtosis value index,is adopted in time domain analysis.Speed adjustment and side frequency analysis are proposed in frequency domain analysis to obtain accurate component characteristic frequency and its corresponding sideband.Then,according to time and frequency domain characteristics,fault location based on expert experience is proposed to get an accurate fault result.Finally,the proposed method is implemented in the equipment intelligent diagnosis system.By taking an equipment fault on site,for example,the effectiveness of the proposed method is illustrated in the system. 展开更多
关键词 High-speed wire rod finishing mills expert experience data-driven fault diagnosis
下载PDF
An efficient data-driven global sensitivity analysis method of shale gas production through convolutional neural network
4
作者 Liang Xue Shuai Xu +4 位作者 Jie Nie Ji Qin Jiang-Xia Han Yue-Tian Liu Qin-Zhuo Liao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2475-2484,共10页
The shale gas development process is complex in terms of its flow mechanisms and the accuracy of the production forecasting is influenced by geological parameters and engineering parameters.Therefore,to quantitatively... The shale gas development process is complex in terms of its flow mechanisms and the accuracy of the production forecasting is influenced by geological parameters and engineering parameters.Therefore,to quantitatively evaluate the relative importance of model parameters on the production forecasting performance,sensitivity analysis of parameters is required.The parameters are ranked according to the sensitivity coefficients for the subsequent optimization scheme design.A data-driven global sensitivity analysis(GSA)method using convolutional neural networks(CNN)is proposed to identify the influencing parameters in shale gas production.The CNN is trained on a large dataset,validated against numerical simulations,and utilized as a surrogate model for efficient sensitivity analysis.Our approach integrates CNN with the Sobol'global sensitivity analysis method,presenting three key scenarios for sensitivity analysis:analysis of the production stage as a whole,analysis by fixed time intervals,and analysis by declining rate.The findings underscore the predominant influence of reservoir thickness and well length on shale gas production.Furthermore,the temporal sensitivity analysis reveals the dynamic shifts in parameter importance across the distinct production stages. 展开更多
关键词 Shale gas Global sensitivity Convolutional neural network data-driven
下载PDF
Data-Driven Learning Control Algorithms for Unachievable Tracking Problems
5
作者 Zeyi Zhang Hao Jiang +1 位作者 Dong Shen Samer S.Saab 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期205-218,共14页
For unachievable tracking problems, where the system output cannot precisely track a given reference, achieving the best possible approximation for the reference trajectory becomes the objective. This study aims to in... For unachievable tracking problems, where the system output cannot precisely track a given reference, achieving the best possible approximation for the reference trajectory becomes the objective. This study aims to investigate solutions using the Ptype learning control scheme. Initially, we demonstrate the necessity of gradient information for achieving the best approximation.Subsequently, we propose an input-output-driven learning gain design to handle the imprecise gradients of a class of uncertain systems. However, it is discovered that the desired performance may not be attainable when faced with incomplete information.To address this issue, an extended iterative learning control scheme is introduced. In this scheme, the tracking errors are modified through output data sampling, which incorporates lowmemory footprints and offers flexibility in learning gain design.The input sequence is shown to converge towards the desired input, resulting in an output that is closest to the given reference in the least square sense. Numerical simulations are provided to validate the theoretical findings. 展开更多
关键词 data-driven algorithms incomplete information iterative learning control gradient information unachievable problems
下载PDF
Data-driven prediction of dimensionless quantities for semi-infinite target penetration by integrating machine-learning and feature selection methods
6
作者 Qingqing Chen Xinyu Zhang +2 位作者 Zhiyong Wang Jie Zhang Zhihua Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第10期105-124,共20页
This study employs a data-driven methodology that embeds the principle of dimensional invariance into an artificial neural network to automatically identify dominant dimensionless quantities in the penetration of rod ... This study employs a data-driven methodology that embeds the principle of dimensional invariance into an artificial neural network to automatically identify dominant dimensionless quantities in the penetration of rod projectiles into semi-infinite metal targets from experimental measurements.The derived mathematical expressions of dimensionless quantities are simplified by the examination of the exponent matrix and coupling relationships between feature variables.As a physics-based dimension reduction methodology,this way reduces high-dimensional parameter spaces to descriptions involving only a few physically interpretable dimensionless quantities in penetrating cases.Then the relative importance of various dimensionless feature variables on the penetration efficiencies for four impacting conditions is evaluated through feature selection engineering.The results indicate that the selected critical dimensionless feature variables by this synergistic method,without referring to the complex theoretical equations and aiding in the detailed knowledge of penetration mechanics,are in accordance with those reported in the reference.Lastly,the determined dimensionless quantities can be efficiently applied to conduct semi-empirical analysis for the specific penetrating case,and the reliability of regression functions is validated. 展开更多
关键词 data-driven dimensional analysis PENETRATION Semi-infinite metal target Dimensionless numbers Feature selection
下载PDF
A review of data-driven whole-life state of health prediction for lithium-ion batteries:Data preprocessing,aging characteristics,algorithms,and future challenges
7
作者 Yanxin Xie Shunli Wang +3 位作者 Gexiang Zhang Paul Takyi-Aninakwa Carlos Fernandez Frede Blaabjerg 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期630-649,I0013,共21页
Lithium-ion batteries are the preferred green energy storage method and are equipped with intelligent battery management systems(BMSs)that efficiently manage the batteries.This not only ensures the safety performance ... Lithium-ion batteries are the preferred green energy storage method and are equipped with intelligent battery management systems(BMSs)that efficiently manage the batteries.This not only ensures the safety performance of the batteries but also significantly improves their efficiency and reduces their damage rate.Throughout their whole life cycle,lithium-ion batteries undergo aging and performance degradation due to diverse external environments and irregular degradation of internal materials.This degradation is reflected in the state of health(SOH)assessment.Therefore,this review offers the first comprehensive analysis of battery SOH estimation strategies across the entire lifecycle over the past five years,highlighting common research focuses rooted in data-driven methods.It delves into various dimensions such as dataset integration and preprocessing,health feature parameter extraction,and the construction of SOH estimation models.These approaches unearth hidden insights within data,addressing the inherent tension between computational complexity and estimation accuracy.To enha nce support for in-vehicle implementation,cloud computing,and the echelon technologies of battery recycling,remanufacturing,and reuse,as well as to offer insights into these technologies,a segmented management approach will be introduced in the future.This will encompass source domain data processing,multi-feature factor reconfiguration,hybrid drive modeling,parameter correction mechanisms,and fulltime health management.Based on the best SOH estimation outcomes,health strategies tailored to different stages can be devised in the future,leading to the establishment of a comprehensive SOH assessment framework.This will mitigate cross-domain distribution disparities and facilitate adaptation to a broader array of dynamic operation protocols.This article reviews the current research landscape from four perspectives and discusses the challenges that lie ahead.Researchers and practitioners can gain a comprehensive understanding of battery SOH estimation methods,offering valuable insights for the development of advanced battery management systems and embedded application research. 展开更多
关键词 Lithium-ion batteries Whole life cycle Aging mechanism data-driven approach State of health Battery management system
下载PDF
A hybrid physics-informed data-driven neural network for CO_(2) storage in depleted shale reservoirs
8
作者 Yan-Wei Wang Zhen-Xue Dai +3 位作者 Gui-Sheng Wang Li Chen Yu-Zhou Xia Yu-Hao Zhou 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期286-301,共16页
To reduce CO_(2) emissions in response to global climate change,shale reservoirs could be ideal candidates for long-term carbon geo-sequestration involving multi-scale transport processes.However,most current CO_(2) s... To reduce CO_(2) emissions in response to global climate change,shale reservoirs could be ideal candidates for long-term carbon geo-sequestration involving multi-scale transport processes.However,most current CO_(2) sequestration models do not adequately consider multiple transport mechanisms.Moreover,the evaluation of CO_(2) storage processes usually involves laborious and time-consuming numerical simulations unsuitable for practical prediction and decision-making.In this paper,an integrated model involving gas diffusion,adsorption,dissolution,slip flow,and Darcy flow is proposed to accurately characterize CO_(2) storage in depleted shale reservoirs,supporting the establishment of a training database.On this basis,a hybrid physics-informed data-driven neural network(HPDNN)is developed as a deep learning surrogate for prediction and inversion.By incorporating multiple sources of scientific knowledge,the HPDNN can be configured with limited simulation resources,significantly accelerating the forward and inversion processes.Furthermore,the HPDNN can more intelligently predict injection performance,precisely perform reservoir parameter inversion,and reasonably evaluate the CO_(2) storage capacity under complicated scenarios.The validation and test results demonstrate that the HPDNN can ensure high accuracy and strong robustness across an extensive applicability range when dealing with field data with multiple noise sources.This study has tremendous potential to replace traditional modeling tools for predicting and making decisions about CO_(2) storage projects in depleted shale reservoirs. 展开更多
关键词 Deep learning Physics-informed data-driven neural network Depleted shale reservoirs CO_(2)storage Transport mechanisms
下载PDF
Data-driven diagnosis of high temperature PEM fuel cells based on the electrochemical impedance spectroscopy: Robustness improvement and evaluation
9
作者 Dan Yu Xingjun Li +2 位作者 Samuel Simon Araya Simon Lennart Sahlin Vincenzo Liso 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期544-558,共15页
Utilizing machine learning techniques for data-driven diagnosis of high temperature PEM fuel cells is beneficial and meaningful to the system durability. Nevertheless, ensuring the robustness of diagnosis remains a cr... Utilizing machine learning techniques for data-driven diagnosis of high temperature PEM fuel cells is beneficial and meaningful to the system durability. Nevertheless, ensuring the robustness of diagnosis remains a critical and challenging task in real application. To enhance the robustness of diagnosis and achieve a more thorough evaluation of diagnostic performance, a robust diagnostic procedure based on electrochemical impedance spectroscopy (EIS) and a new method for evaluation of the diagnosis robustness was proposed and investigated in this work. To improve the diagnosis robustness: (1) the degradation mechanism of different faults in the high temperature PEM fuel cell was first analyzed via the distribution of relaxation time of EIS to determine the equivalent circuit model (ECM) with better interpretability, simplicity and accuracy;(2) the feature extraction was implemented on the identified parameters of the ECM and extra attention was paid to distinguishing between the long-term normal degradation and other faults;(3) a Siamese Network was adopted to get features with higher robustness in a new embedding. The diagnosis was conducted using 6 classic classification algorithms—support vector machine (SVM), K-nearest neighbor (KNN), logistic regression (LR), decision tree (DT), random forest (RF), and Naive Bayes employing a dataset comprising a total of 1935 collected EIS. To evaluate the robustness of trained models: (1) different levels of errors were added to the features for performance evaluation;(2) a robustness coefficient (Roubust_C) was defined for a quantified and explicit evaluation of the diagnosis robustness. The diagnostic models employing the proposed feature extraction method can not only achieve the higher performance of around 100% but also higher robustness for diagnosis models. Despite the initial performance being similar, the KNN demonstrated a superior robustness after feature selection and re-embedding by triplet-loss method, which suggests the necessity of robustness evaluation for the machine learning models and the effectiveness of the defined robustness coefficient. This work hopes to give new insights to the robust diagnosis of high temperature PEM fuel cells and more comprehensive performance evaluation of the data-driven method for diagnostic application. 展开更多
关键词 PEM fuel cell data-driven diagnosis Robustness improvement and evaluation Electrochemical impedance spectroscopy
下载PDF
Noise-Tolerant ZNN-Based Data-Driven Iterative Learning Control for Discrete Nonaffine Nonlinear MIMO Repetitive Systems
10
作者 Yunfeng Hu Chong Zhang +4 位作者 Bo Wang Jing Zhao Xun Gong Jinwu Gao Hong Chen 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第2期344-361,共18页
Aiming at the tracking problem of a class of discrete nonaffine nonlinear multi-input multi-output(MIMO) repetitive systems subjected to separable and nonseparable disturbances, a novel data-driven iterative learning ... Aiming at the tracking problem of a class of discrete nonaffine nonlinear multi-input multi-output(MIMO) repetitive systems subjected to separable and nonseparable disturbances, a novel data-driven iterative learning control(ILC) scheme based on the zeroing neural networks(ZNNs) is proposed. First, the equivalent dynamic linearization data model is obtained by means of dynamic linearization technology, which exists theoretically in the iteration domain. Then, the iterative extended state observer(IESO) is developed to estimate the disturbance and the coupling between systems, and the decoupled dynamic linearization model is obtained for the purpose of controller synthesis. To solve the zero-seeking tracking problem with inherent tolerance of noise,an ILC based on noise-tolerant modified ZNN is proposed. The strict assumptions imposed on the initialization conditions of each iteration in the existing ILC methods can be absolutely removed with our method. In addition, theoretical analysis indicates that the modified ZNN can converge to the exact solution of the zero-seeking tracking problem. Finally, a generalized example and an application-oriented example are presented to verify the effectiveness and superiority of the proposed process. 展开更多
关键词 Adaptive control control system synthesis data-driven iterative learning control neurocontroller nonlinear discrete time systems
下载PDF
Data-Driven Control of Distributed Event-Triggered Network Systems 被引量:7
11
作者 Xin Wang Jian Sun +2 位作者 Gang Wang Frank Allgower Jie Chen 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第2期351-364,共14页
The present paper deals with data-driven event-triggered control of a class of unknown discrete-time interconnected systems(a.k.a.network systems).To this end,we start by putting forth a novel distributed event-trigge... The present paper deals with data-driven event-triggered control of a class of unknown discrete-time interconnected systems(a.k.a.network systems).To this end,we start by putting forth a novel distributed event-triggering transmission strategy based on periodic sampling,under which a model-based stability criterion for the closed-loop network system is derived,by leveraging a discrete-time looped-functional approach.Marrying the model-based criterion with a data-driven system representation recently developed in the literature,a purely data-driven stability criterion expressed in the form of linear matrix inequalities(LMIs)is established.Meanwhile,the data-driven stability criterion suggests a means for co-designing the event-triggering coefficient matrix and the feedback control gain matrix using only some offline collected state-input data.Finally,numerical results corroborate the efficacy of the proposed distributed data-driven event-triggered network system(ETS)in cutting off data transmissions and the co-design procedure. 展开更多
关键词 data-driven control distributed event-triggered network system(ETS) linear matrix inequalitie(LMI) looped-functional STABILITY
下载PDF
Shale gas production evaluation framework based on data-driven models 被引量:4
12
作者 You-Wei He Zhi-Yue He +3 位作者 Yong Tang Ying-Jie Xu Ji-Chang Long Kamy Sepehrnoori 《Petroleum Science》 SCIE EI CAS CSCD 2023年第3期1659-1675,共17页
Increasing the production and utilization of shale gas is of great significance for building a clean and low-carbon energy system.Sharp decline of gas production has been widely observed in shale gas reservoirs.How to... Increasing the production and utilization of shale gas is of great significance for building a clean and low-carbon energy system.Sharp decline of gas production has been widely observed in shale gas reservoirs.How to forecast shale gas production is still challenging due to complex fracture networks,dynamic fracture properties,frac hits,complicated multiphase flow,and multi-scale flow as well as data quality and uncertainty.This work develops an integrated framework for evaluating shale gas well production based on data-driven models.Firstly,a comprehensive dominated-factor system has been established,including geological,drilling,fracturing,and production factors.Data processing and visualization are required to ensure data quality and determine final data set.A shale gas production evaluation model is developed to evaluate shale gas production levels.Finally,the random forest algorithm is used to forecast shale gas production.The prediction accuracy of shale gas production level is higher than 95%based on the shale gas reservoirs in China.Forty-one wells are randomly selected to predict cumulative gas production using the optimal regression model.The proposed shale gas production evaluation frame-work overcomes too many assumptions of analytical or semi-analytical models and avoids huge computation cost and poor generalization for numerical modelling. 展开更多
关键词 Shale gas Production evaluation Production prediction data-driven models Carbon neutrality
下载PDF
Data-Driven Deep Learning for OTFS Detection 被引量:4
13
作者 Yi Gong Qingyu Li +2 位作者 Fanke Meng Xinru Li Zhan Xu 《China Communications》 SCIE CSCD 2023年第1期88-101,共14页
Recently,orthogonal time frequency space(OTFS)was presented to alleviate severe Doppler effects in high mobility scenarios.Most of the current OTFS detection schemes rely on perfect channel state information(CSI).Howe... Recently,orthogonal time frequency space(OTFS)was presented to alleviate severe Doppler effects in high mobility scenarios.Most of the current OTFS detection schemes rely on perfect channel state information(CSI).However,in real-life systems,the parameters of channels will constantly change,which are often difficult to capture and describe.In this paper,we summarize the existing research on OTFS detection based on data-driven deep learning(DL)and propose three new network structures.The presented three networks include a residual network(ResNet),a dense network(DenseNet),and a residual dense network(RDN)for OTFS detection.The detection schemes based on data-driven paradigms do not require a model that is easy to handle mathematically.Meanwhile,compared with the existing fully connected-deep neural network(FC-DNN)and standard convolutional neural network(CNN),these three new networks can alleviate the problems of gradient explosion and gradient disappearance.Through simulation,it is proved that RDN has the best performance among the three proposed schemes due to the combination of shallow and deep features.RDN can solve the issue of performance loss caused by the traditional network not fully utilizing all the hierarchical information. 展开更多
关键词 data-driven deep learning OTFS DETECTION
下载PDF
DADOS:A Cloud-based Data-driven Design Optimization System 被引量:2
14
作者 Xueguan Song Shuo Wang +2 位作者 Yonggang Zhao Yin Liu Kunpeng Li 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第2期50-66,共17页
This paper presents a cloud-based data-driven design optimization system,named DADOS,to help engineers and researchers improve a design or product easily and efficiently.DADOS has nearly 30 key algorithms,including th... This paper presents a cloud-based data-driven design optimization system,named DADOS,to help engineers and researchers improve a design or product easily and efficiently.DADOS has nearly 30 key algorithms,including the design of experiments,surrogate models,model validation and selection,prediction,optimization,and sensitivity analysis.Moreover,it also includes an exclusive ensemble surrogate modeling technique,the extended hybrid adaptive function,which can make use of the advantages of each surrogate and eliminate the effort of selecting the appropriate individual surrogate.To improve ease of use,DADOS provides a user-friendly graphical user interface and employed flow-based programming so that users can conduct design optimization just by dragging,dropping,and connecting algorithm blocks into a workflow instead of writing massive code.In addition,DADOS allows users to visualize the results to gain more insights into the design problems,allows multi-person collaborating on a project at the same time,and supports multi-disciplinary optimization.This paper also details the architecture and the user interface of DADOS.Two examples were employed to demonstrate how to use DADOS to conduct data-driven design optimization.Since DADOS is a cloud-based system,anyone can access DADOS at www.dados.com.cn using their web browser without the need for installation or powerful hardware. 展开更多
关键词 data-driven OPTIMIZATION Cloud-based software Design of experiments Surrogate model
下载PDF
Hybrid data-driven framework for shale gas production performance analysis via game theory, machine learning, and optimization approaches 被引量:1
15
作者 Jin Meng Yu-Jie Zhou +4 位作者 Tian-Rui Ye Yi-Tian Xiao Ya-Qiu Lu Ai-Wei Zheng Bang Liang 《Petroleum Science》 SCIE EI CAS CSCD 2023年第1期277-294,共18页
A comprehensive and precise analysis of shale gas production performance is crucial for evaluating resource potential,designing a field development plan,and making investment decisions.However,quantitative analysis ca... A comprehensive and precise analysis of shale gas production performance is crucial for evaluating resource potential,designing a field development plan,and making investment decisions.However,quantitative analysis can be challenging because production performance is dominated by the complex interaction among a series of geological and engineering factors.In fact,each factor can be viewed as a player who makes cooperative contributions to the production payoff within the constraints of physical laws and models.Inspired by the idea,we propose a hybrid data-driven analysis framework in this study,where the contributions of dominant factors are quantitatively evaluated,the productions are precisely forecasted,and the development optimization suggestions are comprehensively generated.More specifically,game theory and machine learning models are coupled to determine the dominating geological and engineering factors.The Shapley value with definite physical meaning is employed to quantitatively measure the effects of individual factors.A multi-model-fused stacked model is trained for production forecast,which provides the basis for derivative-free optimization algorithms to optimize the development plan.The complete workflow is validated with actual production data collected from the Fuling shale gas field,Sichuan Basin,China.The validation results show that the proposed procedure can draw rigorous conclusions with quantified evidence and thereby provide specific and reliable suggestions for development plan optimization.Comparing with traditional and experience-based approaches,the hybrid data-driven procedure is advanced in terms of both efficiency and accuracy. 展开更多
关键词 Shale gas Production performance data-driven Dominant factors Game theory Machine learning Derivative-free optimization
下载PDF
Data-driven intelligent modeling framework for the steam cracking process 被引量:1
16
作者 Qiming Zhao Kexin Bi Tong Qiu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第9期237-247,共11页
Steam cracking is the dominant technology for producing light olefins,which are believed to be the foundation of the chemical industry.Predictive models of the cracking process can boost production efficiency and prof... Steam cracking is the dominant technology for producing light olefins,which are believed to be the foundation of the chemical industry.Predictive models of the cracking process can boost production efficiency and profit margin.Rapid advancements in machine learning research have recently enabled data-driven solutions to usher in a new era of process modeling.Meanwhile,its practical application to steam cracking is still hindered by the trade-off between prediction accuracy and computational speed.This research presents a framework for data-driven intelligent modeling of the steam cracking process.Industrial data preparation and feature engineering techniques provide computational-ready datasets for the framework,and feedstock similarities are exploited using k-means clustering.We propose LArge-Residuals-Deletion Multivariate Adaptive Regression Spline(LARD-MARS),a modeling approach that explicitly generates output formulas and eliminates potentially outlying instances.The framework is validated further by the presentation of clustering results,the explanation of variable importance,and the testing and comparison of model performance. 展开更多
关键词 Mathematical modeling data-driven modeling Process systems Steam cracking CLUSTERING Multivariate adaptive regression spline
下载PDF
Toward Data-Driven Digital Therapeutics Analytics:Literature Review and Research Directions 被引量:1
17
作者 Uichin Lee Gyuwon Jung +5 位作者 Eun-Yeol Ma Jin San Kim Heepyung Kim Jumabek Alikhanov Youngtae Noh Heeyoung Kim 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第1期42-66,共25页
With the advent of digital therapeutics(DTx),the development of software as a medical device(SaMD)for mobile and wearable devices has gained significant attention in recent years.Existing DTx evaluations,such as rando... With the advent of digital therapeutics(DTx),the development of software as a medical device(SaMD)for mobile and wearable devices has gained significant attention in recent years.Existing DTx evaluations,such as randomized clinical trials,mostly focus on verifying the effectiveness of DTx products.To acquire a deeper understanding of DTx engagement and behavioral adherence,beyond efficacy,a large amount of contextual and interaction data from mobile and wearable devices during field deployment would be required for analysis.In this work,the overall flow of the data-driven DTx analytics is reviewed to help researchers and practitioners to explore DTx datasets,to investigate contextual patterns associated with DTx usage,and to establish the(causal)relationship between DTx engagement and behavioral adherence.This review of the key components of datadriven analytics provides novel research directions in the analysis of mobile sensor and interaction datasets,which helps to iteratively improve the receptivity of existing DTx. 展开更多
关键词 Causal inference data-driven analytics framework digital therapeutics(DTx) mobile and wearable data technical and behavioral engagement
下载PDF
Data-driven source-load robust optimal scheduling of integrated energy production unit including hydrogen energy coupling 被引量:1
18
作者 Jinling Lu Dingyue Huang Hui Ren 《Global Energy Interconnection》 EI CSCD 2023年第4期375-388,共14页
A robust low-carbon economic optimal scheduling method that considers source-load uncertainty and hydrogen energy utilization is developed.The proposed method overcomes the challenge of source-load random fluctuations... A robust low-carbon economic optimal scheduling method that considers source-load uncertainty and hydrogen energy utilization is developed.The proposed method overcomes the challenge of source-load random fluctuations in integrated energy systems(IESs)in the operation scheduling problem of integrated energy production units(IEPUs).First,to solve the problem of inaccurate prediction of renewable energy output,an improved robust kernel density estimation method is proposed to construct a data-driven uncertainty output set of renewable energy sources statistically and build a typical scenario of load uncertainty using stochastic scenario reduction.Subsequently,to resolve the problem of insufficient utilization of hydrogen energy in existing IEPUs,a robust low-carbon economic optimal scheduling model of the source-load interaction of an IES with a hydrogen energy system is established.The system considers the further utilization of energy using hydrogen energy coupling equipment(such as hydrogen storage devices and fuel cells)and the comprehensive demand response of load-side schedulable resources.The simulation results show that the proposed robust stochastic optimization model driven by data can effectively reduce carbon dioxide emissions,improve the source-load interaction of the IES,realize the efficient use of hydrogen energy,and improve system robustness. 展开更多
关键词 Hydrogen energy coupling data-driven Robust kernel density estimation Robust optimization Integrated demand response
下载PDF
Augmented Industrial Data-Driven Modeling Under the Curse of Dimensionality
19
作者 Xiaoyu Jiang Xiangyin Kong Zhiqiang Ge 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第6期1445-1461,共17页
The curse of dimensionality refers to the problem o increased sparsity and computational complexity when dealing with high-dimensional data.In recent years,the types and vari ables of industrial data have increased si... The curse of dimensionality refers to the problem o increased sparsity and computational complexity when dealing with high-dimensional data.In recent years,the types and vari ables of industrial data have increased significantly,making data driven models more challenging to develop.To address this prob lem,data augmentation technology has been introduced as an effective tool to solve the sparsity problem of high-dimensiona industrial data.This paper systematically explores and discusses the necessity,feasibility,and effectiveness of augmented indus trial data-driven modeling in the context of the curse of dimen sionality and virtual big data.Then,the process of data augmen tation modeling is analyzed,and the concept of data boosting augmentation is proposed.The data boosting augmentation involves designing the reliability weight and actual-virtual weigh functions,and developing a double weighted partial least squares model to optimize the three stages of data generation,data fusion and modeling.This approach significantly improves the inter pretability,effectiveness,and practicality of data augmentation in the industrial modeling.Finally,the proposed method is verified using practical examples of fault diagnosis systems and virtua measurement systems in the industry.The results demonstrate the effectiveness of the proposed approach in improving the accu racy and robustness of data-driven models,making them more suitable for real-world industrial applications. 展开更多
关键词 Index Terms—Curse of dimensionality data augmentation data-driven modeling industrial processes machine learning
下载PDF
Hyperparameter optimization for cardiovascular disease data-driven prognostic system
20
作者 Jayson Saputra Cindy Lawrencya +1 位作者 Jecky Mitra Saini Suharjito Suharjito 《Visual Computing for Industry,Biomedicine,and Art》 EI 2023年第1期218-244,共27页
Prediction and diagnosis of cardiovascular diseases(CVDs)based,among other things,on medical examinations and patient symptoms are the biggest challenges in medicine.About 17.9 million people die from CVDs annually,ac... Prediction and diagnosis of cardiovascular diseases(CVDs)based,among other things,on medical examinations and patient symptoms are the biggest challenges in medicine.About 17.9 million people die from CVDs annually,accounting for 31%of all deaths worldwide.With a timely prognosis and thorough consideration of the patient’s medical history and lifestyle,it is possible to predict CVDs and take preventive measures to eliminate or control this life-threatening disease.In this study,we used various patient datasets from a major hospital in the United States as prognostic factors for CVD.The data was obtained by monitoring a total of 918 patients whose criteria for adults were 28-77 years old.In this study,we present a data mining modeling approach to analyze the performance,classification accuracy and number of clusters on Cardiovascular Disease Prognostic datasets in unsupervised machine learning(ML)using the Orange data mining software.Various techniques are then used to classify the model parameters,such as k-nearest neighbors,support vector machine,random forest,artificial neural network(ANN),naïve bayes,logistic regression,stochastic gradient descent(SGD),and AdaBoost.To determine the number of clusters,various unsupervised ML clustering methods were used,such as k-means,hierarchical,and density-based spatial clustering of applications with noise clustering.The results showed that the best model performance analysis and classification accuracy were SGD and ANN,both of which had a high score of 0.900 on Cardiovascular Disease Prognostic datasets.Based on the results of most clustering methods,such as k-means and hierarchical clustering,Cardiovascular Disease Prognostic datasets can be divided into two clusters.The prognostic accuracy of CVD depends on the accuracy of the proposed model in determining the diagnostic model.The more accurate the model,the better it can predict which patients are at risk for CVD. 展开更多
关键词 Cardiovascular disease data-driven analytics Data mining Hyperparameter optimization Orange data mining software Prognostic system Unsupervised machine learning
下载PDF
上一页 1 2 221 下一页 到第
使用帮助 返回顶部