Based on the new data of drilling, seismic, logging, test and experiments, the key scientific problems in reservoir formation, hydrocarbon accumulation and efficient oil and gas development methods of deep and ultra-d...Based on the new data of drilling, seismic, logging, test and experiments, the key scientific problems in reservoir formation, hydrocarbon accumulation and efficient oil and gas development methods of deep and ultra-deep marine carbonate strata in the central and western superimposed basin in China have been continuously studied.(1) The fault-controlled carbonate reservoir and the ancient dolomite reservoir are two important types of reservoirs in the deep and ultra-deep marine carbonates. According to the formation origin, the large-scale fault-controlled reservoir can be further divided into three types:fracture-cavity reservoir formed by tectonic rupture, fault and fluid-controlled reservoir, and shoal and mound reservoir modified by fault and fluid. The Sinian microbial dolomites are developed in the aragonite-dolomite sea. The predominant mound-shoal facies, early dolomitization and dissolution, acidic fluid environment, anhydrite capping and overpressure are the key factors for the formation and preservation of high-quality dolomite reservoirs.(2) The organic-rich shale of the marine carbonate strata in the superimposed basins of central and western China are mainly developed in the sedimentary environments of deep-water shelf of passive continental margin and carbonate ramp. The tectonic-thermal system is the important factor controlling the hydrocarbon phase in deep and ultra-deep reservoirs, and the reformed dynamic field controls oil and gas accumulation and distribution in deep and ultra-deep marine carbonates.(3) During the development of high-sulfur gas fields such as Puguang, sulfur precipitation blocks the wellbore. The application of sulfur solvent combined with coiled tubing has a significant effect on removing sulfur blockage. The integrated technology of dual-medium modeling and numerical simulation based on sedimentary simulation can accurately characterize the spatial distribution and changes of the water invasion front.Afterward, water control strategies for the entire life cycle of gas wells are proposed, including flow rate management, water drainage and plugging.(4) In the development of ultra-deep fault-controlled fractured-cavity reservoirs, well production declines rapidly due to the permeability reduction, which is a consequence of reservoir stress-sensitivity. The rapid phase change in condensate gas reservoir and pressure decline significantly affect the recovery of condensate oil. Innovative development methods such as gravity drive through water and natural gas injection, and natural gas drive through top injection and bottom production for ultra-deep fault-controlled condensate gas reservoirs are proposed. By adopting the hierarchical geological modeling and the fluid-solid-thermal coupled numerical simulation, the accuracy of producing performance prediction in oil and gas reservoirs has been effectively improved.展开更多
Deep oil and gas reservoirs are under high-temperature conditions,but traditional coring methods do not consider temperature-preserved measures and ignore the influence of temperature on rock porosity and permeability...Deep oil and gas reservoirs are under high-temperature conditions,but traditional coring methods do not consider temperature-preserved measures and ignore the influence of temperature on rock porosity and permeability,resulting in distorted resource assessments.The development of in situ temperaturepreserved coring(ITP-Coring)technology for deep reservoir rock is urgent,and thermal insulation materials are key.Therefore,hollow glass microsphere/epoxy resin thermal insulation materials(HGM/EP materials)were proposed as thermal insulation materials.The materials properties under coupled hightemperature and high-pressure(HTHP)conditions were tested.The results indicated that high pressures led to HGM destruction and that the materials water absorption significantly increased;additionally,increasing temperature accelerated the process.High temperatures directly caused the thermal conductivity of the materials to increase;additionally,the thermal conduction and convection of water caused by high pressures led to an exponential increase in the thermal conductivity.High temperatures weakened the matrix,and high pressures destroyed the HGM,which resulted in a decrease in the tensile mechanical properties of the materials.The materials entered the high elastic state at 150℃,and the mechanical properties were weakened more obviously,while the pressure led to a significant effect when the water absorption was above 10%.Meanwhile,the tensile strength/strain were 13.62 MPa/1.3%and 6.09 MPa/0.86%at 100℃ and 100 MPa,respectively,which meet the application requirements of the self-designed coring device.Finally,K46-f40 and K46-f50 HGM/EP materials were proven to be suitable for ITP-Coring under coupled conditions below 100℃ and 100 MPa.To further improve the materials properties,the interface layer and EP matrix should be optimized.The results can provide references for the optimization and engineering application of materials and thus technical support for deep oil and gas resource development.展开更多
To fully exploit the technical advantages of the large-depth and high-precision artificial source electromagnetic method in the complex structure area of southern Sichuan and compensate for the shortcomings of the con...To fully exploit the technical advantages of the large-depth and high-precision artificial source electromagnetic method in the complex structure area of southern Sichuan and compensate for the shortcomings of the conventional electromagnetic method in exploration depth,precision,and accuracy,the large-depth and high-precision wide field electromagnetic method is applied to the complex structure test area of the Luochang syncline and Yuhe nose anticline in the southern Sichuan.The advantages of the wide field electromagnetic method in detecting deep,low-resistivity thin layers are demonstrated.First,on the basis of the analysis of physical property data,a geological–geoelectric model is established in the test area,and the wide field electromagnetic method is numerically simulated to analyze and evaluate the response characteristics of deep thin shale gas layers on wide field electromagnetic curves.Second,a wide field electromagnetic test is conducted in the complex structure area of southern Sichuan.After data processing and inversion imaging,apparent resistivity logging data are used for calibration to develop an apparent resistivity interpretation model suitable for the test area.On the basis of the results,the characteristics of the electrical structure change in the shallow longitudinal formation of 6 km are implemented,and the transverse electrical distribution characteristics of the deep shale gas layer are delineated.In the prediction area near the well,the subsequent data verification shows that the apparent resistivity obtained using the inversion of the wide field electromagnetic method is consistent with the trend of apparent resistivity revealed by logging,which proves that this method can effectively identify the weak response characteristics of deep shale gas formations in complex structural areas.This experiment,it is shown shows that the wide field electromagnetic method with a large depth and high precision can effectively characterize the electrical characteristics of deep,low-resistivity thin layers in complex structural areas,and a new set of low-cost evaluation technologies for shale gas target layers based on the wide field electromagnetic method is explored.展开更多
Deep condensate gas reservoirs exhibit highly complex and variable phase behaviors,making it crucial to understand the relationship between fluid phase states and flow patterns.This study conducts a comprehensive anal...Deep condensate gas reservoirs exhibit highly complex and variable phase behaviors,making it crucial to understand the relationship between fluid phase states and flow patterns.This study conducts a comprehensive analysis of the actual production process of the deep condensate gas well A1 in a certain oilfield in China.Combining phase behavior analysis and CMG software simulations,the study systematically investigates phase transitions,viscosity,and density changes in the gas and liquid phases under different pressure conditions,with a reservoir temperature of 165°C.The research covers three crucial depletion stages of the reservoir:single-phase flow,two-phase transition,and two-phase flow.The findings indicate that retrograde condensation occurs when the pressure falls below the dew point pressure,reachingmaximum condensate liquid production at around 25MPa.As pressure decreases,gas phase density and viscosity gradually decrease,while liquid phase density and viscosity show an increasing trend.In the initial single-phase flow stage,maintaining a consistent gas-oil ratio is observed when both bottom-hole and reservoir pressures are higher than the dew point pressure.However,a sudden drop in bottom-hole pressure below the dew point triggers the production of condensate oil,significantly reducing subsequent gas and oil production.In the transitional two-phase flow stage,as the bottom-hole pressure further decreases,the reservoir exhibits a complex flow regime with coexisting areas of gas and liquid.In the subsequent two-phase flow stage,when both bottom-hole and reservoir pressures are below the dew point pressure,a significant increase in the gas-oil ratio is observed.The reservoir manifests a two-phase flow regime,devoid of single-phase gas flow areas.For lowpressure conditions in deep condensate gas reservoirs,considerations include gas injection,gas lift,and cyclic gas injection and production in surrounding wells.Additionally,techniques such as hot nitrogen or CO_(2) injection can be employed to mitigate retrograde condensation damage.The implications of this study are crucial for developing targeted development strategies and enhancing the overall development of deep condensate gas reservoirs.展开更多
Based on new data from cores,drilling and logging,combined with extensive rock and mineral testing analysis,a systematic analysis is conducted on the characteristics,diagenesis types,genesis and controlling factors of...Based on new data from cores,drilling and logging,combined with extensive rock and mineral testing analysis,a systematic analysis is conducted on the characteristics,diagenesis types,genesis and controlling factors of deep to ultra-deep abnormally high porosity clastic rock reservoirs in the Oligocene Linhe Formation in the Hetao Basin.The reservoir space of the deep to ultra-deep clastic rock reservoirs in the Linhe Formation is mainly primary pores,and the coupling of three favorable diagenetic elements,namely the rock fabric with strong compaction resistance,weak thermal compaction diagenetic dynamic field,and diagenetic environment with weak fluid compaction-weak cementation,is conducive to the preservation of primary pores.The Linhe Formation clastic rocks have a superior preexisting material composition,with an average total content of 90%for quartz,feldspar,and rigid rock fragments,and strong resistance to compaction.The geothermal gradient in Linhe Depression in the range of(2.0–2.6)°C/100 m is low,and together with the burial history of long-term shallow burial and late rapid deep burial,it forms a weak thermal compaction diagenetic dynamic field environment.The diagenetic environment of the saline lake basin is characterized by weak fluid compaction.At the same time,the paleosalinity has zoning characteristics,and weak cementation in low salinity areas is conducive to the preservation of primary pores.The hydrodynamic conditions of sedimentation,salinity differentiation of ancient water in saline lake basins,and sand body thickness jointly control the distribution of high-quality reservoirs in the Linhe Formation.展开更多
The natural cracking of crude oils in deep reservoirs has gained great interest due to continuously increasing depth of petroleum exploration and exploitation.Complex oil compositions and surroundings as well as compl...The natural cracking of crude oils in deep reservoirs has gained great interest due to continuously increasing depth of petroleum exploration and exploitation.Complex oil compositions and surroundings as well as complicated geological evolutions make oil cracking in nature much more complex than industrial pyrolysis.So far,numerous studies,focused on this topic,have made considerable progress although there still exist some drawbacks.However,a comprehensive review on crude oil cracking is yet to be conducted.This article systematically reviews the controlling factors of oil cracking from six aspects,namely,oil compositions,temperature and time,pressure,water,minerals and solid organic matter.We compare previous experimental and modelling results and present new field cases.In the following,we evaluate the prevailing estimation methods for the extent of oil cracking,and elucidate other factors that may interfere with the application of these estimation methods.This review will be helpful for further investigations of crude oil cracking and provides a guide for estimation of the cracking extent of crude oils.展开更多
Using the data of drilling, logging, core, experiments and production, the heterogeneity and differential hydrocarbon accumulation model of deep reservoirs in Cretaceous Qingshuihe Formation(K1q) in the western sectio...Using the data of drilling, logging, core, experiments and production, the heterogeneity and differential hydrocarbon accumulation model of deep reservoirs in Cretaceous Qingshuihe Formation(K1q) in the western section of the foreland thrust belt in southern Junggar Basin are investigated. The target reservoirs are characterized by superimposition of conglomerates, sandy conglomerates and sandstones, with high content of plastic clasts. The reservoir space is mainly composed of intergranular pores. The reservoirs are overall tight, and the sandy conglomerate has the best physical properties. The coupling of short deep burial period with low paleotemperature gradient and formation overpressure led to the relatively weak diagenetic strength of the reservoirs. Specifically, the sandy conglomerates show relatively low carbonate cementation, low compaction rate and high dissolution porosity. The special stress-strain mechanism of the anticline makes the reservoirs at the top of the anticline turning point more reformed by fractures than those at the limbs, and the formation overpressure makes the fractures in open state. Moreover, the sandy conglomerates have the highest oil saturation. Typical anticline reservoirs are developed in deep part of the thrust belt, but characterized by "big trap with small reservoir". Significantly, the sandy conglomerates at the top of anticline turning point have better quality, lower in-situ stress and higher structural position than those at the limbs,with the internal hydrocarbons most enriched, making them high-yield oil/gas layers. The exponential decline of fractures makes hydrocarbon accumulation difficult in the reservoirs at the limbs. Nonetheless, plane hydrocarbon distribution is more extensive at the gentle limb than the steep limb.展开更多
The exploration targets in the Kuqa Depression at present are mainly structure traps in Cretaceous-Tertiary.Due to the complexity of mountain distribution and reservoir forming conditions, the exploration of Jurassic ...The exploration targets in the Kuqa Depression at present are mainly structure traps in Cretaceous-Tertiary.Due to the complexity of mountain distribution and reservoir forming conditions, the exploration of Jurassic in the eastern Kuqa Depression has been in a state of semi-stagnation since the discovery of the Yinan-2 gas reservoir.According to the concept and theory of 'continuous petroleum reservoirs' and the re-analysis of the forming conditions of the Yinan-2 gas reservoir and regional natural gas in the eastern Kuqa Depression,it is believed that the deep Jurassic has good natural gas accumulation conditions as well as geological conditions for forming continuous tight gas reservoirs.The boundary of the Yinan-2 gas reservoir is not controlled by a structural spillpoint.The downdip part of the structure is dominated by gas,while the hanging wall of the fault is filled by water and forming obvious inverted gas and water.The gas reservoir has the normal temperature and ultrahigh pressure which formed in the near source or inner-source.All of these characteristics indicate that the Yinan-2 gas reservoir is different from conventional gas reservoirs.The deep Jurassic in the eastern Kuqa Depression has multisets of source-reservoir-cap assemblages,which comprise interbedded sandstones and mudstones.These assemblages are characterized by a self-generation,self-preserving and self-coverage model.Reservoir sandstones and coal measure mudstones are interbedded with each other at a large scale.As the source rocks,Triassic-Jurassic coal measure mudstones distribute continuously at a large scale and can generate and expel hydrocarbon.Source rocks contact intimately with the overlying sandstone reservoirs.During the late stage of hydrocarbon expulsion,natural gas charged continuously and directly into the neighboring reservoirs.Petroleum migrated mainly in a vertical direction over short distances.With ultra-high pressure and strong charging intensity,natural gas accumulated continuously.Reservoirs are dominated by sandstones of braided delta facies.The sand bodies distribute continuously horizontal.With low porosity and low permeability,the reservoirs are featured by strong heterogeneity.It is hypothesized that the sandstones of the interior depression tend to be relatively tight with increasing depth and structure stress weakness.Thus,it is predicted that continuous tight gas reservoirs of ultra-high pressure may exist in the deep formations of the eastern and even the whole Kuqa Depression.So,it is worth evaluating the exploration potential.展开更多
The relationship between fracture calcite veins and shale gas enrichment in the deep Ordovician Wufeng Formation-Silurian Longmaxi Formation (Wufeng-Longmaxi) shales in southern Sichuan Basin was investigated through ...The relationship between fracture calcite veins and shale gas enrichment in the deep Ordovician Wufeng Formation-Silurian Longmaxi Formation (Wufeng-Longmaxi) shales in southern Sichuan Basin was investigated through core and thin section observations, cathodoluminescence analysis, isotopic geochemistry analysis, fluid inclusion testing, and basin simulation. Tectonic fracture calcite veins mainly in the undulating part of the structure and non-tectonic fracture calcite veins are mainly formed in the gentle part of the structure. The latter, mainly induced by hydrocarbon generation, occurred at the stage of peak oil and gas generation, while the former turned up with the formation of Luzhou paleouplift during the Indosinian. Under the influence of hydrocarbon generation pressurization process, fractures were opened and closed frequently, and oil and gas episodic activities are recorded by veins. The formation pressure coefficient at the maximum paleodepth exceeds 2.0. The formation uplift stage after the Late Yanshanian is the key period for shale gas migration. Shale gas migrates along the bedding to the high part of the structure. The greater the structural fluctuation is, the more intense the shale gas migration activity is, and the loss is more. The gentler the formation is, the weaker the shale gas migration activity is, and the loss is less. The shale gas enrichment in the core of gentle anticlines and gentle synclines is relatively higher.展开更多
Considering the action mechanisms of overpressure on physical changes in skeleton particles of deep reservoir rocks and the differences in physical changes of skeleton particles under overpressure and hydrostatic pres...Considering the action mechanisms of overpressure on physical changes in skeleton particles of deep reservoir rocks and the differences in physical changes of skeleton particles under overpressure and hydrostatic pressure, the sandstone of the Jurassic Toutunhe Formation in the southern margin of Junggar Basin was taken as an example for physical modeling experiment to analyze the action mechanisms of overpressure on the physical properties of deep reservoirs. (1) In the simulated ultra-deep layer with a burial depth of 6000-8000 m, the mechanical compaction under overpressure reduces the remaining primary pores by about a half that under hydrostatic pressure. Overpressure can effectively suppress the mechanical compaction to allow the preservation of intergranular primary pores. (2) The linear contact length ratio under overpressure is always smaller than the linear contact length ratio under hydrostatic pressure at the same depth. In deep reservoirs, the difference between the mechanical compaction degree under overpressure and hydrostatic pressure shows a decreasing trend, the effect of abnormally high pressure to resist the increase of effective stress is weakened, and the degree of mechanical compaction is gradually close to that under hydrostatic pressure. (3) The microfractures in skeleton particles of deep reservoirs under overpressure are thin and long, while the microfractures in skeleton particles of deep reservoirs under hydrostatic pressure are short and wide. This difference is attributed to the probable presence of tension fractures in the rocks containing abnormally high pressure fluid. (4) The microfractures in skeleton particles under overpressure were mainly formed later than that under hydrostatic pressure, and the development degree and length of microfractures both extend deeper. (5) The development stages of microfractures under overpressure are mainly controlled by the development stages of abnormally high pressure and the magnitude of effective stress acting on the skeleton particles. Moreover, the development stages of microfractures in skeleton particles are more than those under hydrostatic pressure in deep reservoir. The multi-stage abnormally high pressure plays an important role in improving the physical properties of deep reservoirs.展开更多
Deep shale reservoirs(3500–4500 m)exhibit significantly different stress states than moderately deep shale reservoirs(2000–3500 m).As a result,the brittleness response mechanisms of deep shales are also different.It...Deep shale reservoirs(3500–4500 m)exhibit significantly different stress states than moderately deep shale reservoirs(2000–3500 m).As a result,the brittleness response mechanisms of deep shales are also different.It is urgent to investigate methods to evaluate the brittleness of deep shales to meet the increasingly urgent needs of deep shale gas development.In this paper,the quotient of Young’s modulus divided by Poisson’s ratio based on triaxial compression tests under in situ stress conditions is taken as SSBV(Static Standard Brittleness Value).A new and pragmatic technique is developed to determine the static brittleness index that considers elastic parameters,the mineral content,and the in situ stress conditions(BIEMS).The coefficient of determination between BIEMS and SSBV reaches 0.555 for experimental data and 0.805 for field data.This coefficient is higher than that of other brittleness indices when compared to SSBV.BIEMS can offer detailed insights into shale brittleness under various conditions,including different mineral compositions,depths,and stress states.This technique can provide a solid data-based foundation for the selection of‘sweet spots’for single-well engineering and the comparison of the brittleness of shale gas production layers in different areas.展开更多
Wangjiatun gas pool is located at the north part of Xujiaweizi in Songliao basin. Commercial gas flow has been found in the intermediate and acid volcanic rock of upper Jurassic-lower Cretaceous, which makes a breakth...Wangjiatun gas pool is located at the north part of Xujiaweizi in Songliao basin. Commercial gas flow has been found in the intermediate and acid volcanic rock of upper Jurassic-lower Cretaceous, which makes a breakthrough in deep nature gas prospecting in Songliao basin. The deep natural gas entrapment regularity is discussed in the paper by the study of deep strata, structure and reservoir. Andesite, rhyolite and little pyroclastic rock are the main reservoirs. There are two types of volcanic reservoir space assemblage in this area: the pore and fissure and the pure fissure. Changes had taken place for volcanic reservoir space during long geologic time, which was controlled by tectonic movement and geologic environment. The developed degree of reservoir space was controlled by tectonic movement, weathering and filtering, corrosion and Filling. There are three types of source-reservoir-caprock assemblage in this area: lower source- upper reservoir model, upper source-lower reservoir model and lateral change model. Mudstone in Dengluoku formation and the compacted volcanic rock of upper Jurassic-lower Cretaceous are the caprock for deep gas reservoirs. Dark mudstone of deep lacustrine facies in Shahezi formation and lower part of Dengluoku formation are the source rock of deep gas. It can be concluded that deep gas pools are mainly volcanic lithologic reservoirs.展开更多
The enrichment characteristics of deep shale gas in the Ordovician Wufeng-Silurian Longmaxi formations in the Sichuan Basin and its surrounding areas are investigated through experiments under high temperature and hig...The enrichment characteristics of deep shale gas in the Ordovician Wufeng-Silurian Longmaxi formations in the Sichuan Basin and its surrounding areas are investigated through experiments under high temperature and high pressure,including petrophysical properties analyses,triaxial stress test and isothermal adsorption of methane experiment.(1)The deep shale reservoirs drop significantly in porosity and permeability compared with shallower shale reservoirs,and contain mainly free gas.(2)With higher deviatoric stress and axial strain,the deep shale reservoirs have higher difficulty fracturing.(3)Affected by structural location and morphology,fracture characteristics,geofluid activity stages and intensity,deep shale gas reservoirs have more complicated preservation conditions.(4)To achieve the commercial development of deep shale gas reservoirs,deepening geological understanding is the basis,and exploring reservoir simulation technology befitting the geological features is the key.(5)The siliceous shale and limestone-bearing siliceous shale in the Metabolograptus persculptus-Parakidograptus acuminatus zones(LM1-LM3 graptolite zones)are the high-production intervals for deep shale gas and the most favorable landing targets for horizontal drilling.Deeps water areas such as Jiaoshiba,Wulong,Luzhou and Changning with deep shale reservoirs over 10 m thickness are the most favorable areas for deep shale gas enrichment.It is recommended to carry out exploration and development practice in deep-water shale gas areas deposited deep with burial depth no more than 5000 m where the geological structure is simple and the shale thickness in the LM1-LM3 graptolite zone is greater than 10 m.It is better to increase the lateral length of horizontal wells,and apply techniques including high intensity of perforations,large volume of proppant,far-field and near-wellbore diversions to maximize the stimulated deep reservoir volume.展开更多
With the deepening of oil and gas exploration,the importance of depth is increasingly highlighted.The risk of preservation of storage space in deep reservoirs is greater than that in shallow and medium layers.Deep lay...With the deepening of oil and gas exploration,the importance of depth is increasingly highlighted.The risk of preservation of storage space in deep reservoirs is greater than that in shallow and medium layers.Deep layers mean older strata,more complex structural evolution and more complex hydrocarbon accumulation processes,and even adjustment and transformation of oil and gas reservoirs.This paper systematically investigates the current status and research progress of deep oil and gas exploration around the world and looks forward to the future research focus of deep oil and gas.In the deep,especially the ultra-deep layers,carbonate reservoirs play a more important role than clastic rocks.Karst,fault-karst and dolomite reservoirs are the main types of deep and ultra-deep reservoirs.The common feature of most deep large and medium-sized oil and gas reservoirs is that they formed in the early with shallow depth.Fault activity and evolution of trap highs are the main ways to cause physical adjustment of oil and gas reservoirs.Crude oil cracking and thermochemical sulfate reduction(TSR)are the main chemical modification effects in the reservoir.Large-scale high-quality dolomite reservoirs is the main direction of deep oil and gas exploration.Accurate identification of oil and gas charging,adjustment and reformation processes is the key to understanding deep oil and gas distribution.High-precision detection technology and high-precision dating technology are an important guarantee for deep oil and gas research.展开更多
Deep basin gas (DBG) reservoirs, in view of the characteristics of their main parts containing gas, are a type of subtle stratigraphic lithologic traps. But they have different reservoir-forming principles, especially...Deep basin gas (DBG) reservoirs, in view of the characteristics of their main parts containing gas, are a type of subtle stratigraphic lithologic traps. But they have different reservoir-forming principles, especially in the distribution of oil, gas and water. DBG is characterized by gas-water invertion, namely the water located above the gas; however, normal non-anticline subtle reservoirs have normal distribution of gas and water, namely the water located under the gas. The theory of DBG broke the conventional exploration idea that gas is usually found in the high part of reservoir and water is under the gas. So, it provided a wide field and a new idea for the exploration of natural gas. Recently Ben E. Law (2002), in his article entitled "Basin-centered Gas Systems", discussed global DBG systemically. He listed 72 basins or areas containing known or suspected DBG, covering North America, South America, Europe, Asia-Pacific, South Asia, Middle East and Africa. Ordos basin, the Sichuan basin and the Jungar basin in China are presented and assumed to be of very high possibility. In China more attention has been paid to the research and exploration of DBG in the past years. The symposiums on DBG were held twice, in Guangzhou in 1998 and in Xi'an in 2000 respectively. In 2002 in particular, the publication of the book named Deep Basin Gas in China by Professor Wangtao indicated that China has entered a new stage in the research on DBG Meanwhile, it is more cheering that the exploration of DBG in the Ordos Basin has achieved remarkable success. Therefore, analyzing the exploration experiences and problems regarding the Ordos basin will promote the exploration and research of DBG in China.展开更多
In this review on the exploration and development process of the Shunbei ultra-deep carbonate oil and gas field in the Tarim Basin, the progress of exploration and development technologies during the National 13th Fiv...In this review on the exploration and development process of the Shunbei ultra-deep carbonate oil and gas field in the Tarim Basin, the progress of exploration and development technologies during the National 13th Five-Year Plan of China has been summarized systematically, giving important guidance for the exploration and development of ultra-deep marine carbonate reservoirs in China and abroad. Through analyzing the primary geological factors of “hydrocarbon generation-reservoir formation-hydrocarbon accumulation” of ancient and superposed basin comprehensively and dynamically, we point out that because the Lower Cambrian Yuertusi Formation high-quality source rocks have been located in a low-temperature environment for a long time, they were capable of generating hydrocarbon continuously in late stage, providing ideal geological conditions for massive liquid hydrocarbon accumulation in ultra-deep layers. In addition, strike-slip faults developed in tectonically stable areas have strong control on reservoir formation and hydrocarbon accumulation in this region. With these understandings, the exploration focus shifted from the two paleo-uplifts located in the north and the south to the Shuntuoguole lower uplift located in between and achieved major hydrocarbon discoveries. Through continuing improvement of seismic exploration technologies for ultra-deep carbonates in desert, integrated technologies including seismic acquisition in ultra-deep carbonates,seismic imaging of strike-slip faults and the associated cavity-fracture systems, detailed structural interpretation of strike-slip faults, characterization and quantitative description of fault-controlled cavities and fractures, description of fault-controlled traps and target optimization have been established. Geology-engineering integration including well trajectory optimization,high efficiency drilling, completion and reservoir reformation technologies has provided important support for exploration and development of the Shunbei oil and gas field.展开更多
The Qiantang Basin is now one of the topics of general interest in petroleum exploration in China. This paper reports a comprehensive study of geophysical and geological survey data recently obtained in this area and,...The Qiantang Basin is now one of the topics of general interest in petroleum exploration in China. This paper reports a comprehensive study of geophysical and geological survey data recently obtained in this area and, combined with INDEPTH-3 deep survey results, comes to the following conclusions: 1) The hydrocarbon source formations, reservoirs, and overlying strata and their association within the basin are quite good, local structures are developed, and, therefore, the region is favorable for forming and preserving oil and gas accumulations. Faults are not a fatal problem. The future main target strata are the middle-deep structural strata composed of Upper-Triassic and middle Jurassic rocks; 2) A new classification has been made for second-order tectonic sequences inside the basin to disavow the central Qingtang uplift. It is noted that the main structures at the surface are orientated NW-SE and the crustal structure can be described as three depressions, three risees, and one deep depression, of which the prospective zone with the most potential is the inner main subsided belt and its two sides; 3) Comparatively intensive interaction between the crust and mantle and volcanic and thermal activities in the northern basin play a very important role in petroleum evaluation. The southern deeper sedimentation and less thermal activity make this area a more perfect zone for oil exploration; 4) Currently, the most important objective is determining the physical properties of the deep strata, the status of oil and gas accumulations, the source of the hydrocarbons, and the relationship between the upper and lower structures; and 5) The Lunpola Tertiary basin may be favorable for oil accumulations because petroleum may migrate from marine strata on two sides.展开更多
Natural gas exploration in Nanpu sag, Bohai Bay Basin, has achieved breakthroughs in recent years, and a number of natural gas and condensate wells with high yield have been found in several structures in the beach ar...Natural gas exploration in Nanpu sag, Bohai Bay Basin, has achieved breakthroughs in recent years, and a number of natural gas and condensate wells with high yield have been found in several structures in the beach area. Daily gas production of single wells is up to 170,000 m3, and high-yield wells are mainly distributed in?the Nanpu No. 1 structural belt.?Studies have shown that these natural gases are mainly hydrocarbon gases, with methane content about 80% to 90% and ethane 6%-9%, so they are mainly wet gas; and non-hydrocarbons are at a low level.?Carbon isotopes of methane range from -42‰ to -36‰, and ethane from -28‰ to -26‰. Calculated maturity based on the relationship between δ13C and Ro of natural gas, the gases are equivalent to those generated from organic matter when Ro is 1.0%-1.7% (mainly 1.25%-1.32%). The natural gas is oil-type gas generated from the source rocks at mature to high mature stage, associated with condensate, so carbon isotopes of the gases are heavier. Natural gas in the Nanpu No.1 structural belt is mainly associated gas with condensate. The analysis of the origin and source of natural gas and condensate, combined with the monomer hydrocarbon carbon isotopes and biomarker, indicated that the main source rocks in the Nanpu No.1 structural belt were Es3 (the lower member of the Shahejie Formation), followed by Es1 (the upper member of the Shahejie Formation).?The high-mature hydrocarbons from source rocks in the deep sag mainly migrated through deep inherited faults into shallow traps and accumulated to form oil and gas pools. Therefore, there is a great potential for exploring gas in deep layers.展开更多
A study of faults and their control of deep gas accumulations has been made on the basis of dividing fault systems in the Xujiaweizi area. The study indicates two sets of fault systems are developed vertically in the ...A study of faults and their control of deep gas accumulations has been made on the basis of dividing fault systems in the Xujiaweizi area. The study indicates two sets of fault systems are developed vertically in the Xujiaweizi area, including a lower fault system and an upper fault system. Formed in the period of the Huoshiling Formation to Yingcheng Formation, the lower fault system consists of five fault systems including Xuxi strike-slip extensional fault system, NE-trending extensional fault system, near-EW-trending regulating fault system, Xuzhong strike-slip fault system and Xudong strike-slip fault system. Formed in the period of Qingshankou Formation to Yaojia Formation, the upper fault system was affected mainly by the boundary conditions of the lower fault system, and thus plenty of muiti-directionally distributed dense fault zones were formed in the T2 reflection horizon. The Xuxi fault controlled the formation and distribution of Shahezi coal-measure source rocks, and Xuzhong and Xndong faults controlled the formation and distribution of volcanic reservoirs of Y1 Member and Y3 Member, respectively. In the forming period of the upper fault system, the Xuzhong fault was of successive strong activities and directly connected gas source rock reservoirs and volcanic reservoirs, so it is a strongly-charged direct gas source fault. The volcanic reservoir development zones of good physical properties that may be found near the Xuzhong fault are the favorable target zones for the next exploration of deep gas accumulations in Xujiaweizi area.展开更多
The natural gas generation process is simulated by heating source rocks of the Yacheng Formation, including the onshore-offshore mudstone and coal with kerogens of Type II2-III in the Qiongdongnan Basin. The aim is to...The natural gas generation process is simulated by heating source rocks of the Yacheng Formation, including the onshore-offshore mudstone and coal with kerogens of Type II2-III in the Qiongdongnan Basin. The aim is to quantify the natural gas generation from the Yacheng Formation and to evaluate the geological prediction and kinetic parameters using an optimization procedure based on the basin modeling of the shallow-water area. For this, the hydrocarbons produced have been grouped into four classes(C1, C2, C3 and C4-6). The results show that the onset temperature of methane generation is predicted to occur at 110℃ during the thermal history of sediments since 5.3 Ma by using data extrapolation. The hydrocarbon potential for ethane, propane and heavy gaseous hydrocarbons(C4-6) is found to be almost exhausted at geological temperature of 200℃ when the transformation ratio(TR) is over 0.8, but for which methane is determined to be about 0.5 in the shallow-water area. In contrast, the end temperature of the methane generation in the deep-water area was over 300℃ with a TR over 0.8. It plays an important role in the natural gas exploration of the deep-water basin and other basins in the broad ocean areas of China. Therefore, the natural gas exploration for the deep-water area in the Qiongdongnan Basin shall first aim at the structural traps in the Ledong, Lingshui and Beijiao sags, and in the forward direction of the structure around the sags, and then gradually develop toward the non-structural trap in the deep-water area basin of the broad ocean areas of China.展开更多
基金Supported by the National Natural Science Foundation of ChinaCorporate Innovative Development Joint Fund(U19B6003)。
文摘Based on the new data of drilling, seismic, logging, test and experiments, the key scientific problems in reservoir formation, hydrocarbon accumulation and efficient oil and gas development methods of deep and ultra-deep marine carbonate strata in the central and western superimposed basin in China have been continuously studied.(1) The fault-controlled carbonate reservoir and the ancient dolomite reservoir are two important types of reservoirs in the deep and ultra-deep marine carbonates. According to the formation origin, the large-scale fault-controlled reservoir can be further divided into three types:fracture-cavity reservoir formed by tectonic rupture, fault and fluid-controlled reservoir, and shoal and mound reservoir modified by fault and fluid. The Sinian microbial dolomites are developed in the aragonite-dolomite sea. The predominant mound-shoal facies, early dolomitization and dissolution, acidic fluid environment, anhydrite capping and overpressure are the key factors for the formation and preservation of high-quality dolomite reservoirs.(2) The organic-rich shale of the marine carbonate strata in the superimposed basins of central and western China are mainly developed in the sedimentary environments of deep-water shelf of passive continental margin and carbonate ramp. The tectonic-thermal system is the important factor controlling the hydrocarbon phase in deep and ultra-deep reservoirs, and the reformed dynamic field controls oil and gas accumulation and distribution in deep and ultra-deep marine carbonates.(3) During the development of high-sulfur gas fields such as Puguang, sulfur precipitation blocks the wellbore. The application of sulfur solvent combined with coiled tubing has a significant effect on removing sulfur blockage. The integrated technology of dual-medium modeling and numerical simulation based on sedimentary simulation can accurately characterize the spatial distribution and changes of the water invasion front.Afterward, water control strategies for the entire life cycle of gas wells are proposed, including flow rate management, water drainage and plugging.(4) In the development of ultra-deep fault-controlled fractured-cavity reservoirs, well production declines rapidly due to the permeability reduction, which is a consequence of reservoir stress-sensitivity. The rapid phase change in condensate gas reservoir and pressure decline significantly affect the recovery of condensate oil. Innovative development methods such as gravity drive through water and natural gas injection, and natural gas drive through top injection and bottom production for ultra-deep fault-controlled condensate gas reservoirs are proposed. By adopting the hierarchical geological modeling and the fluid-solid-thermal coupled numerical simulation, the accuracy of producing performance prediction in oil and gas reservoirs has been effectively improved.
基金supported by the Sichuan Science and Technology Program (Grant Nos.2023NSFSC0004,2023NSFSC0790)the National Natural Science Foundation of China (Grant Nos.51827901,52304033)the Sichuan University Postdoctoral Fund (Grant No.2024SCU12093)。
文摘Deep oil and gas reservoirs are under high-temperature conditions,but traditional coring methods do not consider temperature-preserved measures and ignore the influence of temperature on rock porosity and permeability,resulting in distorted resource assessments.The development of in situ temperaturepreserved coring(ITP-Coring)technology for deep reservoir rock is urgent,and thermal insulation materials are key.Therefore,hollow glass microsphere/epoxy resin thermal insulation materials(HGM/EP materials)were proposed as thermal insulation materials.The materials properties under coupled hightemperature and high-pressure(HTHP)conditions were tested.The results indicated that high pressures led to HGM destruction and that the materials water absorption significantly increased;additionally,increasing temperature accelerated the process.High temperatures directly caused the thermal conductivity of the materials to increase;additionally,the thermal conduction and convection of water caused by high pressures led to an exponential increase in the thermal conductivity.High temperatures weakened the matrix,and high pressures destroyed the HGM,which resulted in a decrease in the tensile mechanical properties of the materials.The materials entered the high elastic state at 150℃,and the mechanical properties were weakened more obviously,while the pressure led to a significant effect when the water absorption was above 10%.Meanwhile,the tensile strength/strain were 13.62 MPa/1.3%and 6.09 MPa/0.86%at 100℃ and 100 MPa,respectively,which meet the application requirements of the self-designed coring device.Finally,K46-f40 and K46-f50 HGM/EP materials were proven to be suitable for ITP-Coring under coupled conditions below 100℃ and 100 MPa.To further improve the materials properties,the interface layer and EP matrix should be optimized.The results can provide references for the optimization and engineering application of materials and thus technical support for deep oil and gas resource development.
文摘To fully exploit the technical advantages of the large-depth and high-precision artificial source electromagnetic method in the complex structure area of southern Sichuan and compensate for the shortcomings of the conventional electromagnetic method in exploration depth,precision,and accuracy,the large-depth and high-precision wide field electromagnetic method is applied to the complex structure test area of the Luochang syncline and Yuhe nose anticline in the southern Sichuan.The advantages of the wide field electromagnetic method in detecting deep,low-resistivity thin layers are demonstrated.First,on the basis of the analysis of physical property data,a geological–geoelectric model is established in the test area,and the wide field electromagnetic method is numerically simulated to analyze and evaluate the response characteristics of deep thin shale gas layers on wide field electromagnetic curves.Second,a wide field electromagnetic test is conducted in the complex structure area of southern Sichuan.After data processing and inversion imaging,apparent resistivity logging data are used for calibration to develop an apparent resistivity interpretation model suitable for the test area.On the basis of the results,the characteristics of the electrical structure change in the shallow longitudinal formation of 6 km are implemented,and the transverse electrical distribution characteristics of the deep shale gas layer are delineated.In the prediction area near the well,the subsequent data verification shows that the apparent resistivity obtained using the inversion of the wide field electromagnetic method is consistent with the trend of apparent resistivity revealed by logging,which proves that this method can effectively identify the weak response characteristics of deep shale gas formations in complex structural areas.This experiment,it is shown shows that the wide field electromagnetic method with a large depth and high precision can effectively characterize the electrical characteristics of deep,low-resistivity thin layers in complex structural areas,and a new set of low-cost evaluation technologies for shale gas target layers based on the wide field electromagnetic method is explored.
基金funding from the Key Research Project of Tarim Oilfield Company of Petrochina(671023060003)for this study.
文摘Deep condensate gas reservoirs exhibit highly complex and variable phase behaviors,making it crucial to understand the relationship between fluid phase states and flow patterns.This study conducts a comprehensive analysis of the actual production process of the deep condensate gas well A1 in a certain oilfield in China.Combining phase behavior analysis and CMG software simulations,the study systematically investigates phase transitions,viscosity,and density changes in the gas and liquid phases under different pressure conditions,with a reservoir temperature of 165°C.The research covers three crucial depletion stages of the reservoir:single-phase flow,two-phase transition,and two-phase flow.The findings indicate that retrograde condensation occurs when the pressure falls below the dew point pressure,reachingmaximum condensate liquid production at around 25MPa.As pressure decreases,gas phase density and viscosity gradually decrease,while liquid phase density and viscosity show an increasing trend.In the initial single-phase flow stage,maintaining a consistent gas-oil ratio is observed when both bottom-hole and reservoir pressures are higher than the dew point pressure.However,a sudden drop in bottom-hole pressure below the dew point triggers the production of condensate oil,significantly reducing subsequent gas and oil production.In the transitional two-phase flow stage,as the bottom-hole pressure further decreases,the reservoir exhibits a complex flow regime with coexisting areas of gas and liquid.In the subsequent two-phase flow stage,when both bottom-hole and reservoir pressures are below the dew point pressure,a significant increase in the gas-oil ratio is observed.The reservoir manifests a two-phase flow regime,devoid of single-phase gas flow areas.For lowpressure conditions in deep condensate gas reservoirs,considerations include gas injection,gas lift,and cyclic gas injection and production in surrounding wells.Additionally,techniques such as hot nitrogen or CO_(2) injection can be employed to mitigate retrograde condensation damage.The implications of this study are crucial for developing targeted development strategies and enhancing the overall development of deep condensate gas reservoirs.
基金Supported by the CNPC Science and Technology Project(2023ZZ022023ZZ14-01).
文摘Based on new data from cores,drilling and logging,combined with extensive rock and mineral testing analysis,a systematic analysis is conducted on the characteristics,diagenesis types,genesis and controlling factors of deep to ultra-deep abnormally high porosity clastic rock reservoirs in the Oligocene Linhe Formation in the Hetao Basin.The reservoir space of the deep to ultra-deep clastic rock reservoirs in the Linhe Formation is mainly primary pores,and the coupling of three favorable diagenetic elements,namely the rock fabric with strong compaction resistance,weak thermal compaction diagenetic dynamic field,and diagenetic environment with weak fluid compaction-weak cementation,is conducive to the preservation of primary pores.The Linhe Formation clastic rocks have a superior preexisting material composition,with an average total content of 90%for quartz,feldspar,and rigid rock fragments,and strong resistance to compaction.The geothermal gradient in Linhe Depression in the range of(2.0–2.6)°C/100 m is low,and together with the burial history of long-term shallow burial and late rapid deep burial,it forms a weak thermal compaction diagenetic dynamic field environment.The diagenetic environment of the saline lake basin is characterized by weak fluid compaction.At the same time,the paleosalinity has zoning characteristics,and weak cementation in low salinity areas is conducive to the preservation of primary pores.The hydrodynamic conditions of sedimentation,salinity differentiation of ancient water in saline lake basins,and sand body thickness jointly control the distribution of high-quality reservoirs in the Linhe Formation.
基金This study is supported by the National Natural Science Foundation of China(Grants 41730424,41961144023 and 42002162)。
文摘The natural cracking of crude oils in deep reservoirs has gained great interest due to continuously increasing depth of petroleum exploration and exploitation.Complex oil compositions and surroundings as well as complicated geological evolutions make oil cracking in nature much more complex than industrial pyrolysis.So far,numerous studies,focused on this topic,have made considerable progress although there still exist some drawbacks.However,a comprehensive review on crude oil cracking is yet to be conducted.This article systematically reviews the controlling factors of oil cracking from six aspects,namely,oil compositions,temperature and time,pressure,water,minerals and solid organic matter.We compare previous experimental and modelling results and present new field cases.In the following,we evaluate the prevailing estimation methods for the extent of oil cracking,and elucidate other factors that may interfere with the application of these estimation methods.This review will be helpful for further investigations of crude oil cracking and provides a guide for estimation of the cracking extent of crude oils.
基金Supported by the National Natural Science Foundation of China (41902118)Natural Science Foundation of Xinjiang Uygur Autonomous Region (2022D01B141)+1 种基金Natural Science Foundation of Heilongjiang Province (LH2021D003)Heilongjiang Postdoctoral Fund (No.LBH-Z20045)。
文摘Using the data of drilling, logging, core, experiments and production, the heterogeneity and differential hydrocarbon accumulation model of deep reservoirs in Cretaceous Qingshuihe Formation(K1q) in the western section of the foreland thrust belt in southern Junggar Basin are investigated. The target reservoirs are characterized by superimposition of conglomerates, sandy conglomerates and sandstones, with high content of plastic clasts. The reservoir space is mainly composed of intergranular pores. The reservoirs are overall tight, and the sandy conglomerate has the best physical properties. The coupling of short deep burial period with low paleotemperature gradient and formation overpressure led to the relatively weak diagenetic strength of the reservoirs. Specifically, the sandy conglomerates show relatively low carbonate cementation, low compaction rate and high dissolution porosity. The special stress-strain mechanism of the anticline makes the reservoirs at the top of the anticline turning point more reformed by fractures than those at the limbs, and the formation overpressure makes the fractures in open state. Moreover, the sandy conglomerates have the highest oil saturation. Typical anticline reservoirs are developed in deep part of the thrust belt, but characterized by "big trap with small reservoir". Significantly, the sandy conglomerates at the top of anticline turning point have better quality, lower in-situ stress and higher structural position than those at the limbs,with the internal hydrocarbons most enriched, making them high-yield oil/gas layers. The exponential decline of fractures makes hydrocarbon accumulation difficult in the reservoirs at the limbs. Nonetheless, plane hydrocarbon distribution is more extensive at the gentle limb than the steep limb.
基金funded by the National Science and technology Major Project(2008ZX05001)
文摘The exploration targets in the Kuqa Depression at present are mainly structure traps in Cretaceous-Tertiary.Due to the complexity of mountain distribution and reservoir forming conditions, the exploration of Jurassic in the eastern Kuqa Depression has been in a state of semi-stagnation since the discovery of the Yinan-2 gas reservoir.According to the concept and theory of 'continuous petroleum reservoirs' and the re-analysis of the forming conditions of the Yinan-2 gas reservoir and regional natural gas in the eastern Kuqa Depression,it is believed that the deep Jurassic has good natural gas accumulation conditions as well as geological conditions for forming continuous tight gas reservoirs.The boundary of the Yinan-2 gas reservoir is not controlled by a structural spillpoint.The downdip part of the structure is dominated by gas,while the hanging wall of the fault is filled by water and forming obvious inverted gas and water.The gas reservoir has the normal temperature and ultrahigh pressure which formed in the near source or inner-source.All of these characteristics indicate that the Yinan-2 gas reservoir is different from conventional gas reservoirs.The deep Jurassic in the eastern Kuqa Depression has multisets of source-reservoir-cap assemblages,which comprise interbedded sandstones and mudstones.These assemblages are characterized by a self-generation,self-preserving and self-coverage model.Reservoir sandstones and coal measure mudstones are interbedded with each other at a large scale.As the source rocks,Triassic-Jurassic coal measure mudstones distribute continuously at a large scale and can generate and expel hydrocarbon.Source rocks contact intimately with the overlying sandstone reservoirs.During the late stage of hydrocarbon expulsion,natural gas charged continuously and directly into the neighboring reservoirs.Petroleum migrated mainly in a vertical direction over short distances.With ultra-high pressure and strong charging intensity,natural gas accumulated continuously.Reservoirs are dominated by sandstones of braided delta facies.The sand bodies distribute continuously horizontal.With low porosity and low permeability,the reservoirs are featured by strong heterogeneity.It is hypothesized that the sandstones of the interior depression tend to be relatively tight with increasing depth and structure stress weakness.Thus,it is predicted that continuous tight gas reservoirs of ultra-high pressure may exist in the deep formations of the eastern and even the whole Kuqa Depression.So,it is worth evaluating the exploration potential.
基金Supported by the PetroChina Science and Technology Project(2022KT1205).
文摘The relationship between fracture calcite veins and shale gas enrichment in the deep Ordovician Wufeng Formation-Silurian Longmaxi Formation (Wufeng-Longmaxi) shales in southern Sichuan Basin was investigated through core and thin section observations, cathodoluminescence analysis, isotopic geochemistry analysis, fluid inclusion testing, and basin simulation. Tectonic fracture calcite veins mainly in the undulating part of the structure and non-tectonic fracture calcite veins are mainly formed in the gentle part of the structure. The latter, mainly induced by hydrocarbon generation, occurred at the stage of peak oil and gas generation, while the former turned up with the formation of Luzhou paleouplift during the Indosinian. Under the influence of hydrocarbon generation pressurization process, fractures were opened and closed frequently, and oil and gas episodic activities are recorded by veins. The formation pressure coefficient at the maximum paleodepth exceeds 2.0. The formation uplift stage after the Late Yanshanian is the key period for shale gas migration. Shale gas migrates along the bedding to the high part of the structure. The greater the structural fluctuation is, the more intense the shale gas migration activity is, and the loss is more. The gentler the formation is, the weaker the shale gas migration activity is, and the loss is less. The shale gas enrichment in the core of gentle anticlines and gentle synclines is relatively higher.
基金Supported by PetroChina Science and Technology Project(2021DJ0202).
文摘Considering the action mechanisms of overpressure on physical changes in skeleton particles of deep reservoir rocks and the differences in physical changes of skeleton particles under overpressure and hydrostatic pressure, the sandstone of the Jurassic Toutunhe Formation in the southern margin of Junggar Basin was taken as an example for physical modeling experiment to analyze the action mechanisms of overpressure on the physical properties of deep reservoirs. (1) In the simulated ultra-deep layer with a burial depth of 6000-8000 m, the mechanical compaction under overpressure reduces the remaining primary pores by about a half that under hydrostatic pressure. Overpressure can effectively suppress the mechanical compaction to allow the preservation of intergranular primary pores. (2) The linear contact length ratio under overpressure is always smaller than the linear contact length ratio under hydrostatic pressure at the same depth. In deep reservoirs, the difference between the mechanical compaction degree under overpressure and hydrostatic pressure shows a decreasing trend, the effect of abnormally high pressure to resist the increase of effective stress is weakened, and the degree of mechanical compaction is gradually close to that under hydrostatic pressure. (3) The microfractures in skeleton particles of deep reservoirs under overpressure are thin and long, while the microfractures in skeleton particles of deep reservoirs under hydrostatic pressure are short and wide. This difference is attributed to the probable presence of tension fractures in the rocks containing abnormally high pressure fluid. (4) The microfractures in skeleton particles under overpressure were mainly formed later than that under hydrostatic pressure, and the development degree and length of microfractures both extend deeper. (5) The development stages of microfractures under overpressure are mainly controlled by the development stages of abnormally high pressure and the magnitude of effective stress acting on the skeleton particles. Moreover, the development stages of microfractures in skeleton particles are more than those under hydrostatic pressure in deep reservoir. The multi-stage abnormally high pressure plays an important role in improving the physical properties of deep reservoirs.
文摘Deep shale reservoirs(3500–4500 m)exhibit significantly different stress states than moderately deep shale reservoirs(2000–3500 m).As a result,the brittleness response mechanisms of deep shales are also different.It is urgent to investigate methods to evaluate the brittleness of deep shales to meet the increasingly urgent needs of deep shale gas development.In this paper,the quotient of Young’s modulus divided by Poisson’s ratio based on triaxial compression tests under in situ stress conditions is taken as SSBV(Static Standard Brittleness Value).A new and pragmatic technique is developed to determine the static brittleness index that considers elastic parameters,the mineral content,and the in situ stress conditions(BIEMS).The coefficient of determination between BIEMS and SSBV reaches 0.555 for experimental data and 0.805 for field data.This coefficient is higher than that of other brittleness indices when compared to SSBV.BIEMS can offer detailed insights into shale brittleness under various conditions,including different mineral compositions,depths,and stress states.This technique can provide a solid data-based foundation for the selection of‘sweet spots’for single-well engineering and the comparison of the brittleness of shale gas production layers in different areas.
文摘Wangjiatun gas pool is located at the north part of Xujiaweizi in Songliao basin. Commercial gas flow has been found in the intermediate and acid volcanic rock of upper Jurassic-lower Cretaceous, which makes a breakthrough in deep nature gas prospecting in Songliao basin. The deep natural gas entrapment regularity is discussed in the paper by the study of deep strata, structure and reservoir. Andesite, rhyolite and little pyroclastic rock are the main reservoirs. There are two types of volcanic reservoir space assemblage in this area: the pore and fissure and the pure fissure. Changes had taken place for volcanic reservoir space during long geologic time, which was controlled by tectonic movement and geologic environment. The developed degree of reservoir space was controlled by tectonic movement, weathering and filtering, corrosion and Filling. There are three types of source-reservoir-caprock assemblage in this area: lower source- upper reservoir model, upper source-lower reservoir model and lateral change model. Mudstone in Dengluoku formation and the compacted volcanic rock of upper Jurassic-lower Cretaceous are the caprock for deep gas reservoirs. Dark mudstone of deep lacustrine facies in Shahezi formation and lower part of Dengluoku formation are the source rock of deep gas. It can be concluded that deep gas pools are mainly volcanic lithologic reservoirs.
基金Supported by the National Natural Science Foundation of China(41872124,42130803)Sinopec Key Scientific and Technological Project(P20046)。
文摘The enrichment characteristics of deep shale gas in the Ordovician Wufeng-Silurian Longmaxi formations in the Sichuan Basin and its surrounding areas are investigated through experiments under high temperature and high pressure,including petrophysical properties analyses,triaxial stress test and isothermal adsorption of methane experiment.(1)The deep shale reservoirs drop significantly in porosity and permeability compared with shallower shale reservoirs,and contain mainly free gas.(2)With higher deviatoric stress and axial strain,the deep shale reservoirs have higher difficulty fracturing.(3)Affected by structural location and morphology,fracture characteristics,geofluid activity stages and intensity,deep shale gas reservoirs have more complicated preservation conditions.(4)To achieve the commercial development of deep shale gas reservoirs,deepening geological understanding is the basis,and exploring reservoir simulation technology befitting the geological features is the key.(5)The siliceous shale and limestone-bearing siliceous shale in the Metabolograptus persculptus-Parakidograptus acuminatus zones(LM1-LM3 graptolite zones)are the high-production intervals for deep shale gas and the most favorable landing targets for horizontal drilling.Deeps water areas such as Jiaoshiba,Wulong,Luzhou and Changning with deep shale reservoirs over 10 m thickness are the most favorable areas for deep shale gas enrichment.It is recommended to carry out exploration and development practice in deep-water shale gas areas deposited deep with burial depth no more than 5000 m where the geological structure is simple and the shale thickness in the LM1-LM3 graptolite zone is greater than 10 m.It is better to increase the lateral length of horizontal wells,and apply techniques including high intensity of perforations,large volume of proppant,far-field and near-wellbore diversions to maximize the stimulated deep reservoir volume.
基金This study was funded by Innovative Research Groups of the National Natural Science Foundation of China(Grant No.41821002)Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA14010305)PetroChina Major Science and Technology Project(Grant No.ZD2019-183-002).
文摘With the deepening of oil and gas exploration,the importance of depth is increasingly highlighted.The risk of preservation of storage space in deep reservoirs is greater than that in shallow and medium layers.Deep layers mean older strata,more complex structural evolution and more complex hydrocarbon accumulation processes,and even adjustment and transformation of oil and gas reservoirs.This paper systematically investigates the current status and research progress of deep oil and gas exploration around the world and looks forward to the future research focus of deep oil and gas.In the deep,especially the ultra-deep layers,carbonate reservoirs play a more important role than clastic rocks.Karst,fault-karst and dolomite reservoirs are the main types of deep and ultra-deep reservoirs.The common feature of most deep large and medium-sized oil and gas reservoirs is that they formed in the early with shallow depth.Fault activity and evolution of trap highs are the main ways to cause physical adjustment of oil and gas reservoirs.Crude oil cracking and thermochemical sulfate reduction(TSR)are the main chemical modification effects in the reservoir.Large-scale high-quality dolomite reservoirs is the main direction of deep oil and gas exploration.Accurate identification of oil and gas charging,adjustment and reformation processes is the key to understanding deep oil and gas distribution.High-precision detection technology and high-precision dating technology are an important guarantee for deep oil and gas research.
文摘Deep basin gas (DBG) reservoirs, in view of the characteristics of their main parts containing gas, are a type of subtle stratigraphic lithologic traps. But they have different reservoir-forming principles, especially in the distribution of oil, gas and water. DBG is characterized by gas-water invertion, namely the water located above the gas; however, normal non-anticline subtle reservoirs have normal distribution of gas and water, namely the water located under the gas. The theory of DBG broke the conventional exploration idea that gas is usually found in the high part of reservoir and water is under the gas. So, it provided a wide field and a new idea for the exploration of natural gas. Recently Ben E. Law (2002), in his article entitled "Basin-centered Gas Systems", discussed global DBG systemically. He listed 72 basins or areas containing known or suspected DBG, covering North America, South America, Europe, Asia-Pacific, South Asia, Middle East and Africa. Ordos basin, the Sichuan basin and the Jungar basin in China are presented and assumed to be of very high possibility. In China more attention has been paid to the research and exploration of DBG in the past years. The symposiums on DBG were held twice, in Guangzhou in 1998 and in Xi'an in 2000 respectively. In 2002 in particular, the publication of the book named Deep Basin Gas in China by Professor Wangtao indicated that China has entered a new stage in the research on DBG Meanwhile, it is more cheering that the exploration of DBG in the Ordos Basin has achieved remarkable success. Therefore, analyzing the exploration experiences and problems regarding the Ordos basin will promote the exploration and research of DBG in China.
基金Supported by the National Natural Science Foundation of China Enterprise Innovation and Development Joint Fund Project(U19B6003)。
文摘In this review on the exploration and development process of the Shunbei ultra-deep carbonate oil and gas field in the Tarim Basin, the progress of exploration and development technologies during the National 13th Five-Year Plan of China has been summarized systematically, giving important guidance for the exploration and development of ultra-deep marine carbonate reservoirs in China and abroad. Through analyzing the primary geological factors of “hydrocarbon generation-reservoir formation-hydrocarbon accumulation” of ancient and superposed basin comprehensively and dynamically, we point out that because the Lower Cambrian Yuertusi Formation high-quality source rocks have been located in a low-temperature environment for a long time, they were capable of generating hydrocarbon continuously in late stage, providing ideal geological conditions for massive liquid hydrocarbon accumulation in ultra-deep layers. In addition, strike-slip faults developed in tectonically stable areas have strong control on reservoir formation and hydrocarbon accumulation in this region. With these understandings, the exploration focus shifted from the two paleo-uplifts located in the north and the south to the Shuntuoguole lower uplift located in between and achieved major hydrocarbon discoveries. Through continuing improvement of seismic exploration technologies for ultra-deep carbonates in desert, integrated technologies including seismic acquisition in ultra-deep carbonates,seismic imaging of strike-slip faults and the associated cavity-fracture systems, detailed structural interpretation of strike-slip faults, characterization and quantitative description of fault-controlled cavities and fractures, description of fault-controlled traps and target optimization have been established. Geology-engineering integration including well trajectory optimization,high efficiency drilling, completion and reservoir reformation technologies has provided important support for exploration and development of the Shunbei oil and gas field.
文摘The Qiantang Basin is now one of the topics of general interest in petroleum exploration in China. This paper reports a comprehensive study of geophysical and geological survey data recently obtained in this area and, combined with INDEPTH-3 deep survey results, comes to the following conclusions: 1) The hydrocarbon source formations, reservoirs, and overlying strata and their association within the basin are quite good, local structures are developed, and, therefore, the region is favorable for forming and preserving oil and gas accumulations. Faults are not a fatal problem. The future main target strata are the middle-deep structural strata composed of Upper-Triassic and middle Jurassic rocks; 2) A new classification has been made for second-order tectonic sequences inside the basin to disavow the central Qingtang uplift. It is noted that the main structures at the surface are orientated NW-SE and the crustal structure can be described as three depressions, three risees, and one deep depression, of which the prospective zone with the most potential is the inner main subsided belt and its two sides; 3) Comparatively intensive interaction between the crust and mantle and volcanic and thermal activities in the northern basin play a very important role in petroleum evaluation. The southern deeper sedimentation and less thermal activity make this area a more perfect zone for oil exploration; 4) Currently, the most important objective is determining the physical properties of the deep strata, the status of oil and gas accumulations, the source of the hydrocarbons, and the relationship between the upper and lower structures; and 5) The Lunpola Tertiary basin may be favorable for oil accumulations because petroleum may migrate from marine strata on two sides.
基金State Oil and Gas Special Project(2008ZX05004-003)China Petroleum Technology Research Project(2008A-0609)co-funded
文摘Natural gas exploration in Nanpu sag, Bohai Bay Basin, has achieved breakthroughs in recent years, and a number of natural gas and condensate wells with high yield have been found in several structures in the beach area. Daily gas production of single wells is up to 170,000 m3, and high-yield wells are mainly distributed in?the Nanpu No. 1 structural belt.?Studies have shown that these natural gases are mainly hydrocarbon gases, with methane content about 80% to 90% and ethane 6%-9%, so they are mainly wet gas; and non-hydrocarbons are at a low level.?Carbon isotopes of methane range from -42‰ to -36‰, and ethane from -28‰ to -26‰. Calculated maturity based on the relationship between δ13C and Ro of natural gas, the gases are equivalent to those generated from organic matter when Ro is 1.0%-1.7% (mainly 1.25%-1.32%). The natural gas is oil-type gas generated from the source rocks at mature to high mature stage, associated with condensate, so carbon isotopes of the gases are heavier. Natural gas in the Nanpu No.1 structural belt is mainly associated gas with condensate. The analysis of the origin and source of natural gas and condensate, combined with the monomer hydrocarbon carbon isotopes and biomarker, indicated that the main source rocks in the Nanpu No.1 structural belt were Es3 (the lower member of the Shahejie Formation), followed by Es1 (the upper member of the Shahejie Formation).?The high-mature hydrocarbons from source rocks in the deep sag mainly migrated through deep inherited faults into shallow traps and accumulated to form oil and gas pools. Therefore, there is a great potential for exploring gas in deep layers.
基金supported by the National Natural Foundation Project Polygonal Fault Genetic Mechanism and its Reservoir Controlling Mechanism in Rift Basin (number: 41072163) financial aid
文摘A study of faults and their control of deep gas accumulations has been made on the basis of dividing fault systems in the Xujiaweizi area. The study indicates two sets of fault systems are developed vertically in the Xujiaweizi area, including a lower fault system and an upper fault system. Formed in the period of the Huoshiling Formation to Yingcheng Formation, the lower fault system consists of five fault systems including Xuxi strike-slip extensional fault system, NE-trending extensional fault system, near-EW-trending regulating fault system, Xuzhong strike-slip fault system and Xudong strike-slip fault system. Formed in the period of Qingshankou Formation to Yaojia Formation, the upper fault system was affected mainly by the boundary conditions of the lower fault system, and thus plenty of muiti-directionally distributed dense fault zones were formed in the T2 reflection horizon. The Xuxi fault controlled the formation and distribution of Shahezi coal-measure source rocks, and Xuzhong and Xndong faults controlled the formation and distribution of volcanic reservoirs of Y1 Member and Y3 Member, respectively. In the forming period of the upper fault system, the Xuzhong fault was of successive strong activities and directly connected gas source rock reservoirs and volcanic reservoirs, so it is a strongly-charged direct gas source fault. The volcanic reservoir development zones of good physical properties that may be found near the Xuzhong fault are the favorable target zones for the next exploration of deep gas accumulations in Xujiaweizi area.
基金The Western Light Talent Culture Project of the Chinese Academy of Sciences under contract No.Y404RC1the National Petroleum Major Projects of China under contract No.2016ZX05026-007-005+2 种基金the Key Laboratory of Petroleum Resources Research Fund of the Chinese Academy of Sciences under contract No.KFJJ2013-04the Science and Technology Program of Gansu Province under contract No.1501RJYA006the Key Laboratory Project of Gansu Province of China under contract No.1309RTSA041
文摘The natural gas generation process is simulated by heating source rocks of the Yacheng Formation, including the onshore-offshore mudstone and coal with kerogens of Type II2-III in the Qiongdongnan Basin. The aim is to quantify the natural gas generation from the Yacheng Formation and to evaluate the geological prediction and kinetic parameters using an optimization procedure based on the basin modeling of the shallow-water area. For this, the hydrocarbons produced have been grouped into four classes(C1, C2, C3 and C4-6). The results show that the onset temperature of methane generation is predicted to occur at 110℃ during the thermal history of sediments since 5.3 Ma by using data extrapolation. The hydrocarbon potential for ethane, propane and heavy gaseous hydrocarbons(C4-6) is found to be almost exhausted at geological temperature of 200℃ when the transformation ratio(TR) is over 0.8, but for which methane is determined to be about 0.5 in the shallow-water area. In contrast, the end temperature of the methane generation in the deep-water area was over 300℃ with a TR over 0.8. It plays an important role in the natural gas exploration of the deep-water basin and other basins in the broad ocean areas of China. Therefore, the natural gas exploration for the deep-water area in the Qiongdongnan Basin shall first aim at the structural traps in the Ledong, Lingshui and Beijiao sags, and in the forward direction of the structure around the sags, and then gradually develop toward the non-structural trap in the deep-water area basin of the broad ocean areas of China.