期刊文献+
共找到4,725篇文章
< 1 2 237 >
每页显示 20 50 100
Protective effects of baffles with different positions,row spacings,heights on debris flow impact
1
作者 SUN Xinpo CHEN Min +5 位作者 BI Yuzhang ZHENG Lu CHE Chi XU Ao TIAN Zijian JIANG Zheyuan 《Journal of Mountain Science》 SCIE CSCD 2024年第7期2352-2367,共16页
The baffle effectively slowed down debris flow velocity,reduced its kinetic energy,and significantly shortened the distance of debris flow movement.Consequently,they are widely used for protection against natural haza... The baffle effectively slowed down debris flow velocity,reduced its kinetic energy,and significantly shortened the distance of debris flow movement.Consequently,they are widely used for protection against natural hazards such as landslides and mudslides.This study,based on the threedimensional DEM(Discrete Element Method),investigated the impact of different baffle positions on debris flow protection.Debris flow velocity and kinetic energy variations were studied through single-factor experiments.Suitable baffle positions were preliminarily selected by analyzing the influence of the first-row baffle position on the impact force and accumulation mass of debris flow.Subsequently,based on the selected baffle positions and four factors influencing the effectiveness of baffle protection(baffle position(P),baffle height(h),row spacing(S_(r)),and angle of transit area(α)),an orthogonal design was employed to further explore the optimal arrangement of baffles.The research results indicate that the use of a baffle structure could effectively slow down the motion velocity of debris flows and dissipate their energy.When the baffle is placed in the transit area,the impact force on the first-row baffle is greater than that when the baffle is placed in the deposition area.Similarly,when the baffle is placed in the transit area,the obstruction effect on debris flow mass is also greater than that when the baffle is placed in the deposition area.Through orthogonal experimental range analysis,when the impact on the first row of baffles is used as the evaluation criterion,the importance of each influencing factor is ranked asα>P>S_(r)>h.When the mass of debris flow behind the baffle is regarded as the evaluation criterion,the rank is changed to P>α>S_(r)>h.The experimental simulation results show that the optimal baffle arrangement is:P_(5),S_(r)=16,α=35°,h=9. 展开更多
关键词 Debris flow BAFFLE Protective effect Discrete element
下载PDF
Regulation effect of the grille spacing of a funnel-type grating water–sediment separation structure on the debris flow performance
2
作者 LI Shuai GU Tianfeng +2 位作者 WANG Jiading WANG Fei LI Pu 《Journal of Mountain Science》 SCIE CSCD 2024年第7期2283-2304,共22页
The size of pores or the grille spacing of water–sediment separation structures directly affects their regulation effect on the debris flow performance.A suitable pore size or grille spacing can effectively improve t... The size of pores or the grille spacing of water–sediment separation structures directly affects their regulation effect on the debris flow performance.A suitable pore size or grille spacing can effectively improve the water–sediment separation ability of the structure.The new funnel-type grating water–sediment separation structure(FGWSS)combines vertical and horizontal structures and provides a satisfactory water–sediment separation effect.However,the regulation effect of the grille spacing of the structure on the debris flow performance has not been studied.The regulation effect of the structure grille spacing on the debris flow performance is studied through a flume test,and the optimal structure grille spacing is obtained.An empirical equation of the relationship between the relative grille spacing of the structure and the sediment separation rate is established.Finally,the influence of the water–sediment separation structure on the regulation effect of debris flows is examined from two aspects:external factors(properties of debris flows)and internal factors(structural factors).The experimental results show that the gradation characteristics of solid particles in debris flows constitute a key factor affecting the regulation effect of the structure on the debris flow performance.The optimum grille spacing of the FGWSS matches the particle size corresponding to the material distribution curves d85~d90 of the debris flow.The total separation rate of debris flow particles is related to the grille spacing of the structure and the content of coarse and fine particles in the debris flow. 展开更多
关键词 Debris flow Water–sediment separation structure Grille spacing Performance regulation effect
下载PDF
Effects of sequential decay on collective flows and nuclear stopping power in heavy-ion collisions at intermediate energies 被引量:1
3
作者 Kui Xiao Peng-Cheng Li +2 位作者 Yong-Jia Wang Fu-Hu Liu Qing-Feng Li 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第4期175-184,共10页
In this study, the rapidity distribution, collective flows, and nuclear stopping power in ^(197)Au+^(197)Au collisions at intermediate energies were investigated using the ultrarelativistic quantum molecular dynamics(... In this study, the rapidity distribution, collective flows, and nuclear stopping power in ^(197)Au+^(197)Au collisions at intermediate energies were investigated using the ultrarelativistic quantum molecular dynamics(UrQMD) model with GEMINI++ code. The UrQMD model was adopted to simulate the dynamic evolution of heavy-ion collisions, whereas the GEMINI++ code was used to simulate the decay of primary fragments produced by UrQMD. The calculated results were compared with the INDRA and FOPI experimental data. It was found that the rapidity distribution, collective flows, and nuclear stopping power were affected to a certain extent by the decay of primary fragments, especially at lower beam energies. Furthermore, the experimental data of the collective flows and nuclear stopping power at the investigated beam energies were better reproduced when the sequential decay effect was included. 展开更多
关键词 Heavy-ion collisions Sequential decay effect Collective flow Nuclear stopping power
下载PDF
A semi-analytical model for coupled flow in stress-sensitive multi-scale shale reservoirs with fractal characteristics 被引量:1
4
作者 Qian Zhang Wen-Dong Wang +4 位作者 Yu-Liang Su Wei Chen Zheng-Dong Lei Lei Li Yong-Mao Hao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期327-342,共16页
A large number of nanopores and complex fracture structures in shale reservoirs results in multi-scale flow of oil. With the development of shale oil reservoirs, the permeability of multi-scale media undergoes changes... A large number of nanopores and complex fracture structures in shale reservoirs results in multi-scale flow of oil. With the development of shale oil reservoirs, the permeability of multi-scale media undergoes changes due to stress sensitivity, which plays a crucial role in controlling pressure propagation and oil flow. This paper proposes a multi-scale coupled flow mathematical model of matrix nanopores, induced fractures, and hydraulic fractures. In this model, the micro-scale effects of shale oil flow in fractal nanopores, fractal induced fracture network, and stress sensitivity of multi-scale media are considered. We solved the model iteratively using Pedrosa transform, semi-analytic Segmented Bessel function, Laplace transform. The results of this model exhibit good agreement with the numerical solution and field production data, confirming the high accuracy of the model. As well, the influence of stress sensitivity on permeability, pressure and production is analyzed. It is shown that the permeability and production decrease significantly when induced fractures are weakly supported. Closed induced fractures can inhibit interporosity flow in the stimulated reservoir volume (SRV). It has been shown in sensitivity analysis that hydraulic fractures are beneficial to early production, and induced fractures in SRV are beneficial to middle production. The model can characterize multi-scale flow characteristics of shale oil, providing theoretical guidance for rapid productivity evaluation. 展开更多
关键词 Multi-scale coupled flow Stress sensitivity Shale oil Micro-scale effect Fractal theory
下载PDF
Experimental Study on Vortex-Induced Vibration of Marine Riser Model with Coupling Interference Effect Under Combined Internal and External Flow
5
作者 REN Xiao-hui LI Peng +5 位作者 CHEN Xin WANG Ye-shuo LIU Zhen HAO Lian-hong WANG Yu HUANG Yi-jie 《China Ocean Engineering》 SCIE EI CSCD 2023年第4期673-684,共12页
A partition model of interference efficiency was constructed to study the coupling interference effect under combined internal and external flow.The concept of“internal flow efficiency”,“velocity ratio”and“interf... A partition model of interference efficiency was constructed to study the coupling interference effect under combined internal and external flow.The concept of“internal flow efficiency”,“velocity ratio”and“interference efficiency”were introduced to quantify the effect of internal flow and interference,and reveal the coupling mechanism among internal flow,external flow and interference effect.The results showed that the dynamic response of risers under variable angles was significantly different after considering the effect of internal flow.When the external flow velocity was smaller than 0.25 m/s,the vibration of risers was promoted by the internal flow.With the increase of external flow velocity,the effect of internal flow was weakened and the dynamic response of riser mainly depended on the external flow and interference effect.Under the effect of different internal flow,the interference efficiency had similar change trend.The interference effect amplified the complex secondary flow effect inside the riser,making the dynamic response of riser complex and random.In this paper,the overlap area and subdivision criterion of interference effect were constructed within the range of experimental velocity ratio,and the change curve of interference efficiency was obtained with an average meaning,which may have important practical meaning. 展开更多
关键词 marine riser vortex-induced vibration internal flow interference effect interference efficiency internal flow efficiency
下载PDF
Simulation of Gas-Water Two-Phase Flow in Tight Gas Reservoirs Considering the Gas Slip Effect
6
作者 Mingjing Lu Zenglin Wang +3 位作者 Aishan Li Liaoyuan Zhang Bintao Zheng Zilin Zhang 《Fluid Dynamics & Materials Processing》 EI 2023年第5期1269-1281,共13页
A mathematical model for the gas-water two-phase flow in tight gas reservoirs is elaborated.The model can account for the gas slip effect,stress sensitivity,and high-speed non-Darcy factors.The related equations are s... A mathematical model for the gas-water two-phase flow in tight gas reservoirs is elaborated.The model can account for the gas slip effect,stress sensitivity,and high-speed non-Darcy factors.The related equations are solved in the framework of a finite element method.The results are validated against those obtained by using the commercial software CMG(Computer Modeling Group software for advanced recovery process simulation).It is shown that the proposed method is reliable.It can capture the fracture rejection characteristics of tight gas reservoirs better than the CMG.A sensitivity analysis of various control factors(initial water saturation,reservoir parameters,and fracturing parameters)affecting the production in tight gas wells is conducted accordingly.Finally,a series of theoretical arguments are provided for a rational and effective development/exploitation of tight sandstone gas reservoirs. 展开更多
关键词 Tight gas reservoir gas-water two-phase flow numerical simulation fractured horizontal well gas slip effect
下载PDF
An Experimental Observation of the Thermal Effects and NO Emissions during Dissociation and Oxidation of Ammonia in the Presence of a Bundle of Thermocouples in a Vertical Flow Reactor
7
作者 Samuel Ronald Holden Zhezi Zhang +2 位作者 Jian Gao Junzhi Wu Dongke Zhang 《Advances in Chemical Engineering and Science》 2023年第3期250-264,共15页
Ammonia (NH<sub>3</sub>) dissociation and oxidation in a cylindrical quartz reactor has been experimentally studied for various inlet NH<sub>3</sub> concentrations (5%, 10%, and 15%) and reacto... Ammonia (NH<sub>3</sub>) dissociation and oxidation in a cylindrical quartz reactor has been experimentally studied for various inlet NH<sub>3</sub> concentrations (5%, 10%, and 15%) and reactor temperatures between 700 K and 1000 K. The thermal effects during both NH<sub>3</sub> dissociation (endothermic) and oxidation (exothermic) were observed using a bundle of thermocouples positioned along the central axis of the quartz reactor, while the corresponding NH<sub>3</sub> conversions and nitrogen oxides emissions were determined by analysing the gas composition of the reactor exit stream. A stronger endothermic effect, as indicated by a greater temperature drop during NH<sub>3</sub> dissociation, was observed as the NH<sub>3</sub> feed concentration and reactor temperature increased. During NH<sub>3</sub> oxidation, a predominantly greater exothermic effect with increasing NH<sub>3</sub> feed concentration and reactor temperature was also evident;however, it was apparent that NH<sub>3</sub> dissociation occurred near the reactor inlet, preceding the downstream NH<sub>3</sub> and H<sub>2</sub> oxidation. For both NH<sub>3</sub> dissociation and oxidation, NH<sub>3</sub> conversion increased with increasing temperature and decreasing initial NH<sub>3</sub> concentration. Significant levels of NO<sub>X</sub> emissions were observed during NH<sub>3</sub> oxidation, which increased with increasing temperature. From the experimental results, it is speculated that the stainless-steel in the thermocouple bundle may have catalysed NH<sub>3</sub> dissociation and thus changed the reaction chemistry during NH<sub>3</sub> oxidation. 展开更多
关键词 AMMONIA NH3 Dissociation NH3 Oxidation flow Reactor Nitrogen Oxides (NOX) Thermal effects
下载PDF
Debris flow runout behaviors considering the influences of densely populated buildings
8
作者 ZHANG Shuai FANG Zhe +4 位作者 DAI Cong WANG Shuairong PENG Jingyu ZHOU Yiling SHEN Ping 《Journal of Mountain Science》 SCIE CSCD 2024年第8期2696-2712,共17页
Debris flows pose serious risks to communities in mountainous areas,often resulting in large losses of human life and property.The impeding presence of urban buildings often affects the runout behavior and deposition ... Debris flows pose serious risks to communities in mountainous areas,often resulting in large losses of human life and property.The impeding presence of urban buildings often affects the runout behavior and deposition of debris flows.But the impact of different building densities and sizes on debris flow dynamics has yet to be quantified to guide urban planning in debris flow risk zones.This study focused on a debris flow that occurred in Zhouqu County,Gansu Province,China on August 7th,2010,which was catastrophic and destroyed many buildings.The FLO-2D software was used to simulate this debris flow in two scenarios,i.e.the presence and the absence of buildings,to obtain debris-flow intensity parameters.The developed model was then used to further analyze the influence of large buildings and narrow channels within the urban environment.The simulation results show that considering the presence of buildings in the simulation is essential for accurate assessment of debris flow intensity and deposition distribution.The layout of buildings in the upstream urban area,such as large buildings or parallel buildings which form narrow channels,can affect the flow velocity and depth of debris flow heading towards downstream buildings.To mitigate damage to downstream buildings,the relative spacing(d/a)between upstream and downstream buildings should not exceed a value of two and should ideally be even lower.These findings provide valuable insights for improving the resistance of mountainous cities to urban debris flows. 展开更多
关键词 Debris flow Risk Building blockage effect Zhouqu Urban layout
下载PDF
Enhancing wood efficiency through comprehensive wood flow analysis:Methodology and strategic insights
9
作者 Ruisheng Wang Peer Haller 《Forest Ecosystems》 SCIE CSCD 2024年第2期172-183,共12页
Wood,an essential natural resource in human civilization,remains widely used despite advances in technology and material substitution.The surge in greenhouse gas emissions and environmental concerns accentuates the ne... Wood,an essential natural resource in human civilization,remains widely used despite advances in technology and material substitution.The surge in greenhouse gas emissions and environmental concerns accentuates the need for optimizing wood utilization.Material flow analysis is a powerful tool for tracking material flows and stocks,aiding resource management and environmental decision-making.However,the full extent of its methodological dimensions,particularly within the context of the wood supply chain,remains relatively unexplored.In this study,we delve into the existing literature on wood flow analysis,discussing its primary objectives,materials involved,temporal and spatial scales,data sources,units,and conversion factors.Additionally,data uncertainty,data reconciliation and crucial assumptions in material flow analysis are highlighted in this paper.Key findings reveal the significance of wood cascading and substitution effects by replacing non-wood materials,where they can reduce greenhouse gas emissions more than the natural carbon sink of forests and wood products.The immediate impact of short-term wood cascading might not be as robust as the substitution effect,with energy substitution showcasing better results than material substitution.However,it's crucial to note that these conclusions could experience significant reversal from a long-term and global perspective.Strategies for improving wood efficiency involve maximizing material use,advancing construction technologies,extending product lifespans,promoting cascade use,and optimizing energy recovery processes.The study underscores the need for standardized approaches in wood flow analysis and emphasizes the potential of wood efficiency strategies in addressing environmental challenges. 展开更多
关键词 Material flow analysis WOOD METHODOLOGY Cascade use Substitution effects
下载PDF
Tetrathiafulvalene esters with high redox potentials and improved solubilities for non-aqueous redox flow battery applications
10
作者 Weikang Hu Jiaqi Xu +3 位作者 Nanjie Chen Zongcai Deng Yuekun Lai Dongyang Chen 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第5期899-908,共10页
The exploitation of high performance redox-active substances is critically important for the development of non-aqueous redoxflow batteries.Herein,three tetrathiofulvalene(TTF)derivatives with different substitution gr... The exploitation of high performance redox-active substances is critically important for the development of non-aqueous redoxflow batteries.Herein,three tetrathiofulvalene(TTF)derivatives with different substitution groups,namely TTF diethyl ester(TTFDE),TTF tetramethyl ester(TTFTM),and TTF tetraethyl ester(TTFTE),are prepared and their energy storage properties are evaluated.It has been found that the redox potential and solubility of these TTF derivatives in conventional carbonate electrolytes increases with the number of ester groups.The battery with a catholyte of 0.2 mol L^(-1) of TTFTE delivers a specific capacity of more than 10 Ah L^(-1) at the current density of 0.5 C with two discharge voltage platforms locating at as high as 3.85 and 3.60 V vs.Li/Liþ.Its capacity retention can be improved from 2.34 Ah L^(-1) to 3.60 Ah L^(-1) after 100 cycles by the use of an anion exchange membrane to block the crossover of TTF species.The excellent cycling stability of the TIF esters is supported by their well-delocalized electrons,as revealed by the density function theory calculations.Therefore,the introduction of more and larger electron-withdrawing groups is a promising strategy to simultaneously increase the redox-potential and solubility of redox-active ma-terials for non-aqueous redoxflow batteries. 展开更多
关键词 Non-aqueous redox flow batteries Tetrathiofulvarene Redox potential SOLUBILITY Substituent effect
下载PDF
Discharge evolution law of debris flow based on a sharp bend physical modeling test
11
作者 LU Ming SUN Hao +3 位作者 LIU Jinfeng Abrar HUSSAIN SHANG Yuqi FU Hang 《Journal of Mountain Science》 SCIE CSCD 2024年第6期1904-1915,共12页
For the basins with debris flow development,its channel terrain exhibits a tortuous shape,which significantly restricts the movement of debris flows and leads to severe erosion effects on the concave bank.Therefore,th... For the basins with debris flow development,its channel terrain exhibits a tortuous shape,which significantly restricts the movement of debris flows and leads to severe erosion effects on the concave bank.Therefore,this study aims to analyze the shear force of debris flows within the bend channel.We established the relationship between the shear force and bend curvature through laboratory experiments.Under the long-term erosion by debris flows,the curvature radius of bends gradually increases,however,when this increasing trend reaches an equilibrium state with the intensity of debris flow discharge,there will be no significant change in curvature radius.In general,the activity pattern and discharges of debris flows would remain relatively stable.Hence,we can infer the magnitude of debris flow discharges from the terrain parameters of the bend channel. 展开更多
关键词 Debris flow discharge Erosion effect Bend channel Curvature radius
下载PDF
An Experimental Analysis of Gas-Liquid Flow Breakdown in a T-Junction
12
作者 Lihui Ma Zhuo Han +6 位作者 Wei Li Guangfeng Qi Ran Cheng Yuanyuan Wang Xiangran Mi Xiaohan Zhang Yunfei Li 《Fluid Dynamics & Materials Processing》 EI 2024年第6期1381-1392,共12页
When a gas-liquid two-phase flow(GLTPF)enters a parallel separator through a T-junction,it generally splits unevenly.This phenomenon can seriously affect the operation efficiency and safety of the equipment located do... When a gas-liquid two-phase flow(GLTPF)enters a parallel separator through a T-junction,it generally splits unevenly.This phenomenon can seriously affect the operation efficiency and safety of the equipment located downstream.In order to investigate these aspects and,more specifically,the so-called bias phenomenon(all gas and liquid flowing to one pipe,while the other pipe is a liquid column that fluctuates up and down),laboratory experiments were carried out by using a T-junction connected to two parallel vertical pipes.Moreover,a GLTPF prediction model based on the principle of minimum potential energy was introduced.The research results indicate that this model can accurately predict the GLTPF state in parallel risers.The boundary of the slug flow and the churn flow in the opposite pipe can be predicted.Overall,according to the results,the pressure drop curves of the two-phase flow in the parallel risers are basically the same when there is no bias phenomenon,but the pressure drop in the parallel riser displays a large deviation when there is a slug flow-churn flow.Only when the parallel riser is in a state of asymmetric flow and one of the risers produces churn flow,the two-phase flow is prone to produce the bias phenomenon. 展开更多
关键词 Two-phase flow T-JUNCTION split model entrance effect mechanism model improved model
下载PDF
Monitoring models for base flow effect and daily variation of dam seepage elements considering time lag effect 被引量:10
13
作者 Shao-wei Wang Ying-li Xu +1 位作者 Chong-shi Gu Teng-fei Bao 《Water Science and Engineering》 EI CAS CSCD 2018年第4期344-354,共11页
Affected by external environmental factors and evolution of dam performance, dam seepage behavior shows nonlinear time-varying characteristics. In this study, to predict and evaluate the long-term development trend an... Affected by external environmental factors and evolution of dam performance, dam seepage behavior shows nonlinear time-varying characteristics. In this study, to predict and evaluate the long-term development trend and short-term fluctuation of the dam seepage behavior, two monitoring models were developed, one for the base flow effect and one for daily variation of dam seepage elements. In the first model, to avoid the influence of the time lag effect on the evaluation of seepage variation with the time effect component of seepage elements, the base values of the seepage element and the reservoir water level were extracted using the wavelet multi-resolution analysis method, and the time effect component was separated by the established base flow effect monitoring model. For the development of the daily variation monitoring model for dam seepage elements, all the previous factors, of which the measured time series prior to the dam seepage element monitoring time may have certain influence on the monitored results, were considered. Those factors that were positively correlated with the analyzed seepage element were initially considered to be the support vector machine(SVM) model input factors, and then the SVM kernel function-based sensitivity analysis was performed to optimize the input factor set and establish the optimized daily variation SVM model. The efficiency and rationality of the two models were verified by case studies of the water level of two piezometric tubes buried under the slope of a concrete gravity dam.Sensitivity analysis of the optimized SVM model shows that the influences of the daily variation of the upstream reservoir water level and rainfall on the daily variation of piezometric tube water level are processes subject to normal distribution. 展开更多
关键词 Dam seepage monitoring model Time lag effect Support vector machine(SVM) Sensitivity analysis Base flow Daily variation Piezometric tube water level
下载PDF
Effects of operating parameters on the flow field in slab continuous casting molds with narrow widths 被引量:7
14
作者 Tao Zhang Jian Yang +3 位作者 Gang-jun Xu Hong-jun Liu Jun-jun Zhou Wei Qin 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第2期238-248,共11页
Computational simulations and high-temperature measurements of velocities near the surface of a mold were carried out by using the rod deflection method to study the effects of various operating parameters on the flow... Computational simulations and high-temperature measurements of velocities near the surface of a mold were carried out by using the rod deflection method to study the effects of various operating parameters on the flow field in slab continuous casting(CC)molds with narrow widths for the production of automobile exposed panels.Reasonable agreement between the calculated results and measured subsurface velocities of liquid steel was obtained under different operating parameters of the CC process.The simulation results reveal that the flow field in the horizontal plane located 50 mm from the meniscus can be used as the characteristic flow field to optimize the flow field of molten steel in the mold.Increases in casting speed can increase the subsurface velocity of molten steel and shift the position of the vortex core downward in the downward circulation zone.The flow field of liquid steel in a 1040 mm-wide slab CC mold can be improved by an Ar gas flow rate of 7 L·min^−1 and casting speed of 1.7 m·min^−1.Under the present experimental conditions,the double-roll flow pattern is generally stable at a submerged entry nozzle immersion depth of 170 mm. 展开更多
关键词 flow field rod deflection method continuous casting narrow width numerical simulation operating parameters
下载PDF
Size effects on flow stress of C3602 in cylinder compression with different lubricants 被引量:3
15
作者 GONG Feng GUO Bin ZHOU Jian SHAN Debin 《Rare Metals》 SCIE EI CAS CSCD 2009年第5期528-532,共5页
Micro parts are more difficult to be formed than macro parts because of size effects. The size effects on the flow stress of copper alloy C3602 with different lubricants were studied. Specimens were heat treated at 35... Micro parts are more difficult to be formed than macro parts because of size effects. The size effects on the flow stress of copper alloy C3602 with different lubricants were studied. Specimens were heat treated at 350℃ for 1 h and 700℃ for 3 h in nitrogen atmosphere, respectively. The initial diameters of the specimens were varied from 5 to 1 mm with a height-to-diameter ratio h0/D0 = 1.5. Cylinder compression was carried out in the lubrication condition with talc powder, without lubricant, with petroleum jelly, and with vegetable oil. The experiment was carried out at room temperature on a universal testing machine INSTRON 5569 with a strain rate of ε = 0.0025 A. The results show that with the same lubricant, the yield strength decreases with a decrease in specimen size for the specimens annealed at 350℃ for 1 b; however, it increases with a decrease in specimen size for the specimens annealed at 700℃ for 3 h. The yield strength decreases with an increase in grain size. The influences of lubricants on yield strength become larger with miniaturization of the specimens. 展开更多
关键词 MICROFORMING size effects cylinder compression flow stress LUBRICANT
下载PDF
Effects of the Reynolds number on the mean skin friction decomposition in turbulent channel flows 被引量:3
16
作者 Yitong FAN Cheng CHENG Weipeng LI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2019年第3期331-342,共12页
As the Reynolds number increases, the skin friction has been identified as the dominant drag in many practical applications. In the present paper, the effects of the Reynolds number on the mean skin friction decomposi... As the Reynolds number increases, the skin friction has been identified as the dominant drag in many practical applications. In the present paper, the effects of the Reynolds number on the mean skin friction decomposition in turbulent channel flows up to Reτ= 5 200 are investigated based on two different methods, i.e., the FukagataIwamoto-Kasagi(FIK) identity(FUKAGATA, K., IWAMOTO, K., and KASAGI, N.Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows.Physics of Fluids, 14(11), L73–L76(2002)) and the Renard-Deck(RD) identity(DECK,S., RENARD, N., LARAUFIE, R., and WEISS, P.′E. Large-scale contribution to mean wall shear stress in high-Reynolds-number flat-plate boundary layers up to Reθ= 13 650.Journal of Fluid Mechanics, 743, 202–248(2014)). The direct numerical simulation(DNS) data provided by Lee and Moser(LEE, M. and MOSER, R. D. Direct numerical simulation of turbulent channel flow up to Reτ≈ 5 200. Journal of Fluid Mechanics,774, 395–415(2015)) are used. For these two skin friction decomposition methods, their decomposed constituents are discussed and compared for different Reynolds numbers.The integrands of the decomposed constituents are locally analyzed across the boundary layer to assess the actions associated with the inhomogeneity and multi-scale nature of turbulent motion. The scaling of the decomposed constituents and their integrands are presented. In addition, the boundary layer is divided into three sub-regions to evaluate the contributive proportion of each sub-region with an increase in the Reynolds number. 展开更多
关键词 drag DECOMPOSITION mean SKIN FRICTION TURBULENT channel flow REYNOLDS NUMBER effect
下载PDF
Incident flow effects on the performance of piezoelectric energy harvesters from galloping vibrations 被引量:4
17
作者 Abdessattar Abdelkefi Armanj Hasanyan +2 位作者 Jacob Montgomery Duncan Hall Muhammad R.Hajj 《Theoretical & Applied Mechanics Letters》 CAS 2014年第2期91-96,共6页
In this paper, we investigate experimentally the concept of energy har- vesting from galloping oscillations with a focus on wake and turbulence effects. The .harvester is composed of a unimorph piezoelectric cantileve... In this paper, we investigate experimentally the concept of energy har- vesting from galloping oscillations with a focus on wake and turbulence effects. The .harvester is composed of a unimorph piezoelectric cantilever beam with a square cross-section tip mass. In one case, the harvester is placed in the wake of another galloping harvester with the objective of determining the wake effects on the response of the harvester. In the second case, meshes were placed upstream of the harvester with the objective of investigating the effects of upstream turbulence on the response of the harvester. The results show that both wake effects and up- stream turbulence significantly affect the response of the harvester. Depending on the spacing between the two squares and the opening size of the mesh, wake and upstream turbulence can positively enhance the level of the harvested power. 展开更多
关键词 energy harvesting galloping oscillations incident flow effects experimentalmeasurements
下载PDF
Density waves in a lattice hydrodynamic traffic flow model with the anticipation effect 被引量:2
18
作者 赵敏 孙棣华 田川 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第4期619-624,共6页
By introducing the traffic anticipation effect in the real world into the original lattice hydrodynamic model, we present a new anticipation effect lattice hydrodynamic (AELH) model, and obtain the linear stability ... By introducing the traffic anticipation effect in the real world into the original lattice hydrodynamic model, we present a new anticipation effect lattice hydrodynamic (AELH) model, and obtain the linear stability condition of the model by applying the linear stability theory. Through nonlinear analysis, we derive the Burgers equation and Korteweg-de Vries (KdV) equation, to describe the propagating behaviour of traffic density waves in the stable and the metastable regions, respectively. The good agreement between simulation results and analytical results shows that the stability of traffic flow can be enhanced when the anticipation effect is considered. 展开更多
关键词 traffic flow lattice hydrodynamic model density waves anticipation effect
下载PDF
Slip effects on shearing flows in a porous medium 被引量:5
19
作者 M.Khan T.Hayat Y.Wang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2008年第1期51-59,共9页
This paper deals with the magnetohydrodynamic (MHD) flow of an Oldroyd 8-constant fluid in a porous medium when no-slip condition is no longer valid. Modified Darcy's law is used in the flow modelling. The non-line... This paper deals with the magnetohydrodynamic (MHD) flow of an Oldroyd 8-constant fluid in a porous medium when no-slip condition is no longer valid. Modified Darcy's law is used in the flow modelling. The non-linear differential equation with non-linear boundary conditions is solved numerically using finite difference scheme in combination with an iterative technique. Numerical results are obtained for the Couette, Poiseuille and generalized Couette flows. The effects of slip parameters on the velocity profile are discussed. 展开更多
关键词 Porous medium. Magnetohydrodynamic flow Slip effect
下载PDF
NON-STATIONARY EFFECTS IN HYPERSONIC NONUNIFORM DUSTY-GAS FLOW PAST A BLUNT BODY 被引量:1
20
作者 A.N.Osiptsov A.V.Rozin 王柏懿 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1999年第3期201-214,共14页
In the framework of the two-fluid model, a hypersonic flow of a nonuniform dusty gas with low inertial (non-depositing) particles around a blunt body is considered. The particle mass concentration is assumed to be sma... In the framework of the two-fluid model, a hypersonic flow of a nonuniform dusty gas with low inertial (non-depositing) particles around a blunt body is considered. The particle mass concentration is assumed to be small, so that the effect of particles on the carrier phase is significant only inside the boundary layer where the particles accumulate. Stepshaped and harmonic nonuniformities of the particle concentration ahead of the bow shock wave are considered and the corresponding nonstationary distributions of the particle concentration in the shock layer are studied. On the basis of numerical study of nonstationary two-phase boundary layer equations derived by the matched asymptotic expansion method, the effects of free-stream particle concentration nonuniformities on the thermal flux, and the friction coefficient in the neighborhood of stagnation point are investigated, in particular, the most “dangerous” nonuniformity periods are found. 展开更多
关键词 dusty gas hypersonic flow blunt body non-stationary effects
下载PDF
上一页 1 2 237 下一页 到第
使用帮助 返回顶部