Polyvinyl alcohol (PVA) is water-soluble polymer manufactured by the saponification of polyvinyl acetate. The physical properties and its specific application depend on the degree of hydrolysis. To enhance the propert...Polyvinyl alcohol (PVA) is water-soluble polymer manufactured by the saponification of polyvinyl acetate. The physical properties and its specific application depend on the degree of hydrolysis. To enhance the properties of different hydrolyzed PVA grades, it is generally chemically modified with various cross-linkers. Here, different degree hydrolyzed PVA grades with enhanced properties were achieved by cross-linking with boric acid. These samples were then characterized by Differential Scanning Calorimetry (DSC) and Gel permeation chromatography (GPC). For further analysis a film of samples were prepared by casting on glass plate. The effects of amount of boric acid and degree of hydrolysis of PVA on performance properties like tensile strength, pencil hardness and thermal properties like glass transition temperature were studied. The results showed that by cross-linking there was an increase in mechanical strength and thermal property.展开更多
A new enzyme (alkaline protease 894) obtained from the marine extremophile Flavobacterium yellowsea (YS-80-122) has exhibited strong substrate-binding and catalytic activity, even at low temperature, but the character...A new enzyme (alkaline protease 894) obtained from the marine extremophile Flavobacterium yellowsea (YS-80-122) has exhibited strong substrate-binding and catalytic activity, even at low temperature, but the characteristics of the hydrolysis with this enzyme are still unclear. The pearl oyster Pinctada martensii was used in this study as the raw material to illustrate the kinetic properties of protease 894. After investigating the intrinsic relationship between the degree of hydrolysis and several factors, including initial reaction pH, temperature, substrate concentration, enzyme concentration, and hydrolysis time, the kinetics model was established. This study showed that the optimal conditions for the enzymatic hydrolysis were an initial reaction pH of 5.0, temperature of 30°C, substrate concentration of 10% (w/v), enzyme concentration of 2 500 U/g, and hydrolysis time of 160 min. The kinetic characteristics of the protease for the hydrolysis of P. martensii were obtained. The inactivation constant was found to be 15.16/min, and the average relative error between the derived kinetics model and the actual measurement was only 3.04%, which indicated a high degree of fitness. Therefore, this study provides a basis for the investigation of the concrete kinetic characteristics of the new protease, which has potential applications in the food industry.展开更多
Due to its beneficial health effects,the use of soybean protein has shown a continuous increase,but concerns regarding the allergenicity of soybean antigenic protein have also increased.This study aimed to evaluate th...Due to its beneficial health effects,the use of soybean protein has shown a continuous increase,but concerns regarding the allergenicity of soybean antigenic protein have also increased.This study aimed to evaluate the hydrolytic effects of a non-commercial alkaline protease isolated from the Bacillus subtilis ACCC 01746 on soybeanβ-conglycinin and the allergenicity of its hydrolysates.Alkaline protease of the strain was separated by precipitation method of organic solvents,and theβ-conglycinin was separated by alkali-solution and acid-isolation and purified by use of gel column.Using the degree of hydrolysis(DH)and inhibition rate as evaluation indexes,the enzymatic hydrolysis parameters ofβ-conglycinin was optimized by single factor and L_(9)(3^(4))orthogonal tests,so as to explore the effect of the protease on the hydrolysis degree and the antigenicity ofβ-conglycinin hydrolysates.The results showed that the native enzyme existed as an 18.3 kDa monomer with a 430 U/g maximum activity.The purity ofβ-conglycinin was 84.8%.The single-factor test results showed that DH showed the oppostie trendency with the inhibition rate,and the increase of protein concentration causedmonotone increasing and monotone decreasing of the inhibition rate and the DH,and the optimal protein concentration was 30 mg/mL.The optimization results showed that pH had the largest impacts on both DH and the inhibition rate,followed by enzyme dosage,hydrolysis temperature and hydrolysis time.Under the optimum hydrolysis conditions of protein concentration 30mg/mL,enzymedosage0.7%,hydrolysis time40min,temperature 55°C and pH8.5,the DH reached the highest of 76.28%,and the inhibition rate was the lowest of 27.03%,which was reduced greatly compared with that before optimization.These results suggested that alkaline protease appeared to show a relatively high effeciency in lowering soybean allergenicity,making it possible to produce low-allergenicity soybean protein.展开更多
The hydrolysis process for Silver carp by-products was studied. Protein hydrolysate was prepared with proteolytic enzyme, Alcalase. Hydrolysis conditions were optimized by the regression model of three factors five le...The hydrolysis process for Silver carp by-products was studied. Protein hydrolysate was prepared with proteolytic enzyme, Alcalase. Hydrolysis conditions were optimized by the regression model of three factors five levels quadratic rotation perpendicular regressive design. The optimum hydrolysis conditions of hydrolyzing the protein of Silver carp by-products were determined to be concentration of enzyme (E/S) 3.33%, pH 8.54, hydrolyzing temperature 58 ℃, reaction time 90 min, concentration of substrate 8%. Nitrogen recovery was more than 75%.展开更多
Papain was used to hydrolyse fish frames under controlled conditions at a batch-pilot plant scale- process, for the production of fish protein hydrolysates (FPH). Mass balance calculations were carried out so that the...Papain was used to hydrolyse fish frames under controlled conditions at a batch-pilot plant scale- process, for the production of fish protein hydrolysates (FPH). Mass balance calculations were carried out so that the rate of hydrolysis, rate of protein solubilisation and yields could be estimated. Almost complete hydrolysis could be achieved in 1 hour, at 40oC, with no pH adjustment, at 0.5% (5 g.kg-1) enzyme to substrate ratio (E/S, were S is Kjeldahl protein) using whole fish frames (including heads and flaps). This was achieved both with the addition of water (1/1 to 2/1 frames/water) but more importantly from commercial considerations without the initial addition of water (after mincing of the fish material). The degree of protein solubilisation ranged between 71% - 86% w/w. Four different processes are described, namely: 1) a soluble spray-dried FPH powder 2) a liquid FPH 3) a partly soluble, spray dried FPH powder and 4) a crude, drum-dried protein for animal consumption. The amino acid profile of the FPH was identical to that of the parent substrate (fish frames).展开更多
文摘Polyvinyl alcohol (PVA) is water-soluble polymer manufactured by the saponification of polyvinyl acetate. The physical properties and its specific application depend on the degree of hydrolysis. To enhance the properties of different hydrolyzed PVA grades, it is generally chemically modified with various cross-linkers. Here, different degree hydrolyzed PVA grades with enhanced properties were achieved by cross-linking with boric acid. These samples were then characterized by Differential Scanning Calorimetry (DSC) and Gel permeation chromatography (GPC). For further analysis a film of samples were prepared by casting on glass plate. The effects of amount of boric acid and degree of hydrolysis of PVA on performance properties like tensile strength, pencil hardness and thermal properties like glass transition temperature were studied. The results showed that by cross-linking there was an increase in mechanical strength and thermal property.
基金Supported by the Comprehensive Strategic Cooperation Programs between Guangdong Province and Chinese Academy of Sciences(No.2011A090100008)the Knowledge Innovation Program of Chinese Academy of Sciences(No.KZCX2-EW-Q214)
文摘A new enzyme (alkaline protease 894) obtained from the marine extremophile Flavobacterium yellowsea (YS-80-122) has exhibited strong substrate-binding and catalytic activity, even at low temperature, but the characteristics of the hydrolysis with this enzyme are still unclear. The pearl oyster Pinctada martensii was used in this study as the raw material to illustrate the kinetic properties of protease 894. After investigating the intrinsic relationship between the degree of hydrolysis and several factors, including initial reaction pH, temperature, substrate concentration, enzyme concentration, and hydrolysis time, the kinetics model was established. This study showed that the optimal conditions for the enzymatic hydrolysis were an initial reaction pH of 5.0, temperature of 30°C, substrate concentration of 10% (w/v), enzyme concentration of 2 500 U/g, and hydrolysis time of 160 min. The kinetic characteristics of the protease for the hydrolysis of P. martensii were obtained. The inactivation constant was found to be 15.16/min, and the average relative error between the derived kinetics model and the actual measurement was only 3.04%, which indicated a high degree of fitness. Therefore, this study provides a basis for the investigation of the concrete kinetic characteristics of the new protease, which has potential applications in the food industry.
基金Thanks to Grain&Corn Engineering Technology Research Center,State Administration of Grain(GA2017004)Science and Technology Research Project of Henan(172102110205 and 182102310676)for funding support.
文摘Due to its beneficial health effects,the use of soybean protein has shown a continuous increase,but concerns regarding the allergenicity of soybean antigenic protein have also increased.This study aimed to evaluate the hydrolytic effects of a non-commercial alkaline protease isolated from the Bacillus subtilis ACCC 01746 on soybeanβ-conglycinin and the allergenicity of its hydrolysates.Alkaline protease of the strain was separated by precipitation method of organic solvents,and theβ-conglycinin was separated by alkali-solution and acid-isolation and purified by use of gel column.Using the degree of hydrolysis(DH)and inhibition rate as evaluation indexes,the enzymatic hydrolysis parameters ofβ-conglycinin was optimized by single factor and L_(9)(3^(4))orthogonal tests,so as to explore the effect of the protease on the hydrolysis degree and the antigenicity ofβ-conglycinin hydrolysates.The results showed that the native enzyme existed as an 18.3 kDa monomer with a 430 U/g maximum activity.The purity ofβ-conglycinin was 84.8%.The single-factor test results showed that DH showed the oppostie trendency with the inhibition rate,and the increase of protein concentration causedmonotone increasing and monotone decreasing of the inhibition rate and the DH,and the optimal protein concentration was 30 mg/mL.The optimization results showed that pH had the largest impacts on both DH and the inhibition rate,followed by enzyme dosage,hydrolysis temperature and hydrolysis time.Under the optimum hydrolysis conditions of protein concentration 30mg/mL,enzymedosage0.7%,hydrolysis time40min,temperature 55°C and pH8.5,the DH reached the highest of 76.28%,and the inhibition rate was the lowest of 27.03%,which was reduced greatly compared with that before optimization.These results suggested that alkaline protease appeared to show a relatively high effeciency in lowering soybean allergenicity,making it possible to produce low-allergenicity soybean protein.
基金Heilongjiang Province Science and Technology Key Project
文摘The hydrolysis process for Silver carp by-products was studied. Protein hydrolysate was prepared with proteolytic enzyme, Alcalase. Hydrolysis conditions were optimized by the regression model of three factors five levels quadratic rotation perpendicular regressive design. The optimum hydrolysis conditions of hydrolyzing the protein of Silver carp by-products were determined to be concentration of enzyme (E/S) 3.33%, pH 8.54, hydrolyzing temperature 58 ℃, reaction time 90 min, concentration of substrate 8%. Nitrogen recovery was more than 75%.
文摘Papain was used to hydrolyse fish frames under controlled conditions at a batch-pilot plant scale- process, for the production of fish protein hydrolysates (FPH). Mass balance calculations were carried out so that the rate of hydrolysis, rate of protein solubilisation and yields could be estimated. Almost complete hydrolysis could be achieved in 1 hour, at 40oC, with no pH adjustment, at 0.5% (5 g.kg-1) enzyme to substrate ratio (E/S, were S is Kjeldahl protein) using whole fish frames (including heads and flaps). This was achieved both with the addition of water (1/1 to 2/1 frames/water) but more importantly from commercial considerations without the initial addition of water (after mincing of the fish material). The degree of protein solubilisation ranged between 71% - 86% w/w. Four different processes are described, namely: 1) a soluble spray-dried FPH powder 2) a liquid FPH 3) a partly soluble, spray dried FPH powder and 4) a crude, drum-dried protein for animal consumption. The amino acid profile of the FPH was identical to that of the parent substrate (fish frames).