Due to the harsh actual operating environment of the permanent magnet wind turbine,it is easy to break down and difficult to monitor.Therefore,the electromagnetic characteristics identification of major fault types of...Due to the harsh actual operating environment of the permanent magnet wind turbine,it is easy to break down and difficult to monitor.Therefore,the electromagnetic characteristics identification of major fault types of large-scale permanent magnet wind turbines is studied in this paper.The typical faults of rotor eccentricity,stator winding short circuit and permanent magnet demagnetization of permanent magnet wind turbines are analyzed theoretically.The wavelet analysis algorithm is used to decompose and reconstruct the abnormal electromagnetic signal waveform band,and the characteristic frequency of the electromagnetic signal is obtained when the fault occurs.In order to verify the effectiveness of the proposed method,a 3.680MW permanent magnet wind turbine was taken as the research object.Its physical simulation model was established,and an external circuit was built to carry out field co-simulation.The results show that the motor fault type can be determined by detecting the change rule of fault characteristic frequency in the spectrum diagram,and the electromagnetic characteristic analysis can be applied to the early monitoring of the permanent magnet wind turbine fault.展开更多
In this paper, we present a micromagnetic design for high field sensors. The hard layer of the sensors is L10-FePt which is magnetized perpendicularly to film plane and the sense layer is NiFe which is magnetized in t...In this paper, we present a micromagnetic design for high field sensors. The hard layer of the sensors is L10-FePt which is magnetized perpendicularly to film plane and the sense layer is NiFe which is magnetized in the film plane. The magnetization configurations of the hard and sense layers at different external magnetic fields have been simulated. In micromagnetic simulation, the sense field up to one tesla can be reached by using this sensor. We find that whether the sensor has a symmetric or an asymmetric field-sensing window is determined by the coercive field of the hard layer and the demagnetizing field of the sense layer.展开更多
In this paper, a novel arrangement for magnetic Barkhausen noise detection is introduced. Measurements have been performed using two low carbon steel plates of 1 mm thickness. The measurements were conducted along the...In this paper, a novel arrangement for magnetic Barkhausen noise detection is introduced. Measurements have been performed using two low carbon steel plates of 1 mm thickness. The measurements were conducted along the rolling and the transverse directions. The new arrangement includes a displacement of the detection coil in predetermined steps in while the magnetizing yoke is kept stationary introducing a cyclic magnetization in the rolling direction and transverse to it. In general, the intensity of the Barkhausen signals decreased as a function of coil displacement in both plates. In the temper rolled plate, Barkhausen noise profile shape changed from a single peak to a double peak one when coil has been displaced by 5 mm away in both magnetizing directions. Peaks are more apparent while magnetizing in the transverse direction. The appearance of two peaks profile in the temper rolled plate may be attributed to two stages of magnetization taking place at different times as a function of the applied field. Magnetization in the transverse direction results in a partition of the internal magnetizations into two main components perpendicular to each other. The internal components of magnetization involve the magnetic easy axes in the rolling direction and the forced magnetization in the transverse direction due to the applied field. Another assumption to interpret the findings may be due to the internal demagnetization field in the soft material below surface. The findings support this assumption in such a way that the demagnetizing field is strong enough in the transverse direction than in the rolling direction. This assumption is supported by the experiment on cold rolled plate. In the cold rolled plate, the resultant MBN profiles are composed of one peak throughout the test due to high dislocation density and hence a very weak demagnetizing field.展开更多
Taking the advantages of semiconducting properties and carrier-mediated ferromagnetism in(Ga,Mn)As,a giant modulation of magnetism via electric field in(Ga,Mn)As ultrathin film has been demonstrated.Specifically,huge ...Taking the advantages of semiconducting properties and carrier-mediated ferromagnetism in(Ga,Mn)As,a giant modulation of magnetism via electric field in(Ga,Mn)As ultrathin film has been demonstrated.Specifically,huge interfacial electric field is obtained by using ionic liquid as the gate dielectric.Both magnetization and transport measurements are employed to characterize the samples,while the transport data are used to analyze the electric filed effect on magnetism.Complete demagnetization of(Ga,Mn)As film is then realized by thinning its thickness down to ~2 nm,during which the degradation of ferromagnetism of(Ga,Mn)As ultrathin film induced by quantum confinement effect is suppressed by inserting a heavily-doped p-type GaAs buffer layer.The variation of the Curie temperature is more than 100 K,which is nearly 5-times larger than previous results.Our results provide a new pathway on the efficient electrical control of magnetism.展开更多
The permanent magnets will be irreversibly demagnetized under high temperature and high velocity during the electromagnetic buffering.In this study,the magnetic field induced by eddy currents and the self-demagnetizin...The permanent magnets will be irreversibly demagnetized under high temperature and high velocity during the electromagnetic buffering.In this study,the magnetic field induced by eddy currents and the self-demagnetizing field of permanent magnet are taken into consideration together for demagnetization analyse.The magnetic Reynolds number is used to express the eddy currents demagnetization.The correction coefficient being expressed as the index of the air-gap width,the inner cylinder thickness,iron pole axial length and the permanent magnet demagnetization coefficient is introduced by magnetic path analysis to represent the self-demagnetization effect and the demagnetization extent.The electromagnetic buffer(EMB)prototype is tested under intensive impact loads of different strengths at room temperature.The accuracy of the nonlinear irreversible demagnetization finite element model is verified by demagnetization on damping force,velocity and displacement.Finally,high-velocity demagnetization and high-temperature demagnetization are analysed in order to obtain the distribution law of irreversible demagnetization.展开更多
A category of permanent-magnet-shield(PM-shield)axial-field dual-rotor segmented switched reluctance machines(ADS-SRMs)are presented in this paper.These topologies are featured by using the magnetic material to shield...A category of permanent-magnet-shield(PM-shield)axial-field dual-rotor segmented switched reluctance machines(ADS-SRMs)are presented in this paper.These topologies are featured by using the magnetic material to shield the flux leakage in the stator and rotor parts.Besides,the deployed magnets weaken the magnetic saturation in the iron core,thus increasing the main flux.Hence,the torque-production capability can be increased effectively.All the PM-shield topologies are proposed and designed based on the magnetic equivalent circuit(MEC)model of ADS-SRM,which is the original design deploying no magnet.The features of all the PM-shield topologies are compared with the original design in terms of the magnetic field distributions,flux linkages,phase inductances,torque components,and followed by their motion-coupled analyses on the torque-production capabilities,copper losses,and efficiencies.Considering the cost reduction and the stable ferrite-magnet supply,an alternative proposal using the ferrite magnets is applied to the magnetic shielding.The magnet demagnetization analysis incorporated with the thermal behavior is performed for further verification of the motor performance.展开更多
In this paper,a novel intensifying-flux variable flux-leakage interior permanent magnet(IFVF-IPM)machine is proposed,in which flux barriers were designed deliberately between the adjacent poles to obtain intensifying-...In this paper,a novel intensifying-flux variable flux-leakage interior permanent magnet(IFVF-IPM)machine is proposed,in which flux barriers were designed deliberately between the adjacent poles to obtain intensifying-flux effect and variable flux-leakage property.The rotor topology and design principles of the proposed machine are also introduced.Then,a multi-objective optimization method is adopted based on the sensitivity analysis,and some design variables of IFVF-IPM machine with strong sensitivity are selected to optimization progress by using the non-dominated sorting genetic algorithm-Ⅱ(NSGA-Ⅱ).Moreover,the electromagnetic characteristics of conventional IPM machine,conventional IFVF-IPM machine(CIFVF-IPM)and the novel IFVF-IPM machine are compared based on the finite element analysis(FEA)method which includes flux linkage,inductances characteristic,torque-speed envelops and power characteristic,as well as evaluation of the risk of irreversible demagnetization.Finally,the experiment results show that the IFVF-IPM machine has a better performance in flux weakening capability for wide speed range and a lower risk of irreversible demagnetization,which indicates the validity and feasibility of the proposed machine.展开更多
As a auxiliary brake, Permanent Magnet Retarder (PMR) generates lots of energy and has greater temperature-rise when PMR works, so that it has a direct impact on PMR work performance and even causes demagnetization ...As a auxiliary brake, Permanent Magnet Retarder (PMR) generates lots of energy and has greater temperature-rise when PMR works, so that it has a direct impact on PMR work performance and even causes demagnetization seriously. In order to analyze permanent magnet (PM) demagnetization in high-temperature in PMR, PMR mathematical model is established firstly, and the boundary conditions of finite element analysis are determined. Then the eddy current field distribution in the rotor is determined by solving eddy current demagnetization field, and PM dynamic permeance coefficient is obtained. Combined with PM demagnetization curve analysis, PMR permanent magnet demagnetization properties are analyzed. The analysis result is validated by the bench test. It shows that part of PM is demagnetized when PRM continues working for about 15 minutes, and the braking performance is declined. Finally, three PMR optimization design methods are proposed.展开更多
This paper presents new converter for torque ripple minimization of three phases Switched Reluctance Motor (SRM). The proposed converter has basic passive circuit which includes two diodes and one capacitor to the fro...This paper presents new converter for torque ripple minimization of three phases Switched Reluctance Motor (SRM). The proposed converter has basic passive circuit which includes two diodes and one capacitor to the front end of an asymmetric converter with a specific end goal to get a high magnetization and demagnetization voltage. In view of this boost capacitor, the charge and demagnetization voltage are higher. Accordingly, it can reduce the negative torque generation from the tail current and enhance the output power. The proposed converter circuit is equipped for minimizing the SRM torque ripple furthermore enhancing the average torque when contrasted with traditional converter circuit. A three-phase SRM is modeled and the simulation output for no load and stacked condition depicts that the proposed converter has better performance when contrasted with traditional converter. It is appropriate for electric vehicle applications. The proposed framework is simulated by utilizing MATLAB/Simulink environment and their outcomes are examined extravagantly.展开更多
A three-dimentional finite element micromagnetic algorithm was developed to study the magnetization reversal of Pr2Fe14B single-phase nanocrystalline permanent magnets. A single-phase nanocrystalline Pr2Fe14B magnets ...A three-dimentional finite element micromagnetic algorithm was developed to study the magnetization reversal of Pr2Fe14B single-phase nanocrystalline permanent magnets. A single-phase nanocrystalline Pr2Fe14B magnets composed of 216 irregular shaped grains was built. The magnetic hysteresis loops were simulated by micromagnetic finite element method. The contribution of intergrain exchange coupling ment degree (IGEC) to remanence enhancement is considered related to the alignin oriented magnets, and decreased with improved grain alignment. For the magnets with perfectly crystallo- graphic alignment of grains, the contribution of IGEC to remanence enhancement is nearly zero. The shape of demagnetization curve is not only dependent on grain alignment degree but also on the strength of IGEC in magnets.展开更多
The accelerated growth of data streams shows the growth interest in development of the new family of data handling devices with heightened speeds-magnetooptic (MO) disks, time-space transparences, modulators and other...The accelerated growth of data streams shows the growth interest in development of the new family of data handling devices with heightened speeds-magnetooptic (MO) disks, time-space transparences, modulators and other. The most significant problem is necessity to expect from the used of magnetic mediums the high domain wall (DW) motion (up to 20×103 m/s); such materials are the weak ferromagnets, for example, orthoferrites. The unique combination of it with high magnetooptic quality factor in visual area of such materials increases their practical value. МО transparency on the basis of such materials allows reaching frequency of data processing up to 5 MHz, with substantially accessible size of a cell in 1 micron. The new, detected by us, elastic-induced mechanism of demagnetization (EIMD) in rare earth orthoferrites, when the wave of demagnetization is spread with velocity considerably superior to a limiting velocity of the stationary DW motion, gives high practical concern. The ascertaining of requirements, when it possible to origin such mechanism of demagnetization, and management by them makes actual the development of МО time-space transparency. When the EIMD arises, the travelling velocity of DW becomes higher than limiting. To perform this, the light modulation frequency increases up to several GHz.展开更多
For static magnetic properties of the Co/Ni bilayers,macroscopic hysteresis loops and microscopic magnetic moment distributions have been determined by the object oriented micromagnetic framework(OOMMF).It is found th...For static magnetic properties of the Co/Ni bilayers,macroscopic hysteresis loops and microscopic magnetic moment distributions have been determined by the object oriented micromagnetic framework(OOMMF).It is found that when the bilayer systems are fully decoupled,the magnetizations of the two phases reverse separately.The coercivity of the bilayers decreases to a valley value sharply with increasing interfacial exchange coupling and then rises slowly to a platform.On the other hand,we have carried out an atomistic simulation for the laser-induced ultrafast demagnetization of the Co/Ni bilayer.A larger damping constant leads to a faster demagnetization as well as a larger degree of demagnetization,which is consistent with the first-principle theoretical results.For the magnetization recovery process,the damping constant has different influences on the recovery time with various peak electron temperatures,which is ignored in previous atomistic simulations as well as the Landau–Liftshit–Bloch(LLB)micromagnetic calculations.Furthermore,as the interfacial exchange coupling increases,the ultrafast demagnetization curves for Co and Ni become coincident,which is a demonstration for the transition from two-phase phenomenon to single-phase phenomenon.展开更多
Based on the observation of temperature variation of both domain structure and magnetic con- trast.the thermal demagnetization and randomness of domain nucleation was discussed.
We design a pulsed power source based on the technique for explosive-driven demagnetization. The physical process and geometry structure of this power source are described in detail and several formulae are deduced to...We design a pulsed power source based on the technique for explosive-driven demagnetization. The physical process and geometry structure of this power source are described in detail and several formulae are deduced to predict some important properties of the power source. With a φ 40 mm × 20 mm× 10 mm cylindrical magnet, the maximum output voltage and current reaches 125.5 V and 862.9A, respectively. The rise time of the front edge of the output voltage is about 264ns. On the 0.05 Ω simulative load, the net power is 37kW.展开更多
The demagnetization process and the coercivity mechanism for amsotropic HDDR Nd(Fe,Co)B bonded magnets were studied by comparing the dependence of coercivity on the alignment field applied while the powders were press...The demagnetization process and the coercivity mechanism for amsotropic HDDR Nd(Fe,Co)B bonded magnets were studied by comparing the dependence of coercivity on the alignment field applied while the powders were pressed. The results showed that both the remanence and the coercivity of magnet increased with increasing alignment field. The demagnetization process of the magnet can be classified as the nucleation process inside the grains and the domain-wall motion between the grains. The combined effect of two processes determines the coercivity of HDDR NdFeB bonded magnets.展开更多
Demagnetization behavior of Halbach magnetized compensated pulsed alternator(CPA)is studied by using finite element method(FEM)under the different demagnetization factors in this paper.The effect of armature reaction ...Demagnetization behavior of Halbach magnetized compensated pulsed alternator(CPA)is studied by using finite element method(FEM)under the different demagnetization factors in this paper.The effect of armature reaction magnetic field and thermal rise on demagnetization of PMs is analyzed.This paper investigates the effect of different demagnetization factors on magnetic field distribution,load current,and no-load phase voltage.A series of dynamic demagnetization points in Halbach array permanent magnet(PM)are evaluated to search the worst working point.Partial demagnetization risk can be represented by the worst working point,and the global demagnetization of the PM is represented by the no-load phase voltage characteristics after discharge.The research results demonstrated that the compensation shield with a certain thickness can increase the discharge current and weaken the demagnetization influence of armature reaction.The demagnetization effect of armature reaction on PMs at high temperatures will be strengthened.展开更多
Cross polarization(CP)is a widely used solid-state nuclear magnetic resonance(NMR)technique for enhancing the polarization of dilute S spins from much larger polarization of abundant I spins such as 1 H.To achieve suc...Cross polarization(CP)is a widely used solid-state nuclear magnetic resonance(NMR)technique for enhancing the polarization of dilute S spins from much larger polarization of abundant I spins such as 1 H.To achieve such a polarization transfer,the I spin should either be spin-locked or be converted to the dipolar ordered state through adiabatic demagnetization in the rotating frame.In this work,we analyze the spin dynamics of the Hartmann-Hahn CP(HHCP)utilizing the 1 H spin-locking,and the dipolar-order CP(DOCP)having the 1 H adiabatic demagnetization.We further propose an adiabatic demagnetization CP(ADCP)where a constant radio-frequency pulse is applied on the S spin while 1 H is adiabatically demagnetized.Our analyses indicate that ADCP utilizes the adiabatic passage to effectively achieve the polarization transfer from the 1 H to S spins.In addition,the dipolar ordered state generated during the 1 H demagnetization process could also be converted into the observable S polarization through DOCP,further enhancing the polarized signals.It is shown by both static and magic-angle-spinning(MAS)NMR experiments that ADCP has dramatically broadened the CP matching condition over the other CP schemes.Various samples have been used to demonstrate the polarization transfer efficiency of this newly proposed ADCP scheme.展开更多
In this study, we investigate the demagnetization resistance of a concentrated winding IPMSM (interior permanent magnet synchronous motor) accounting for field weakening control by changing the magnetization directi...In this study, we investigate the demagnetization resistance of a concentrated winding IPMSM (interior permanent magnet synchronous motor) accounting for field weakening control by changing the magnetization direction of the permanent magnet under a high-temperature environment. IPMSMs are investigated by FEA (finite element analysis) using the same volume of the permanent magnet while changing the magnet’s width, thickness and magnetic field orientation angle. FEA found that a V-shaped angle Va = 100° and a changed magnet length of 97% using an oblique magnetic-field-oriented magnet strike a good balance between demagnetization resistance and torque at 180 ℃. Comparison between demagnetization of negative d-axis current (current phase β = 90°) and demagnetization of field weakening control (β = 80°) using concentrated winding IPMSM with V-shaped angle Va = 100° is conducted. With the demagnetization factor at β = 80° for β = 90°, the demagnetization factor 0.39 (2.6 times) at α = 0° decreases to 0.23 (4.3 times) at α = 20°. The demagnetization resistance in the field weakening control is further improved.展开更多
Permanent magnets with high energy products are widely used in a variety of electromagnetic devices. Such devices can be found in marine, aerospace, and robotic applications which require the minimization of weight an...Permanent magnets with high energy products are widely used in a variety of electromagnetic devices. Such devices can be found in marine, aerospace, and robotic applications which require the minimization of weight and volume of the electromagnetic device. During the magnetizing process, the magnet may not be perfectly magnetized. Therefore, it needs to be demagnetized. Because of high coercivity of some permanent magnets, the demagnetization process requires the intense magnetic fields in close proximity with the magnetic material. The fields must be produced for a short period of time (millisecond range) and they also must be bidirectional in order to overcome the coercivity of magnetic material. Different parameters have been known to affect the demagnetizer operation such as the core shape, core material, turn number, cross section of air gap, magnet type and so on. The amplitude and waveform of the fixture current is obtained from PSPICE simulations and also from experimental measurement. A 2D finite element analysis is developed to simulate the magnetic fields and the mechanical forces. In this paper, the main parameters affecting the optimal design of the demagnetizer are discussed. Simulation results show that the core structure, air gap width, and turn numbers are the most important parameters when designing such a device.展开更多
An analytical solution(ANA)for a fractional-slot double-layer-winding open-slot vernier permanent magnet(VPM)machine with tooth tips is presented.Magnetic vector potential equations are analytically solved using the t...An analytical solution(ANA)for a fractional-slot double-layer-winding open-slot vernier permanent magnet(VPM)machine with tooth tips is presented.Magnetic vector potential equations are analytically solved using the technique of variable separation in four subdomains in a two-dimensional polar coordinate system.Based on the solved magnetic vector potential,the flux density distribution,torque,flux linkage,inductance,electromotive force(EMF)and power factor are analytically developed.An 18-slot/32-rotor-pole prototype is analyzed,and the results match well with the finite element analysis(FEA),which validates that the ANA consumes less time than FEA.Therefore,the tooth tips are optimized using the ANA to improve the average torque.Moreover,the ANA can be used to evaluate the demagnetization withstand capabilities of permanent magnets.The material utilization,slot-filling factor,EMF,and torque are compared between the models with three and four subdomains.Finally,an experimental prototype is constructed and tested,and the results validate the ANA.展开更多
基金supported by the National Natural Science Foundation of China(U22A20215 and 51537007)the Natural Science Foundation of LiaoNing Province(2021-YQ-09).
文摘Due to the harsh actual operating environment of the permanent magnet wind turbine,it is easy to break down and difficult to monitor.Therefore,the electromagnetic characteristics identification of major fault types of large-scale permanent magnet wind turbines is studied in this paper.The typical faults of rotor eccentricity,stator winding short circuit and permanent magnet demagnetization of permanent magnet wind turbines are analyzed theoretically.The wavelet analysis algorithm is used to decompose and reconstruct the abnormal electromagnetic signal waveform band,and the characteristic frequency of the electromagnetic signal is obtained when the fault occurs.In order to verify the effectiveness of the proposed method,a 3.680MW permanent magnet wind turbine was taken as the research object.Its physical simulation model was established,and an external circuit was built to carry out field co-simulation.The results show that the motor fault type can be determined by detecting the change rule of fault characteristic frequency in the spectrum diagram,and the electromagnetic characteristic analysis can be applied to the early monitoring of the permanent magnet wind turbine fault.
基金Project supported by the Nature Science Foundation of China (Grant No 10404019) and by the Science and Technology Committee of Shanghai (Grant No 05PJ14090).
文摘In this paper, we present a micromagnetic design for high field sensors. The hard layer of the sensors is L10-FePt which is magnetized perpendicularly to film plane and the sense layer is NiFe which is magnetized in the film plane. The magnetization configurations of the hard and sense layers at different external magnetic fields have been simulated. In micromagnetic simulation, the sense field up to one tesla can be reached by using this sensor. We find that whether the sensor has a symmetric or an asymmetric field-sensing window is determined by the coercive field of the hard layer and the demagnetizing field of the sense layer.
文摘In this paper, a novel arrangement for magnetic Barkhausen noise detection is introduced. Measurements have been performed using two low carbon steel plates of 1 mm thickness. The measurements were conducted along the rolling and the transverse directions. The new arrangement includes a displacement of the detection coil in predetermined steps in while the magnetizing yoke is kept stationary introducing a cyclic magnetization in the rolling direction and transverse to it. In general, the intensity of the Barkhausen signals decreased as a function of coil displacement in both plates. In the temper rolled plate, Barkhausen noise profile shape changed from a single peak to a double peak one when coil has been displaced by 5 mm away in both magnetizing directions. Peaks are more apparent while magnetizing in the transverse direction. The appearance of two peaks profile in the temper rolled plate may be attributed to two stages of magnetization taking place at different times as a function of the applied field. Magnetization in the transverse direction results in a partition of the internal magnetizations into two main components perpendicular to each other. The internal components of magnetization involve the magnetic easy axes in the rolling direction and the forced magnetization in the transverse direction due to the applied field. Another assumption to interpret the findings may be due to the internal demagnetization field in the soft material below surface. The findings support this assumption in such a way that the demagnetizing field is strong enough in the transverse direction than in the rolling direction. This assumption is supported by the experiment on cold rolled plate. In the cold rolled plate, the resultant MBN profiles are composed of one peak throughout the test due to high dislocation density and hence a very weak demagnetizing field.
基金supported by MOST (Grant No. 2017YFB0405701)NSFC (Grants Nos. U1632264 and 11704374)the Key Research Project of Frontier Science of Chinese Academy of Science (Grant No. QYZDY-SSW-JSC015)
文摘Taking the advantages of semiconducting properties and carrier-mediated ferromagnetism in(Ga,Mn)As,a giant modulation of magnetism via electric field in(Ga,Mn)As ultrathin film has been demonstrated.Specifically,huge interfacial electric field is obtained by using ionic liquid as the gate dielectric.Both magnetization and transport measurements are employed to characterize the samples,while the transport data are used to analyze the electric filed effect on magnetism.Complete demagnetization of(Ga,Mn)As film is then realized by thinning its thickness down to ~2 nm,during which the degradation of ferromagnetism of(Ga,Mn)As ultrathin film induced by quantum confinement effect is suppressed by inserting a heavily-doped p-type GaAs buffer layer.The variation of the Curie temperature is more than 100 K,which is nearly 5-times larger than previous results.Our results provide a new pathway on the efficient electrical control of magnetism.
基金primarily supported by the National Natural Science Foundation of China(grant number 301070603)。
文摘The permanent magnets will be irreversibly demagnetized under high temperature and high velocity during the electromagnetic buffering.In this study,the magnetic field induced by eddy currents and the self-demagnetizing field of permanent magnet are taken into consideration together for demagnetization analyse.The magnetic Reynolds number is used to express the eddy currents demagnetization.The correction coefficient being expressed as the index of the air-gap width,the inner cylinder thickness,iron pole axial length and the permanent magnet demagnetization coefficient is introduced by magnetic path analysis to represent the self-demagnetization effect and the demagnetization extent.The electromagnetic buffer(EMB)prototype is tested under intensive impact loads of different strengths at room temperature.The accuracy of the nonlinear irreversible demagnetization finite element model is verified by demagnetization on damping force,velocity and displacement.Finally,high-velocity demagnetization and high-temperature demagnetization are analysed in order to obtain the distribution law of irreversible demagnetization.
基金the National Natural Science Foundation of China under Grant 51807094。
文摘A category of permanent-magnet-shield(PM-shield)axial-field dual-rotor segmented switched reluctance machines(ADS-SRMs)are presented in this paper.These topologies are featured by using the magnetic material to shield the flux leakage in the stator and rotor parts.Besides,the deployed magnets weaken the magnetic saturation in the iron core,thus increasing the main flux.Hence,the torque-production capability can be increased effectively.All the PM-shield topologies are proposed and designed based on the magnetic equivalent circuit(MEC)model of ADS-SRM,which is the original design deploying no magnet.The features of all the PM-shield topologies are compared with the original design in terms of the magnetic field distributions,flux linkages,phase inductances,torque components,and followed by their motion-coupled analyses on the torque-production capabilities,copper losses,and efficiencies.Considering the cost reduction and the stable ferrite-magnet supply,an alternative proposal using the ferrite magnets is applied to the magnetic shielding.The magnet demagnetization analysis incorporated with the thermal behavior is performed for further verification of the motor performance.
基金This work was supported in part by the National Natural Science Foundation of China under grant no.52067008.
文摘In this paper,a novel intensifying-flux variable flux-leakage interior permanent magnet(IFVF-IPM)machine is proposed,in which flux barriers were designed deliberately between the adjacent poles to obtain intensifying-flux effect and variable flux-leakage property.The rotor topology and design principles of the proposed machine are also introduced.Then,a multi-objective optimization method is adopted based on the sensitivity analysis,and some design variables of IFVF-IPM machine with strong sensitivity are selected to optimization progress by using the non-dominated sorting genetic algorithm-Ⅱ(NSGA-Ⅱ).Moreover,the electromagnetic characteristics of conventional IPM machine,conventional IFVF-IPM machine(CIFVF-IPM)and the novel IFVF-IPM machine are compared based on the finite element analysis(FEA)method which includes flux linkage,inductances characteristic,torque-speed envelops and power characteristic,as well as evaluation of the risk of irreversible demagnetization.Finally,the experiment results show that the IFVF-IPM machine has a better performance in flux weakening capability for wide speed range and a lower risk of irreversible demagnetization,which indicates the validity and feasibility of the proposed machine.
文摘As a auxiliary brake, Permanent Magnet Retarder (PMR) generates lots of energy and has greater temperature-rise when PMR works, so that it has a direct impact on PMR work performance and even causes demagnetization seriously. In order to analyze permanent magnet (PM) demagnetization in high-temperature in PMR, PMR mathematical model is established firstly, and the boundary conditions of finite element analysis are determined. Then the eddy current field distribution in the rotor is determined by solving eddy current demagnetization field, and PM dynamic permeance coefficient is obtained. Combined with PM demagnetization curve analysis, PMR permanent magnet demagnetization properties are analyzed. The analysis result is validated by the bench test. It shows that part of PM is demagnetized when PRM continues working for about 15 minutes, and the braking performance is declined. Finally, three PMR optimization design methods are proposed.
文摘This paper presents new converter for torque ripple minimization of three phases Switched Reluctance Motor (SRM). The proposed converter has basic passive circuit which includes two diodes and one capacitor to the front end of an asymmetric converter with a specific end goal to get a high magnetization and demagnetization voltage. In view of this boost capacitor, the charge and demagnetization voltage are higher. Accordingly, it can reduce the negative torque generation from the tail current and enhance the output power. The proposed converter circuit is equipped for minimizing the SRM torque ripple furthermore enhancing the average torque when contrasted with traditional converter circuit. A three-phase SRM is modeled and the simulation output for no load and stacked condition depicts that the proposed converter has better performance when contrasted with traditional converter. It is appropriate for electric vehicle applications. The proposed framework is simulated by utilizing MATLAB/Simulink environment and their outcomes are examined extravagantly.
文摘A three-dimentional finite element micromagnetic algorithm was developed to study the magnetization reversal of Pr2Fe14B single-phase nanocrystalline permanent magnets. A single-phase nanocrystalline Pr2Fe14B magnets composed of 216 irregular shaped grains was built. The magnetic hysteresis loops were simulated by micromagnetic finite element method. The contribution of intergrain exchange coupling ment degree (IGEC) to remanence enhancement is considered related to the alignin oriented magnets, and decreased with improved grain alignment. For the magnets with perfectly crystallo- graphic alignment of grains, the contribution of IGEC to remanence enhancement is nearly zero. The shape of demagnetization curve is not only dependent on grain alignment degree but also on the strength of IGEC in magnets.
文摘The accelerated growth of data streams shows the growth interest in development of the new family of data handling devices with heightened speeds-magnetooptic (MO) disks, time-space transparences, modulators and other. The most significant problem is necessity to expect from the used of magnetic mediums the high domain wall (DW) motion (up to 20×103 m/s); such materials are the weak ferromagnets, for example, orthoferrites. The unique combination of it with high magnetooptic quality factor in visual area of such materials increases their practical value. МО transparency on the basis of such materials allows reaching frequency of data processing up to 5 MHz, with substantially accessible size of a cell in 1 micron. The new, detected by us, elastic-induced mechanism of demagnetization (EIMD) in rare earth orthoferrites, when the wave of demagnetization is spread with velocity considerably superior to a limiting velocity of the stationary DW motion, gives high practical concern. The ascertaining of requirements, when it possible to origin such mechanism of demagnetization, and management by them makes actual the development of МО time-space transparency. When the EIMD arises, the travelling velocity of DW becomes higher than limiting. To perform this, the light modulation frequency increases up to several GHz.
基金Project supported by the National Basic Research Program of China(Grant Nos.2015CB921403 and 2016YFA0300701)the National Natural Science Foundation of China(Grant Nos.91622126,51427801,and 51671212)the Natural Science Foundation of Hebei Province,China(Grant No.A2015203021)
文摘For static magnetic properties of the Co/Ni bilayers,macroscopic hysteresis loops and microscopic magnetic moment distributions have been determined by the object oriented micromagnetic framework(OOMMF).It is found that when the bilayer systems are fully decoupled,the magnetizations of the two phases reverse separately.The coercivity of the bilayers decreases to a valley value sharply with increasing interfacial exchange coupling and then rises slowly to a platform.On the other hand,we have carried out an atomistic simulation for the laser-induced ultrafast demagnetization of the Co/Ni bilayer.A larger damping constant leads to a faster demagnetization as well as a larger degree of demagnetization,which is consistent with the first-principle theoretical results.For the magnetization recovery process,the damping constant has different influences on the recovery time with various peak electron temperatures,which is ignored in previous atomistic simulations as well as the Landau–Liftshit–Bloch(LLB)micromagnetic calculations.Furthermore,as the interfacial exchange coupling increases,the ultrafast demagnetization curves for Co and Ni become coincident,which is a demonstration for the transition from two-phase phenomenon to single-phase phenomenon.
文摘Based on the observation of temperature variation of both domain structure and magnetic con- trast.the thermal demagnetization and randomness of domain nucleation was discussed.
文摘We design a pulsed power source based on the technique for explosive-driven demagnetization. The physical process and geometry structure of this power source are described in detail and several formulae are deduced to predict some important properties of the power source. With a φ 40 mm × 20 mm× 10 mm cylindrical magnet, the maximum output voltage and current reaches 125.5 V and 862.9A, respectively. The rise time of the front edge of the output voltage is about 264ns. On the 0.05 Ω simulative load, the net power is 37kW.
文摘The demagnetization process and the coercivity mechanism for amsotropic HDDR Nd(Fe,Co)B bonded magnets were studied by comparing the dependence of coercivity on the alignment field applied while the powders were pressed. The results showed that both the remanence and the coercivity of magnet increased with increasing alignment field. The demagnetization process of the magnet can be classified as the nucleation process inside the grains and the domain-wall motion between the grains. The combined effect of two processes determines the coercivity of HDDR NdFeB bonded magnets.
基金This work was supported by the Natural Science Foundation of China under Grant 51307031 and part by the Natural Science Foundation of Heilongjiang Province under Grant E2018034 and China Postdoctoral Science Foundation funded project under Grant 2019M651185.
文摘Demagnetization behavior of Halbach magnetized compensated pulsed alternator(CPA)is studied by using finite element method(FEM)under the different demagnetization factors in this paper.The effect of armature reaction magnetic field and thermal rise on demagnetization of PMs is analyzed.This paper investigates the effect of different demagnetization factors on magnetic field distribution,load current,and no-load phase voltage.A series of dynamic demagnetization points in Halbach array permanent magnet(PM)are evaluated to search the worst working point.Partial demagnetization risk can be represented by the worst working point,and the global demagnetization of the PM is represented by the no-load phase voltage characteristics after discharge.The research results demonstrated that the compensation shield with a certain thickness can increase the discharge current and weaken the demagnetization influence of armature reaction.The demagnetization effect of armature reaction on PMs at high temperatures will be strengthened.
基金supported by the NSF Cooperative Agreement DMR-1644779the State of Florida.X.H.P.acknowledges the supports from the National Key R&D Program of China(Grants No.2018YFA0306600)+1 种基金the National Science Foundation of China(Grants No.11927811,12150014)Anhui Initiative in Quantum Information Technologies(Grant No.AHY050000).
文摘Cross polarization(CP)is a widely used solid-state nuclear magnetic resonance(NMR)technique for enhancing the polarization of dilute S spins from much larger polarization of abundant I spins such as 1 H.To achieve such a polarization transfer,the I spin should either be spin-locked or be converted to the dipolar ordered state through adiabatic demagnetization in the rotating frame.In this work,we analyze the spin dynamics of the Hartmann-Hahn CP(HHCP)utilizing the 1 H spin-locking,and the dipolar-order CP(DOCP)having the 1 H adiabatic demagnetization.We further propose an adiabatic demagnetization CP(ADCP)where a constant radio-frequency pulse is applied on the S spin while 1 H is adiabatically demagnetized.Our analyses indicate that ADCP utilizes the adiabatic passage to effectively achieve the polarization transfer from the 1 H to S spins.In addition,the dipolar ordered state generated during the 1 H demagnetization process could also be converted into the observable S polarization through DOCP,further enhancing the polarized signals.It is shown by both static and magic-angle-spinning(MAS)NMR experiments that ADCP has dramatically broadened the CP matching condition over the other CP schemes.Various samples have been used to demonstrate the polarization transfer efficiency of this newly proposed ADCP scheme.
文摘In this study, we investigate the demagnetization resistance of a concentrated winding IPMSM (interior permanent magnet synchronous motor) accounting for field weakening control by changing the magnetization direction of the permanent magnet under a high-temperature environment. IPMSMs are investigated by FEA (finite element analysis) using the same volume of the permanent magnet while changing the magnet’s width, thickness and magnetic field orientation angle. FEA found that a V-shaped angle Va = 100° and a changed magnet length of 97% using an oblique magnetic-field-oriented magnet strike a good balance between demagnetization resistance and torque at 180 ℃. Comparison between demagnetization of negative d-axis current (current phase β = 90°) and demagnetization of field weakening control (β = 80°) using concentrated winding IPMSM with V-shaped angle Va = 100° is conducted. With the demagnetization factor at β = 80° for β = 90°, the demagnetization factor 0.39 (2.6 times) at α = 0° decreases to 0.23 (4.3 times) at α = 20°. The demagnetization resistance in the field weakening control is further improved.
文摘Permanent magnets with high energy products are widely used in a variety of electromagnetic devices. Such devices can be found in marine, aerospace, and robotic applications which require the minimization of weight and volume of the electromagnetic device. During the magnetizing process, the magnet may not be perfectly magnetized. Therefore, it needs to be demagnetized. Because of high coercivity of some permanent magnets, the demagnetization process requires the intense magnetic fields in close proximity with the magnetic material. The fields must be produced for a short period of time (millisecond range) and they also must be bidirectional in order to overcome the coercivity of magnetic material. Different parameters have been known to affect the demagnetizer operation such as the core shape, core material, turn number, cross section of air gap, magnet type and so on. The amplitude and waveform of the fixture current is obtained from PSPICE simulations and also from experimental measurement. A 2D finite element analysis is developed to simulate the magnetic fields and the mechanical forces. In this paper, the main parameters affecting the optimal design of the demagnetizer are discussed. Simulation results show that the core structure, air gap width, and turn numbers are the most important parameters when designing such a device.
文摘An analytical solution(ANA)for a fractional-slot double-layer-winding open-slot vernier permanent magnet(VPM)machine with tooth tips is presented.Magnetic vector potential equations are analytically solved using the technique of variable separation in four subdomains in a two-dimensional polar coordinate system.Based on the solved magnetic vector potential,the flux density distribution,torque,flux linkage,inductance,electromotive force(EMF)and power factor are analytically developed.An 18-slot/32-rotor-pole prototype is analyzed,and the results match well with the finite element analysis(FEA),which validates that the ANA consumes less time than FEA.Therefore,the tooth tips are optimized using the ANA to improve the average torque.Moreover,the ANA can be used to evaluate the demagnetization withstand capabilities of permanent magnets.The material utilization,slot-filling factor,EMF,and torque are compared between the models with three and four subdomains.Finally,an experimental prototype is constructed and tested,and the results validate the ANA.