期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Main deposit styles and associated tectonics of the West Junggar region,NW China 被引量:9
1
作者 Ping Shen Hongdi Pan +2 位作者 Yuanchao Shen Yuhong Yan Shihua Zhong 《Geoscience Frontiers》 SCIE CAS CSCD 2015年第2期175-190,共16页
The West Junggar region, located in the loci of the Central Asian Orogenic Belt, is a highly endowed metallogenic province with 〉100 tonnes Au, 〉0.7 Mt Cu, 〉0.3 Mt Mo, and 〉2.3 Mt chromite as well as significant a... The West Junggar region, located in the loci of the Central Asian Orogenic Belt, is a highly endowed metallogenic province with 〉100 tonnes Au, 〉0.7 Mt Cu, 〉0.3 Mt Mo, and 〉2.3 Mt chromite as well as significant amounts of Be and U. The West Junggar region has three metallogenic belts distributed systematically from north to south: (1) late Paleozoic Saur Au-Cu belt; (2) early Paleozoic Xiemisitai- Sharburt Be-U-Cu-Zn belt; (3) late Paleozoic Barluk-Kelamay Au-Cu-Mo-Cr belt. These belts host a number of deposits belonging to at least eight economically important styles, including epithermal Au, granite-related Be-U, volcanogenic massive sulfide (VMS) Cu-Zn, podiform chromite, porphyry Cu, hydrothermal quartz vein Au, porphyry-greisen Mo(-W), and orogenic Au. These deposit styles are associated with the tectonics prevalent during their formation. Five tectonic-mineralized epochs can be recognized: (1) Ordovician subduction-related VMS Cu-Zn deposit; (2) Devonian ophiolite-related podiform chromite deposit; (3) early Carboniferous subductionrelated epithermal Au and porphyry Cu deposits; (4) late Carboniferous subduction-related granite-related Be-U, porphyry Cu, and hydrothermal quartz vein Au deposits; and (5) late Carboniferous to early Permian subduction-related por- phyry-greisen Mo(-W) and orogenic Au deposits. 展开更多
关键词 Mineral deposit styles Metallogenic belts Tectonic-mineralized epoch West Jonggar Xinjiang
下载PDF
Structural Control of Sand Bodies and Deep Exploration for Oil and Gas
2
作者 Cheng Rihui Lin Changsong Zheng Herong 《Global Geology》 2002年第2期128-134,189,共8页
The structural styles can be used to analyses and predict developments and distributions of sand bodies in a rift basin. The dynamic process of faulting and sedimentation can be expressed as follow: the basin topograp... The structural styles can be used to analyses and predict developments and distributions of sand bodies in a rift basin. The dynamic process of faulting and sedimentation can be expressed as follow: the basin topography controlled by fault activity can control water dynamics; which in turn affect the transport and sedimentation of sediments. The corresponding analysis between structural styles and sand depositional types includes the following aspects: (1) in section, the corresponding between development of fault terraces and sand depositional types; (2) in plane, the relationship between faults' association and distributions of sand bodies. There are four types of terrace styles to be identified. They are Steep Slope Single Fault Terrace (SSSFT), Steep Slope Multiple Fault Terrace (SSMFT), Gentle Slope (GS) and Gentle Slope Multiple Fault Terrace (GSMFT), which also can be divided into six subtypes by the timing of the faults activities and the directions of their activity migrations (basinward and landward or marginward). They correspond to the following sand depositions such as alluvial fan, fan delta and turbidite fan etc.. The analysis of structure-sedimentation is a discussion on the rank Ⅲ sequence evolution under the condition of pulsing or episodic fault activities. It has been recognized four plane fault associations such as the comb, the broom, the fork and the fault-fold association as well as the corresponding sand distributions. Structural-sedimentary models above mentioned are significant for the deep oil and gas exploration when lacking of the drill data. It may reduce multiple resolutions in the interpretation of seismic-sedimentary facies and promote sand predictions through the constraints of the structural styles of the basin units. The structural-sedimentary pattern can be used as a geological model in oil and gas exploration in the rift basins. 展开更多
关键词 Structural style depositional type Sand prediction Deep EXPLORATION
下载PDF
Structural Origin of the Red-Ribbon Style Iron Ores in the Xinyu Iron Deposit,Central Jiangxi Province
3
作者 CHEN Zhengle ZHANG Qing +3 位作者 CHEN Bailin WANG Xueping SHEN Tao WU Junjie 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2015年第2期691-692,共2页
The Xinyu iron deposit, located in central Jiangxi Province, is one of the most important BIF-type deposits in China. It is hosted in the Late Proterozoic volcanic- sedimentary rocks, which are composed of sericite- c... The Xinyu iron deposit, located in central Jiangxi Province, is one of the most important BIF-type deposits in China. It is hosted in the Late Proterozoic volcanic- sedimentary rocks, which are composed of sericite- chlorite pyhllite, magnetite-bearing chlorite phyllite or schist, magnetite quartzite, and schist (Yu et al., 1989; Zeng et al., 2011). 展开更多
关键词 Structural Origin of the Red-Ribbon Style Iron Ores in the Xinyu Iron Deposit Central Jiangxi Province
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部