In open pit mining,uncontrolled block instabilities have serious social,economic and regulatory consequences,such as casualties,disruption of operation and increased regulation difficulties.For this reason,bench face ...In open pit mining,uncontrolled block instabilities have serious social,economic and regulatory consequences,such as casualties,disruption of operation and increased regulation difficulties.For this reason,bench face angle,as one of the controlling parameters associated with block instabilities,should be carefully designed for sustainable mining.This study introduces a discrete fracture network(DFN)-based probabilistic block theory approach for the fast design of the bench face angle.A major advantage is the explicit incorporation of discontinuity size and spatial distribution in the procedure of key blocks testing.The proposed approach was applied to a granite mine in China.First,DFN models were generated from a multi-step modeling procedure to simulate the complex structural characteristics of pit slopes.Then,a modified key blocks searching method was applied to the slope faces modeled,and a cumulative probability of failure was obtained for each sector.Finally,a bench face angle was determined commensurate with an acceptable risk level of stability.The simulation results have shown that the number of hazardous traces exposed on the slope face can be significantly reduced when the suggested bench face angle is adopted,indicating an extremely low risk of uncontrolled block instabilities.展开更多
Mining globally contributes to the growth of many economies of the world. Since its inception, the Zambian mining industry has contributed largely to the country’s economy. The various developments both in technology...Mining globally contributes to the growth of many economies of the world. Since its inception, the Zambian mining industry has contributed largely to the country’s economy. The various developments both in technology and knowledge have contributed to the scale at which mining is being done. Challenges in such a setting arise due to the socio-economic and environmental impacts of mining, which create multidimensional problems. The study investigated the importance of engaging stakeholders in progressive rehabilitation programs for large-scale open pit mines, using a case study of the Lumwana Mine and its host community, Manyama. A qualitative approach was used, and data was collected through one-on-one interviews. A combination of convenient and quota sampling was used to engage with host community leaders, professionals and academicians from various fields and institutions. Results showed that most participants had agreed that stakeholder engagement is important for progressive rehabilitation, but the challenge was that the host community and municipal council representatives were not aware of any progressive rehabilitation efforts at Lumwana Mine. This was attributed to a lack of stakeholder engagement and communication of mitigation progress activities by the Lumwana Mine. Results also revealed that the lack of environmental impact assessment regulations to compel companies to involve stakeholders throughout the entire life of the mine other than just at the pre-mining stage led to a lack of compliance and accountability in rehabilitation.展开更多
This paper primarily concerns the effective coordination of the procedures and methods employed in open pit mining operations under the background of river management.The central objective of this study is to identify...This paper primarily concerns the effective coordination of the procedures and methods employed in open pit mining operations under the background of river management.The central objective of this study is to identify a viable approach for ensuring rational and efficient development of open pit mineral resources while simultaneously protecting and restoring the ecological environment of the river.This approach should facilitate the realization of a harmonious symbiosis between mining and river management.The intricate mutual influence relationship between river management and open pit mining is first analyzed in depth,which provides a solid foundation for the subsequent coordination strategy development.In light of the aforementioned considerations,a set of coordination procedures for open pit mining based on river management conditions is proposed.These procedures emphasize the integration of river protection into the overall layout of mining at the planning stage.The implementation of scientific mining schemes,accompanied by rigorous control of the scope and depth of mining operations,has proven to be an effective means of reducing the impact of mining activities on river environments.This approach has also facilitated the achievement of a balance and coordination between mining and river management.展开更多
The ecological costs of open pit metal mining are quantified, which include lost value of direct eco-services, lost value of indirect eco-services, prevention and restoration costs, and cost of carbon emission from en...The ecological costs of open pit metal mining are quantified, which include lost value of direct eco-services, lost value of indirect eco-services, prevention and restoration costs, and cost of carbon emission from energy consumption. These ecological costs are incorporated in an iterative ultimate pit optimization algorithm. A case study is presented to demonstrate the influence of ecological costs on pit design outcome. The results show that it is possible to internalize ecological costs in mine designs. The pit optimization outcome shifts considerably to the conservative side and the profitability decreases substantially when ecological costs are accounted for.展开更多
The classical physics theory respectively obeys the three famous conservation laws referred to as charge conjugation, parity and time reverse, and the open pit block model is equal to a Newtonian mechanics system. Con...The classical physics theory respectively obeys the three famous conservation laws referred to as charge conjugation, parity and time reverse, and the open pit block model is equal to a Newtonian mechanics system. Consequently, there would exist some correspondent symmetry principles and conservation laws within the 3D fixed block model of the deposit and the theory for the optimum design of the open pit mine. Reversing a series of relevant fundamental concepts, several conservation laws, which the theory for the optimum design of open pit mines should obey, as block weight conjugation, block model parity and combined symmetry of the both, were expounded. From the symmetry principle, the theoretic significance for a series of the current optimum techniques was discussed and explained, and a kind of conjugate heuristics which can check the error of itself was presented and demonstrated. Thus it is shown that the symmetry principle lays the foundations and opens up the prospects for the further research with mine design and scheduling problem.展开更多
Combining the GIS (geographic information systems) grid-based data with four proposed column-based 3D slope stability analysis models, a comprehensive solution of a high-steep open-pit slope has been obtained. For s...Combining the GIS (geographic information systems) grid-based data with four proposed column-based 3D slope stability analysis models, a comprehensive solution of a high-steep open-pit slope has been obtained. For six searching ranges, 19 critical slip surfaces of different sizes have been studied, in which the minimum 3D safety factor is 1.33. Comparison of 3D safety factors of designed and proposed slope plans shows for all the critical slip surfaces for the proposed plan, the smallest 3D safety factor is 1.33 under the most unfavorable condition. This means that the proposed plan of the high slopes, about 600 m, of an open pit (2-5° steeper than designed plan) is feasible.展开更多
This research proposes the utilization of a geopolymer-based blasting sealing material to improve the profitability of coal sales and reduce the rate of coal fragmentation during blasting in open pit mines.The study f...This research proposes the utilization of a geopolymer-based blasting sealing material to improve the profitability of coal sales and reduce the rate of coal fragmentation during blasting in open pit mines.The study first focused on optimizing the strength of the sealant material and reducing curing time.This was achieved by regulating the slag doping and sodium silicate solution modulus.The findings demonstrated that increasing slag content and improving the material resulted in an early rise in strength while increasing the modulus of the sodium silicate solution extended the curing time.The slag doping level was fixed at 80 g,and the sodium silicate solution modulus was set at 1.5.To achieve a strength of 3.12 MPa,the water/gel ratio was set at 0.5.The initial setting time was determined to be 33 min,meeting the required field test duration.Secondly,the strength requirements for field implementation were assessed by simulating the action time and force destruction process of the sealing material during blasting using ANSYS/LS-DYNA software.The results indicated that the modified material meets these requirements.Finally,the Shengli Open Pit Coal Mine served as the site for the field test.It was observed that the hole-sealing material’s hydration reaction created a laminated and flocculated gel inside it.This enhanced the density of the modified material.Additionally,the pregelatinized starch,functioning as an organic binder,filled the gaps between the gels,enhancing the cohesion and bonding coefficient of the material.Upon analyzing the post-blasting shooting effect diagram using the Split-Desktop software,it was determined that the utilization of the modified blast hole plugging material resulted in a decrease in the rate of coal fragmentation from 33.2%to 21.1%.This reduction exhibited a minimal error of 1.63%when compared to the field measurement,thereby providing further confirmation of the exceptional plugging capabilities of the modified material.This study significantly contributes to establishing a solid theoretical basis for enhancing the blasting efficiency of open pit mines and,in turn,enhancing their economic advantages.展开更多
Teaching reform is an important work indispensable for the long-term development of the open university,and it is also the development trend of the advertising art design major in open education to keep up with the ne...Teaching reform is an important work indispensable for the long-term development of the open university,and it is also the development trend of the advertising art design major in open education to keep up with the new media era.Based on the current situation of advertising art design major in open education,this paper analyzes the necessity of implementing the online and offline mixed teaching reform in this major,and puts forward the specific teaching reform measures in three aspects.展开更多
In the process of intelligent mine construction in open-pit mine, in order to improve the safety monitoring ability of mine transportation system, solve the problems of large human interference and blind Angle detecti...In the process of intelligent mine construction in open-pit mine, in order to improve the safety monitoring ability of mine transportation system, solve the problems of large human interference and blind Angle detection by existing conventional monitoring methods, this paper establishes an open-pit mine monitoring data set, and proposes a real-time intelligent monitoring model based on UAV. The reasoning component with strong computing power and low power consumption is selected, and the lightweight object detection model is selected for the experiment. A quantitative standard of dynamic energy consumption detection by evaluation algorithm is proposed. Through experimental comparison, it is found that YOLOv4-tiny has the highest comprehensive grade in detection accuracy, speed, energy consumption and other aspects, which is suitable for application in the above model.展开更多
A type of velocity sensor CD 1, an auto recording instrument on blasting vibration YBJ 1 and a random signal and vibration analysis system (CRAS) were used to monitor the particle vibration induced by blasting at open...A type of velocity sensor CD 1, an auto recording instrument on blasting vibration YBJ 1 and a random signal and vibration analysis system (CRAS) were used to monitor the particle vibration induced by blasting at open pit slope in Hainan Iron Mine. The attenuating rules of blasting ground vibration on slope were developed. By means of the analysis and calculation of the blasting vibration data at open pit slope and the vertical particle vibration velocity assessment method based on the concept of vibration strength, the empirical attenuating equations which can be used for predicting and estimating the damage of slope were derived.展开更多
The main purpose of blasting in open pit mines is to produce the feed for crushing stage with the optimum dimensions from in situ rocks. The size distribution of muck pile indicates the efficiency of blasting pattern ...The main purpose of blasting in open pit mines is to produce the feed for crushing stage with the optimum dimensions from in situ rocks. The size distribution of muck pile indicates the efficiency of blasting pattern to reach the required optimum sizes. Nevertheless, there is no mature model to predict fragmentation distribution to date that can be used in various open pit mines. Therefore, a new framework to evaluate and predict fragmentation distribution is presented based on the image analysis approach. For this purpose, the data collected from Jajarm bauxite mine in Iran were used as the sources in this study. The image analysis process was performed by Split-Desktop software to find out fragmentation distribution, uniformity index and average size of the fragmented rocks. Then, two different approaches including the multivariate regression method and the decision-making trial and evaluation laboratory(DEMATEL) technique were incorporated to develop new models of the uniformity index and the average size to improve the Rosin-Rammler function. The performances of the proposed models were evaluated in four blasting operation sites. The results obtained indicate that the regression model possesses a better performance in prediction of the uniformity index and the average size and subsequently the fragmentation distribution in comparison with DEMATEL and conventional Rosin-Rammler models.展开更多
Constrained long-term production scheduling problem(CLTPSP) of open pit mines has been extensively studied in the past few decades due to its wide application in mining projects and the computational challenges it pos...Constrained long-term production scheduling problem(CLTPSP) of open pit mines has been extensively studied in the past few decades due to its wide application in mining projects and the computational challenges it poses become an NP-hard problem.This problem has major practical significance because the effectiveness of the schedules obtained has strong economical impact for any mining project.Despite of the rapid theoretical and technical advances in this field,heuristics is still the only viable approach for large scale industrial applications.This work presents an approach combining genetic algorithms(GAs) and Lagrangian relaxation(LR) to optimally determine the CLTPSP of open pit mines.GAs are stochastic,parallel search algorithms based on the natural selection and the process of evolution.LR method is known for handling large-scale separable problems; however,the convergence to the optimal solution can be slow.The proposed Lagrangian relaxation and genetic algorithms(LR-GAs) combines genetic algorithms into Lagrangian relaxation method to update the Lagrangian multipliers.This approach leads to improve the performance of Lagrangian relaxation method in solving CLTPSP.Numerical results demonstrate that the LR method using GAs to improve its performance speeding up the convergence.Subsequently,highly near-optimal solution to the CLTPSP can be achieved by the LR-GAs.展开更多
Rock slope hazard assessment is an important part of risk analysis for open pit mines.The main parameters that can lead to rock slope failures are the parameters traditionally used in geomechanical classifications,the...Rock slope hazard assessment is an important part of risk analysis for open pit mines.The main parameters that can lead to rock slope failures are the parameters traditionally used in geomechanical classifications,the slope geometrical parameters and external factors like rainfall and blasting.This paper presents a methodology for a hazard assessment system for open pit mine slopes based on 88 cases collated around the world using principal components analysis,discriminant analysis and confidence ellipses.The historical cases used in this study included copper,gold,iron,diamond,lead and zinc,platinum and claystone mines.The variables used in the assessment methodology are uniaxial compressive strength of intact rock;spacing,persistence,opening,roughness,infilling and orientation of the main discontinuity set;weathering of the rock mass;groundwater;blasting method;and height and inclination of the pit.While principal component analysis was used to quantify the data,the discriminant analysis was used to establish a rule to classify new slopes about its stability condition.To provide a practical hazard assessment system,confidence ellipses were used to propose a hazard graph and generate the HAS-Q.The discriminant rule developed in this research has a high discrimination capacity with an error rate of 11.36%.展开更多
The present study reflects upon the results of substantial program of two-dimensional Finite Element Method (FEM) numerical analyses of the open pit that links to slope angle optimization associated with the safety ...The present study reflects upon the results of substantial program of two-dimensional Finite Element Method (FEM) numerical analyses of the open pit that links to slope angle optimization associated with the safety factor of the pit slope of a coal mine in Bangladesh. In the present analyses, two types of models have been presented. The first model estimates safety factor without seismic effect on the overall pit slope of the model; the second model incorporates safety factor with seismic stability of the model. The calculated optimum slope angle of the first model is 31% with a rational safety factor of 1.51, prior to the seismic effect. However, the value is reduced to 0.93, 0.82, and 0.72, after we applies the seismic effect in the second model with M6, M6.5, and M7, respectively. Finally, our modeling results emphasize that for the case of the proposed Phulbari coalmine, there is extremely high prospect for causing massive slope failure along the optimum pit slope angle with 31% if the mine area felt seismic shaking, like the Sikkim (in northern India) earthquake with M6.9 on September 18, 2011.展开更多
The extraction and movement of rock during mining operations is considered a possible trigger for slip along the fault.In this study,possible anthropogenic causes were analyzed for triggering the earthquake with the l...The extraction and movement of rock during mining operations is considered a possible trigger for slip along the fault.In this study,possible anthropogenic causes were analyzed for triggering the earthquake with the local magnitude ofML=6.1(at a depth of 4km just beneath the quarry),in the vicinity of the large coal open-pit mine in Russia.This event was the largest earthquake associated with a quarry(an open pit).A sufficiently deep occurrence of the source testified that seismic vibrations were produced in a dynamic slip along a preexisting and prestressed tectonic fault.Analytical calculations were conducted of increments of normal and shear stresses at fault planes with several dip angles at depths corresponding to the probable location of the hypocenter of the Bachat earthquake.As the results show,long-term rock excavations bring a prestressed thrust fault closer to the ultimate Coulomb strength,and stress variations at those depths may suffice to initiate a movement along the fault.By measuring seismic vibrations at different quarries and mines in Russia,the dynamic effect at the supposed depth of the source occurrence could be reliably estimated.As is shown,the ultimate anticipated dynamic deformations are noticeably lower than corresponding values produced by seismic waves of distant earthquakes in the case when the effects of dynamic triggering were observed.Accordingly,the seismic effect of explosions cannot trigger a large earthquake with deep source occurrence.Operations in open-pit mines can only bring forward the moment of an earthquake at a potentially seismogenic fault.At the same time,the numerical calculations reveal that a branching network of underground tunnels located at several horizons can noticeably reduce the effective shear modulus of the host rock.This effect can even provoke a dynamic movement at a previously aseismic fault.展开更多
Rock slope stability is a very important research area for many geo-engineers concerned with civil or mining works.Slope stability of pits,roads,tailings dams and other embankments is very cardinal as it directly impa...Rock slope stability is a very important research area for many geo-engineers concerned with civil or mining works.Slope stability of pits,roads,tailings dams and other embankments is very cardinal as it directly impacts on the working or utilization of these facilities.After a spate slope failures at the Nchanga Open Pits,a challenge arose to investigate the design parameters that have been in use.This research展开更多
In order to increase production efficiency at open-pit mines, on the basis oflinear programming, a practical mathematical model for optimizing truck flow was developed, whichimproved the traditional fixed manual sched...In order to increase production efficiency at open-pit mines, on the basis oflinear programming, a practical mathematical model for optimizing truck flow was developed, whichimproved the traditional fixed manual schedule method. The model has advantages from linearprogramming and objective programming, makes most handling points working at full capacity and keepsan optimized ratio between trucks and excavators. For ensuring feasibility of the model inpractical production, four standards for feasibility test were proposed. The model satisfied all thestandards. The application in a large scale open-pit iron mine indicated that the model reduced thenumber of required trucks by 10 percent compared with the fixed manual schedule method.展开更多
Based on the externality theory and the environmental value theory, the hypothesis of charging for waste dumping of open-pit metal mines was put forth. The charging methods were designed according to the characteristi...Based on the externality theory and the environmental value theory, the hypothesis of charging for waste dumping of open-pit metal mines was put forth. The charging methods were designed according to the characteristics of waste dumping of openpit metal mines, including charging based on the dumping amount of the total waste, multi-charging factors, exceeding standard punishment charging, and so on. The main charging parameter is based on the dumping area rather than the total amount of waste dumping. The charging model of waste dumping of open-pit mines was formulated, and the charging rate was divided into two parts, i.e., the standard charging rate and the differential charging rate. The standard charging rate was derived using the equilibrium dynamic model, whereas the differential one was obtained by establishing the fuzzy synthesized evaluation model.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant Nos.42102313 and 52104125)the Fundamental Research Funds for the Central Universities(Grant No.B240201094).
文摘In open pit mining,uncontrolled block instabilities have serious social,economic and regulatory consequences,such as casualties,disruption of operation and increased regulation difficulties.For this reason,bench face angle,as one of the controlling parameters associated with block instabilities,should be carefully designed for sustainable mining.This study introduces a discrete fracture network(DFN)-based probabilistic block theory approach for the fast design of the bench face angle.A major advantage is the explicit incorporation of discontinuity size and spatial distribution in the procedure of key blocks testing.The proposed approach was applied to a granite mine in China.First,DFN models were generated from a multi-step modeling procedure to simulate the complex structural characteristics of pit slopes.Then,a modified key blocks searching method was applied to the slope faces modeled,and a cumulative probability of failure was obtained for each sector.Finally,a bench face angle was determined commensurate with an acceptable risk level of stability.The simulation results have shown that the number of hazardous traces exposed on the slope face can be significantly reduced when the suggested bench face angle is adopted,indicating an extremely low risk of uncontrolled block instabilities.
文摘Mining globally contributes to the growth of many economies of the world. Since its inception, the Zambian mining industry has contributed largely to the country’s economy. The various developments both in technology and knowledge have contributed to the scale at which mining is being done. Challenges in such a setting arise due to the socio-economic and environmental impacts of mining, which create multidimensional problems. The study investigated the importance of engaging stakeholders in progressive rehabilitation programs for large-scale open pit mines, using a case study of the Lumwana Mine and its host community, Manyama. A qualitative approach was used, and data was collected through one-on-one interviews. A combination of convenient and quota sampling was used to engage with host community leaders, professionals and academicians from various fields and institutions. Results showed that most participants had agreed that stakeholder engagement is important for progressive rehabilitation, but the challenge was that the host community and municipal council representatives were not aware of any progressive rehabilitation efforts at Lumwana Mine. This was attributed to a lack of stakeholder engagement and communication of mitigation progress activities by the Lumwana Mine. Results also revealed that the lack of environmental impact assessment regulations to compel companies to involve stakeholders throughout the entire life of the mine other than just at the pre-mining stage led to a lack of compliance and accountability in rehabilitation.
文摘This paper primarily concerns the effective coordination of the procedures and methods employed in open pit mining operations under the background of river management.The central objective of this study is to identify a viable approach for ensuring rational and efficient development of open pit mineral resources while simultaneously protecting and restoring the ecological environment of the river.This approach should facilitate the realization of a harmonious symbiosis between mining and river management.The intricate mutual influence relationship between river management and open pit mining is first analyzed in depth,which provides a solid foundation for the subsequent coordination strategy development.In light of the aforementioned considerations,a set of coordination procedures for open pit mining based on river management conditions is proposed.These procedures emphasize the integration of river protection into the overall layout of mining at the planning stage.The implementation of scientific mining schemes,accompanied by rigorous control of the scope and depth of mining operations,has proven to be an effective means of reducing the impact of mining activities on river environments.This approach has also facilitated the achievement of a balance and coordination between mining and river management.
基金Project(50974041)supported by the National Natural Science Foundation of ChinaProject(NCET-11-0073)supported by Program for New Century Excellent Talents in University of Ministry of Education of China+1 种基金Project(201102065)supported by the Natural Science Foundation of Liaoning Province,ChinaProject(2012921075)supported by the Ten Million Talent Project of Liaoning Province,China
文摘The ecological costs of open pit metal mining are quantified, which include lost value of direct eco-services, lost value of indirect eco-services, prevention and restoration costs, and cost of carbon emission from energy consumption. These ecological costs are incorporated in an iterative ultimate pit optimization algorithm. A case study is presented to demonstrate the influence of ecological costs on pit design outcome. The results show that it is possible to internalize ecological costs in mine designs. The pit optimization outcome shifts considerably to the conservative side and the profitability decreases substantially when ecological costs are accounted for.
文摘The classical physics theory respectively obeys the three famous conservation laws referred to as charge conjugation, parity and time reverse, and the open pit block model is equal to a Newtonian mechanics system. Consequently, there would exist some correspondent symmetry principles and conservation laws within the 3D fixed block model of the deposit and the theory for the optimum design of the open pit mine. Reversing a series of relevant fundamental concepts, several conservation laws, which the theory for the optimum design of open pit mines should obey, as block weight conjugation, block model parity and combined symmetry of the both, were expounded. From the symmetry principle, the theoretic significance for a series of the current optimum techniques was discussed and explained, and a kind of conjugate heuristics which can check the error of itself was presented and demonstrated. Thus it is shown that the symmetry principle lays the foundations and opens up the prospects for the further research with mine design and scheduling problem.
基金This work was financially supported by the National Natural Science Foundation of China (No. 2004BA615A-05).
文摘Combining the GIS (geographic information systems) grid-based data with four proposed column-based 3D slope stability analysis models, a comprehensive solution of a high-steep open-pit slope has been obtained. For six searching ranges, 19 critical slip surfaces of different sizes have been studied, in which the minimum 3D safety factor is 1.33. Comparison of 3D safety factors of designed and proposed slope plans shows for all the critical slip surfaces for the proposed plan, the smallest 3D safety factor is 1.33 under the most unfavorable condition. This means that the proposed plan of the high slopes, about 600 m, of an open pit (2-5° steeper than designed plan) is feasible.
基金financially supported by the National Natural Science Foundation of China (No. 52174131)
文摘This research proposes the utilization of a geopolymer-based blasting sealing material to improve the profitability of coal sales and reduce the rate of coal fragmentation during blasting in open pit mines.The study first focused on optimizing the strength of the sealant material and reducing curing time.This was achieved by regulating the slag doping and sodium silicate solution modulus.The findings demonstrated that increasing slag content and improving the material resulted in an early rise in strength while increasing the modulus of the sodium silicate solution extended the curing time.The slag doping level was fixed at 80 g,and the sodium silicate solution modulus was set at 1.5.To achieve a strength of 3.12 MPa,the water/gel ratio was set at 0.5.The initial setting time was determined to be 33 min,meeting the required field test duration.Secondly,the strength requirements for field implementation were assessed by simulating the action time and force destruction process of the sealing material during blasting using ANSYS/LS-DYNA software.The results indicated that the modified material meets these requirements.Finally,the Shengli Open Pit Coal Mine served as the site for the field test.It was observed that the hole-sealing material’s hydration reaction created a laminated and flocculated gel inside it.This enhanced the density of the modified material.Additionally,the pregelatinized starch,functioning as an organic binder,filled the gaps between the gels,enhancing the cohesion and bonding coefficient of the material.Upon analyzing the post-blasting shooting effect diagram using the Split-Desktop software,it was determined that the utilization of the modified blast hole plugging material resulted in a decrease in the rate of coal fragmentation from 33.2%to 21.1%.This reduction exhibited a minimal error of 1.63%when compared to the field measurement,thereby providing further confirmation of the exceptional plugging capabilities of the modified material.This study significantly contributes to establishing a solid theoretical basis for enhancing the blasting efficiency of open pit mines and,in turn,enhancing their economic advantages.
基金Ningbo Open University 2023 university-level teaching reform project“Exploration and Practice of Online and Offline Mixed Teaching Reform in Advertising Art Design Major”(Project number:JG23-005)。
文摘Teaching reform is an important work indispensable for the long-term development of the open university,and it is also the development trend of the advertising art design major in open education to keep up with the new media era.Based on the current situation of advertising art design major in open education,this paper analyzes the necessity of implementing the online and offline mixed teaching reform in this major,and puts forward the specific teaching reform measures in three aspects.
文摘In the process of intelligent mine construction in open-pit mine, in order to improve the safety monitoring ability of mine transportation system, solve the problems of large human interference and blind Angle detection by existing conventional monitoring methods, this paper establishes an open-pit mine monitoring data set, and proposes a real-time intelligent monitoring model based on UAV. The reasoning component with strong computing power and low power consumption is selected, and the lightweight object detection model is selected for the experiment. A quantitative standard of dynamic energy consumption detection by evaluation algorithm is proposed. Through experimental comparison, it is found that YOLOv4-tiny has the highest comprehensive grade in detection accuracy, speed, energy consumption and other aspects, which is suitable for application in the above model.
文摘A type of velocity sensor CD 1, an auto recording instrument on blasting vibration YBJ 1 and a random signal and vibration analysis system (CRAS) were used to monitor the particle vibration induced by blasting at open pit slope in Hainan Iron Mine. The attenuating rules of blasting ground vibration on slope were developed. By means of the analysis and calculation of the blasting vibration data at open pit slope and the vertical particle vibration velocity assessment method based on the concept of vibration strength, the empirical attenuating equations which can be used for predicting and estimating the damage of slope were derived.
文摘The main purpose of blasting in open pit mines is to produce the feed for crushing stage with the optimum dimensions from in situ rocks. The size distribution of muck pile indicates the efficiency of blasting pattern to reach the required optimum sizes. Nevertheless, there is no mature model to predict fragmentation distribution to date that can be used in various open pit mines. Therefore, a new framework to evaluate and predict fragmentation distribution is presented based on the image analysis approach. For this purpose, the data collected from Jajarm bauxite mine in Iran were used as the sources in this study. The image analysis process was performed by Split-Desktop software to find out fragmentation distribution, uniformity index and average size of the fragmented rocks. Then, two different approaches including the multivariate regression method and the decision-making trial and evaluation laboratory(DEMATEL) technique were incorporated to develop new models of the uniformity index and the average size to improve the Rosin-Rammler function. The performances of the proposed models were evaluated in four blasting operation sites. The results obtained indicate that the regression model possesses a better performance in prediction of the uniformity index and the average size and subsequently the fragmentation distribution in comparison with DEMATEL and conventional Rosin-Rammler models.
文摘Constrained long-term production scheduling problem(CLTPSP) of open pit mines has been extensively studied in the past few decades due to its wide application in mining projects and the computational challenges it poses become an NP-hard problem.This problem has major practical significance because the effectiveness of the schedules obtained has strong economical impact for any mining project.Despite of the rapid theoretical and technical advances in this field,heuristics is still the only viable approach for large scale industrial applications.This work presents an approach combining genetic algorithms(GAs) and Lagrangian relaxation(LR) to optimally determine the CLTPSP of open pit mines.GAs are stochastic,parallel search algorithms based on the natural selection and the process of evolution.LR method is known for handling large-scale separable problems; however,the convergence to the optimal solution can be slow.The proposed Lagrangian relaxation and genetic algorithms(LR-GAs) combines genetic algorithms into Lagrangian relaxation method to update the Lagrangian multipliers.This approach leads to improve the performance of Lagrangian relaxation method in solving CLTPSP.Numerical results demonstrate that the LR method using GAs to improve its performance speeding up the convergence.Subsequently,highly near-optimal solution to the CLTPSP can be achieved by the LR-GAs.
基金Federal Agency for Support and Evaluation of Graduate Education (CAPES – Brazil, Grant ID 19/2016)Fondation for Research Support of Minas Gerais (FAPEMIG – Brazil)University of New South Wales (UNSW – Australia)
文摘Rock slope hazard assessment is an important part of risk analysis for open pit mines.The main parameters that can lead to rock slope failures are the parameters traditionally used in geomechanical classifications,the slope geometrical parameters and external factors like rainfall and blasting.This paper presents a methodology for a hazard assessment system for open pit mine slopes based on 88 cases collated around the world using principal components analysis,discriminant analysis and confidence ellipses.The historical cases used in this study included copper,gold,iron,diamond,lead and zinc,platinum and claystone mines.The variables used in the assessment methodology are uniaxial compressive strength of intact rock;spacing,persistence,opening,roughness,infilling and orientation of the main discontinuity set;weathering of the rock mass;groundwater;blasting method;and height and inclination of the pit.While principal component analysis was used to quantify the data,the discriminant analysis was used to establish a rule to classify new slopes about its stability condition.To provide a practical hazard assessment system,confidence ellipses were used to propose a hazard graph and generate the HAS-Q.The discriminant rule developed in this research has a high discrimination capacity with an error rate of 11.36%.
文摘The present study reflects upon the results of substantial program of two-dimensional Finite Element Method (FEM) numerical analyses of the open pit that links to slope angle optimization associated with the safety factor of the pit slope of a coal mine in Bangladesh. In the present analyses, two types of models have been presented. The first model estimates safety factor without seismic effect on the overall pit slope of the model; the second model incorporates safety factor with seismic stability of the model. The calculated optimum slope angle of the first model is 31% with a rational safety factor of 1.51, prior to the seismic effect. However, the value is reduced to 0.93, 0.82, and 0.72, after we applies the seismic effect in the second model with M6, M6.5, and M7, respectively. Finally, our modeling results emphasize that for the case of the proposed Phulbari coalmine, there is extremely high prospect for causing massive slope failure along the optimum pit slope angle with 31% if the mine area felt seismic shaking, like the Sikkim (in northern India) earthquake with M6.9 on September 18, 2011.
基金Russian Foundation for Basic Research,Grant/Award Number:20-55-53031Russian State Task,Grant/Award Number:1021052706247-7-1.5.4National Natural Science Foundation of China,Grant/Award Number:51174012。
文摘The extraction and movement of rock during mining operations is considered a possible trigger for slip along the fault.In this study,possible anthropogenic causes were analyzed for triggering the earthquake with the local magnitude ofML=6.1(at a depth of 4km just beneath the quarry),in the vicinity of the large coal open-pit mine in Russia.This event was the largest earthquake associated with a quarry(an open pit).A sufficiently deep occurrence of the source testified that seismic vibrations were produced in a dynamic slip along a preexisting and prestressed tectonic fault.Analytical calculations were conducted of increments of normal and shear stresses at fault planes with several dip angles at depths corresponding to the probable location of the hypocenter of the Bachat earthquake.As the results show,long-term rock excavations bring a prestressed thrust fault closer to the ultimate Coulomb strength,and stress variations at those depths may suffice to initiate a movement along the fault.By measuring seismic vibrations at different quarries and mines in Russia,the dynamic effect at the supposed depth of the source occurrence could be reliably estimated.As is shown,the ultimate anticipated dynamic deformations are noticeably lower than corresponding values produced by seismic waves of distant earthquakes in the case when the effects of dynamic triggering were observed.Accordingly,the seismic effect of explosions cannot trigger a large earthquake with deep source occurrence.Operations in open-pit mines can only bring forward the moment of an earthquake at a potentially seismogenic fault.At the same time,the numerical calculations reveal that a branching network of underground tunnels located at several horizons can noticeably reduce the effective shear modulus of the host rock.This effect can even provoke a dynamic movement at a previously aseismic fault.
文摘Rock slope stability is a very important research area for many geo-engineers concerned with civil or mining works.Slope stability of pits,roads,tailings dams and other embankments is very cardinal as it directly impacts on the working or utilization of these facilities.After a spate slope failures at the Nchanga Open Pits,a challenge arose to investigate the design parameters that have been in use.This research
基金This work was financially supported by the National Key Technologies RD Program in the 10th five-year plan (No.2001BA609A-08).
文摘In order to increase production efficiency at open-pit mines, on the basis oflinear programming, a practical mathematical model for optimizing truck flow was developed, whichimproved the traditional fixed manual schedule method. The model has advantages from linearprogramming and objective programming, makes most handling points working at full capacity and keepsan optimized ratio between trucks and excavators. For ensuring feasibility of the model inpractical production, four standards for feasibility test were proposed. The model satisfied all thestandards. The application in a large scale open-pit iron mine indicated that the model reduced thenumber of required trucks by 10 percent compared with the fixed manual schedule method.
文摘Based on the externality theory and the environmental value theory, the hypothesis of charging for waste dumping of open-pit metal mines was put forth. The charging methods were designed according to the characteristics of waste dumping of openpit metal mines, including charging based on the dumping amount of the total waste, multi-charging factors, exceeding standard punishment charging, and so on. The main charging parameter is based on the dumping area rather than the total amount of waste dumping. The charging model of waste dumping of open-pit mines was formulated, and the charging rate was divided into two parts, i.e., the standard charging rate and the differential charging rate. The standard charging rate was derived using the equilibrium dynamic model, whereas the differential one was obtained by establishing the fuzzy synthesized evaluation model.