Ventilated cavitation plays an important role on the drag reduction of underwater vehicles and surface ships. For the modelling of ventilated cavitation, the minimum speed of the pressure wave is a crucial parameter f...Ventilated cavitation plays an important role on the drag reduction of underwater vehicles and surface ships. For the modelling of ventilated cavitation, the minimum speed of the pressure wave is a crucial parameter for the closure of the pressure-density coupling relationship. In this study, the minimum wave speed is determined based on a theoretical model coupling the wave equation and the bubble interface motion equation. The influences of several paramount parameters (e.g., frequency, bubble radius and void fraction) on the minimum wave speed are quantitatively demonstrated and discussed. Compared with the minimum wave speed in the traditional cavitation, values for the ventilated cavitation are much higher. The physical mechanisms for the above difference are briefly discussed with the suggestions on the usage of the present findings.展开更多
We provide a way to precisely control the geometry of a SiNx nanopore by adjusting the applied electric pulse. The pore is generated by applying the current pulse across a SiNx membrane, which is immersed in potassium...We provide a way to precisely control the geometry of a SiNx nanopore by adjusting the applied electric pulse. The pore is generated by applying the current pulse across a SiNx membrane, which is immersed in potassium chloride solution. We can generate single conical and cylindrical pores with different electric pulses. A theoretical model based on the Poisson and Nernst-Planck equations is employed to simulate the ion transport properties in the channel. In turn, we can analyze pore geometries by fitting the experimental current-voltage (I-V) curves. for the conical pores with a pore size of 0.5-2nm in diameter, the slope angles are around -2.5% to -10%. Moreover, the pore orifice can be enlarged slightly by additional repeating pulses. The conic pore lumen becomes close to a cylindrical channel, resulting in a symmetry I-V transport under positive and negative biases. A qualitative understanding of these effects will help us to prepare useful solid-nanopores as demanded.展开更多
Modal identification involves estimating the modal parameters, such as modal frequencies, damping ratios, and mode shapes, of a structural system from measured data. Under the condition that noisy impulse response sig...Modal identification involves estimating the modal parameters, such as modal frequencies, damping ratios, and mode shapes, of a structural system from measured data. Under the condition that noisy impulse response signals associated with multiple input and output locations have been measured, the primary objective of this study is to apply the local or global noise removal technique for improving the modal identification based on the polyreference time domain (PTD) method. While the traditional PTD method improves modal parameter estimation by over-specifying the computational model order to absorb noise, this paper proposes an approach using the actual system order as the computational model order and rejecting much noise prior to performing modal parameter estimation algorithms. Two noise removal approaches are investigated: a "local" approach which removes noise from one signal at a time, and a "global" approach which removes the noise of multiple measured signals simultaneously. The numerical investigation in this article is based on experimental measurements from two test setups: a cantilever beam with 3 inputs and 10 outputs, and a hanged plate with 4 inputs and 32 outputs. This paper demonstrates that the proposed noise-rejection method outperforms the traditional noise-absorption PTD method in several crucial aspects.展开更多
The equilibrium and kinetic characteristics of the adsorption of erythromycin to Sepabeads SP825 were determined.The equilibrium data in a batch system was well described by a Langmuir isotherm.The separation performa...The equilibrium and kinetic characteristics of the adsorption of erythromycin to Sepabeads SP825 were determined.The equilibrium data in a batch system was well described by a Langmuir isotherm.The separation performance was investigated in a fixed-bed system with respect to the adsorption superficial velocity,ionic strength and pH.A mathematical model was used to simulate the mass transfer mechanism,taking film mass transfer,pore diffusion and axial dispersion into account.The model predictions were consistent with the experi-mental data and were consequently used to determine the mass transfer coefficients.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No 51506051
文摘Ventilated cavitation plays an important role on the drag reduction of underwater vehicles and surface ships. For the modelling of ventilated cavitation, the minimum speed of the pressure wave is a crucial parameter for the closure of the pressure-density coupling relationship. In this study, the minimum wave speed is determined based on a theoretical model coupling the wave equation and the bubble interface motion equation. The influences of several paramount parameters (e.g., frequency, bubble radius and void fraction) on the minimum wave speed are quantitatively demonstrated and discussed. Compared with the minimum wave speed in the traditional cavitation, values for the ventilated cavitation are much higher. The physical mechanisms for the above difference are briefly discussed with the suggestions on the usage of the present findings.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61471336,51503207 and 61504146the Joint-Scholar of West Light Foundation of Chinese Academy of Sciences
文摘We provide a way to precisely control the geometry of a SiNx nanopore by adjusting the applied electric pulse. The pore is generated by applying the current pulse across a SiNx membrane, which is immersed in potassium chloride solution. We can generate single conical and cylindrical pores with different electric pulses. A theoretical model based on the Poisson and Nernst-Planck equations is employed to simulate the ion transport properties in the channel. In turn, we can analyze pore geometries by fitting the experimental current-voltage (I-V) curves. for the conical pores with a pore size of 0.5-2nm in diameter, the slope angles are around -2.5% to -10%. Moreover, the pore orifice can be enlarged slightly by additional repeating pulses. The conic pore lumen becomes close to a cylindrical channel, resulting in a symmetry I-V transport under positive and negative biases. A qualitative understanding of these effects will help us to prepare useful solid-nanopores as demanded.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51079134 and 51009124)the NSFC Major International Joint Research Project (Grant No. 51010009)+2 种基金the Program for Changjiang Scholars and Innovative Research Team in University (Grant No. PCSIRT 1086)the Natural Science Foundation of Shandong Province(Grant Nos. ZR2011EEQ022 and 2009ZRA05100)the Fundamental Research Funds for the Central Universities (Grant Nos. 27R1202008A and27R1002076A)
文摘Modal identification involves estimating the modal parameters, such as modal frequencies, damping ratios, and mode shapes, of a structural system from measured data. Under the condition that noisy impulse response signals associated with multiple input and output locations have been measured, the primary objective of this study is to apply the local or global noise removal technique for improving the modal identification based on the polyreference time domain (PTD) method. While the traditional PTD method improves modal parameter estimation by over-specifying the computational model order to absorb noise, this paper proposes an approach using the actual system order as the computational model order and rejecting much noise prior to performing modal parameter estimation algorithms. Two noise removal approaches are investigated: a "local" approach which removes noise from one signal at a time, and a "global" approach which removes the noise of multiple measured signals simultaneously. The numerical investigation in this article is based on experimental measurements from two test setups: a cantilever beam with 3 inputs and 10 outputs, and a hanged plate with 4 inputs and 32 outputs. This paper demonstrates that the proposed noise-rejection method outperforms the traditional noise-absorption PTD method in several crucial aspects.
文摘The equilibrium and kinetic characteristics of the adsorption of erythromycin to Sepabeads SP825 were determined.The equilibrium data in a batch system was well described by a Langmuir isotherm.The separation performance was investigated in a fixed-bed system with respect to the adsorption superficial velocity,ionic strength and pH.A mathematical model was used to simulate the mass transfer mechanism,taking film mass transfer,pore diffusion and axial dispersion into account.The model predictions were consistent with the experi-mental data and were consequently used to determine the mass transfer coefficients.