期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Use of Data Mining to Support the Development of Knowledge Intensive CAD
1
作者 K H Lau C Y Yip Alvin Wong 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期201-,共1页
In order to compete in the global manufacturing mar ke t, agility is the only possible solution to response to the fragmented market se gments and frequently changed customer requirements. However, manufacturing agil ... In order to compete in the global manufacturing mar ke t, agility is the only possible solution to response to the fragmented market se gments and frequently changed customer requirements. However, manufacturing agil ity can only be attained through the deployment of knowledge. To embed knowledge into a CAD system to form a knowledge intensive CAD (KIC) system is one of way to enhance the design compatibility of a manufacturing company. The most difficu lt phase to develop a KIC system is to capitalize a huge amount of legacy data t o form a knowledge database. In the past, such capitalization process could only be done solely manually or semi-automatic. In this paper, a five step model fo r automatic design knowledge capitalization through the use of data mining is pr oposed whilst details of how to select, verify and performance benchmarking an a ppropriate data mining algorithm for a specific design task will also be discuss ed. A case study concerning the design of a plastic toaster casing was used as an illustration for the proposed methodology and it was found that the avera ge absolute error of the predictions for the most appropriate algorithm is withi n 17%. 展开更多
关键词 Use of data Mining to Support the development of Knowledge Intensive CAD In KIC
下载PDF
Exploring the Potentialities of Automatic Extraction of University Webometric Information 被引量:2
2
作者 Gianpiero Bianchi Renato Bruni +3 位作者 Cinzia Daraio Antonio Laureti Palma Giulio Perani Francesco Scalfati 《Journal of Data and Information Science》 CSCD 2020年第4期43-55,共13页
Purpose:The main objective of this work is to show the potentialities of recently developed approaches for automatic knowledge extraction directly from the universities’websites.The information automatically extracte... Purpose:The main objective of this work is to show the potentialities of recently developed approaches for automatic knowledge extraction directly from the universities’websites.The information automatically extracted can be potentially updated with a frequency higher than once per year,and be safe from manipulations or misinterpretations.Moreover,this approach allows us flexibility in collecting indicators about the efficiency of universities’websites and their effectiveness in disseminating key contents.These new indicators can complement traditional indicators of scientific research(e.g.number of articles and number of citations)and teaching(e.g.number of students and graduates)by introducing further dimensions to allow new insights for“profiling”the analyzed universities.Design/methodology/approach:Webometrics relies on web mining methods and techniques to perform quantitative analyses of the web.This study implements an advanced application of the webometric approach,exploiting all the three categories of web mining:web content mining;web structure mining;web usage mining.The information to compute our indicators has been extracted from the universities’websites by using web scraping and text mining techniques.The scraped information has been stored in a NoSQL DB according to a semistructured form to allow for retrieving information efficiently by text mining techniques.This provides increased flexibility in the design of new indicators,opening the door to new types of analyses.Some data have also been collected by means of batch interrogations of search engines(Bing,www.bing.com)or from a leading provider of Web analytics(SimilarWeb,http://www.similarweb.com).The information extracted from the Web has been combined with the University structural information taken from the European Tertiary Education Register(https://eter.joanneum.at/#/home),a database collecting information on Higher Education Institutions(HEIs)at European level.All the above was used to perform a clusterization of 79 Italian universities based on structural and digital indicators.Findings:The main findings of this study concern the evaluation of the potential in digitalization of universities,in particular by presenting techniques for the automatic extraction of information from the web to build indicators of quality and impact of universities’websites.These indicators can complement traditional indicators and can be used to identify groups of universities with common features using clustering techniques working with the above indicators.Research limitations:The results reported in this study refers to Italian universities only,but the approach could be extended to other university systems abroad.Practical implications:The approach proposed in this study and its illustration on Italian universities show the usefulness of recently introduced automatic data extraction and web scraping approaches and its practical relevance for characterizing and profiling the activities of universities on the basis of their websites.The approach could be applied to other university systems.Originality/value:This work applies for the first time to university websites some recently introduced techniques for automatic knowledge extraction based on web scraping,optical character recognition and nontrivial text mining operations(Bruni&Bianchi,2020). 展开更多
关键词 development of data and information services Webometrics indicators Higher education institutions Automatic extraction Machine learning Optimization
下载PDF
A Tailor-made Data Quality Approach for Higher Educational Data 被引量:2
3
作者 Cinzia Daraio Renato Bruni +5 位作者 Giuseppe Catalano Alessandro Daraio Giorgio Matteucci Monica Scannapieco Daniel Wagner-Schuster Benedetto Lepori 《Journal of Data and Information Science》 CSCD 2020年第3期129-160,共32页
Purpose: This paper relates the definition of data quality procedures for knowledge organizations such as Higher Education Institutions. The main purpose is to present the flexible approach developed for monitoring th... Purpose: This paper relates the definition of data quality procedures for knowledge organizations such as Higher Education Institutions. The main purpose is to present the flexible approach developed for monitoring the data quality of the European Tertiary Education Register(ETER) database, illustrating its functioning and highlighting the main challenges that still have to be faced in this domain.Design/methodology/approach: The proposed data quality methodology is based on two kinds of checks, one to assess the consistency of cross-sectional data and the other to evaluate the stability of multiannual data. This methodology has an operational and empirical orientation. This means that the proposed checks do not assume any theoretical distribution for the determination of the threshold parameters that identify potential outliers, inconsistencies, and errors in the data. Findings: We show that the proposed cross-sectional checks and multiannual checks are helpful to identify outliers, extreme observations and to detect ontological inconsistencies not described in the available meta-data. For this reason, they may be a useful complement to integrate the processing of the available information.Research limitations: The coverage of the study is limited to European Higher Education Institutions. The cross-sectional and multiannual checks are not yet completely integrated.Practical implications: The consideration of the quality of the available data and information is important to enhance data quality-aware empirical investigations, highlighting problems, and areas where to invest for improving the coverage and interoperability of data in future data collection initiatives.Originality/value: The data-driven quality checks proposed in this paper may be useful as a reference for building and monitoring the data quality of new databases or of existing databases available for other countries or systems characterized by high heterogeneity and complexity of the units of analysis without relying on pre-specified theoretical distributions. 展开更多
关键词 Knowledge organization development of data and information services Cross-sectional and multiannual quality checks Higher education institutions Information quality
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部