The rapid depletion of fossil fuel and growing demand necessitates researchers to find alternative fuels which are clean and sustainable. The need for finding renewable, low cost and environmentally friendly fuel reso...The rapid depletion of fossil fuel and growing demand necessitates researchers to find alternative fuels which are clean and sustainable. The need for finding renewable, low cost and environmentally friendly fuel resources can never be understated. An efficient method of generation and storage of hydrogen will enable automotive manufacturers to introduce hydrogen fuelled engine in the market. In this paper, a conventional DI diesel engine was modified to operate as gas engine. The intake manifold of the engine was supplied with hydrogen along with recirculated exhaust gas and air. The injection rates of hydrogen were maintained at three levels with 2 L/min, 4 L/min, 6 L/min and 8 L/min and 10 L/min with an injection pressure of 2 bar. Many of the combustion parameters like heat release rate (HRR), ignition delay, combustion duration, rate of pressure rise (ROPR), cumulative heat release rate (CHR), and cyclic pressure fluctuations were measured. The HRR peak pressure decreased with the increase in EGR rate, while combustion duration increased with the EGR rate. The cyclic pressure variation also increased with the increase in EGR rate.展开更多
A turbocharged diesel engine model was built with the GT-Power software,and experimentally verified.Then two different control variables for the control of the variable geometry turbocharger(VGT)were described,and t...A turbocharged diesel engine model was built with the GT-Power software,and experimentally verified.Then two different control variables for the control of the variable geometry turbocharger(VGT)were described,and their distinct effects on engine performance,i.e.NOxand soot emissions and fuel consumption,were simulated and compared on the basis of this model.The results showed that NOxemissions decreased obviously with the increase of exhaust gas recirculation(EGR)rate at constant boost pressure condition,but soot emissions and fuel consumption considerably increased.It was a good way to reduce NOxemissions without increasing fuel consumption and soot emissions when VGT was controlled to maintain the excess oxygen ratio unchanged as EGR rate increases.展开更多
文摘The rapid depletion of fossil fuel and growing demand necessitates researchers to find alternative fuels which are clean and sustainable. The need for finding renewable, low cost and environmentally friendly fuel resources can never be understated. An efficient method of generation and storage of hydrogen will enable automotive manufacturers to introduce hydrogen fuelled engine in the market. In this paper, a conventional DI diesel engine was modified to operate as gas engine. The intake manifold of the engine was supplied with hydrogen along with recirculated exhaust gas and air. The injection rates of hydrogen were maintained at three levels with 2 L/min, 4 L/min, 6 L/min and 8 L/min and 10 L/min with an injection pressure of 2 bar. Many of the combustion parameters like heat release rate (HRR), ignition delay, combustion duration, rate of pressure rise (ROPR), cumulative heat release rate (CHR), and cyclic pressure fluctuations were measured. The HRR peak pressure decreased with the increase in EGR rate, while combustion duration increased with the EGR rate. The cyclic pressure variation also increased with the increase in EGR rate.
基金Supported by Diesel Engine Development Program of MIIT(DEDP-1004)Natural Science Foundation of BIT(3030012211428)
文摘A turbocharged diesel engine model was built with the GT-Power software,and experimentally verified.Then two different control variables for the control of the variable geometry turbocharger(VGT)were described,and their distinct effects on engine performance,i.e.NOxand soot emissions and fuel consumption,were simulated and compared on the basis of this model.The results showed that NOxemissions decreased obviously with the increase of exhaust gas recirculation(EGR)rate at constant boost pressure condition,but soot emissions and fuel consumption considerably increased.It was a good way to reduce NOxemissions without increasing fuel consumption and soot emissions when VGT was controlled to maintain the excess oxygen ratio unchanged as EGR rate increases.