A spectrum-splitting and beam-concentrating (SSBC) diffractive optical element (DOE) for three-junction pho- tovoltaics (PV) system is designed and fabricated by five-circ/e micro-fabrication. The incident solar...A spectrum-splitting and beam-concentrating (SSBC) diffractive optical element (DOE) for three-junction pho- tovoltaics (PV) system is designed and fabricated by five-circ/e micro-fabrication. The incident solar light is efficiently split into three sub-spectrum ranges and strongly concentrated on the focal plane, which can be di- rectly utilized by suitable spectrum-matching solar cells. The system concentration factor reaches 12x. Moreover, the designed wavelengths (450nm, 550nm and 65Onto) are spatially distributed on the focal plane, in good agree- ment with the theoretical results. The average optical effic/ency of all the cells over the three designed wavelengths is 60.07%. The SSBC DOE with a high concentration factor and a high optical efficiency provides a cost-effective approach to achieve higher PV conversion efficieneies.展开更多
The liquid crystal spatial light modulator (LC SLM) is very suitable for wavefront correction and optical testing and can produce a wavefront with large phase change and high accuracy. The LC SLM is composed of thou...The liquid crystal spatial light modulator (LC SLM) is very suitable for wavefront correction and optical testing and can produce a wavefront with large phase change and high accuracy. The LC SLM is composed of thousands of pixels and the pixel size and shape have effects on the diffractive characteristics of the LC SLM. This paper investigates the pixel effect on the phase of the wavefront with the scalar diffractive theory. The results show that the maximum optical path difference modulation is 41μm to produce the paraboloid wavefront with the peak to valley accuracy better than λ/10. Effects of the mismatch between the pixel and the period, and black matrix on the diffraction efficiency of the LC SLM are also analysed with the Fresnel phase lens model. The ability of the LC SLM is discussed for optical testing and wavefront correction based on the calculated results. It shows that the LC SLM can be used as a wavefront corrector and a compensator.展开更多
A two⁃port encapsulated low⁃contrast grating with suppressed zeroth order under normal incidence is described in this paper.Based on such grating configuration,the improved efficiency and spectral bandwidth of the fir...A two⁃port encapsulated low⁃contrast grating with suppressed zeroth order under normal incidence is described in this paper.Based on such grating configuration,the improved efficiency and spectral bandwidth of the first order for TE and TM polarizations with a designed period of 1860 nm can be obtained.On the one hand,some of the accurate grating parameters were numerically optimized utilizing a rigorous coupled⁃wave analysis;on the other hand,the inherent physical mechanism suppressing the zeroth order through an encapsulated fused⁃silica grating was adequately interpreted on account of a simplified modal method.Encapsulated grating with a cover layer cannot be simply considered as adding a coating on it.Compared with reported surface⁃relief grating,all parameters of encapsulated grating should be re⁃optimized and the optimized performances of encapsulated grating were greatly improved.Therefore,the encapsulated grating can be potentially applied in writing fiber Bragg gratings.展开更多
A new polyvinylalcohol-based photopolymeric holographic recording material has been developed. The recording is obtained by the copolymerization of acrylamide and N-hydroxymethyl acrylamide. Diffraction efficiencies n...A new polyvinylalcohol-based photopolymeric holographic recording material has been developed. The recording is obtained by the copolymerization of acrylamide and N-hydroxymethyl acrylamide. Diffraction efficiencies near 50% are obtained with energetic exposure of 80mJ/cm^2. N-hydroxymethyl acrylamide can improve the optical quality of the film. With the increase of the concentration of N-hydroxymethyl acrylamide, the flatness of the film increases, scattering reduces and the straight image is clearer with a small distortion. The postexposure effect on the grating is also studied. The diffraction efficiency of grating increases further during postexposure, gradient of monomer exists after exposure.展开更多
The electromagnetically induced grating effect in thermal and cold atoms has been studied theoretically. Studies have shown that, by adjusting the parameters, the first-order diffraction efficiency of the probe beam i...The electromagnetically induced grating effect in thermal and cold atoms has been studied theoretically. Studies have shown that, by adjusting the parameters, the first-order diffraction efficiency of the probe beam in the cold atomic system and the thermal atomic system is 34% and 31%, respectively, which is very close to the ideal diffraction efficiency of the sinusoidal grating. However, it is more difficult to prepare the cold atomic system than to prepare the thermal atomic system in the practical application, so the study of the electromagnetically induced grating effect in the thermal atomic system may be helpful for practical applications.展开更多
To reduce the cost and achieve high diffraction efficiency, a modified moir@ technique for fabricating a large- aperture multi-level Fresnel membrane optic by a novel design of alignment marks is proposed. The modifie...To reduce the cost and achieve high diffraction efficiency, a modified moir@ technique for fabricating a large- aperture multi-level Fresnel membrane optic by a novel design of alignment marks is proposed. The modified moire fringes vary more sensitively with the actual misalignment. Hence, the alignment accuracy is significantly improved. Using the proposed method, a 20 μm thick, four-level Fresnel diffractive polyimide membrane optic with a 200 mm diameter is made, which exhibits over 62% diffraction efficiency into the +1 order, and an efficiency root mean square of 0.051.展开更多
An electromagnetically induced grating in a four-level tripod-type atomic system is studied theoretically. By virtue of a weak standing-wave signal field, the phase modulation effectively diffracts a weak probe field ...An electromagnetically induced grating in a four-level tripod-type atomic system is studied theoretically. By virtue of a weak standing-wave signal field, the phase modulation effectively diffracts a weak probe field into the first-order direction. By changing the weak signal field, the diffraction of the weak probe field can be modulated in real time, and a first-order diffraction efficiency of more than 32% can be obtained with proper parameters. Such a system has a potential application in an all-optical switch controlled by a weak optical signal.展开更多
Photorefractive properties of Hf:Fe:LiNbO3 crystals with various [Li]/[Nb] ratios have been investigated at 488 nm wavelength based on the two-wave coupling experiment. High diffraction efficiency and large recordin...Photorefractive properties of Hf:Fe:LiNbO3 crystals with various [Li]/[Nb] ratios have been investigated at 488 nm wavelength based on the two-wave coupling experiment. High diffraction efficiency and large recording sensitivity are observed and explained. The decrease in Li vacancies is suggested to be the main contributor to the increase in the photoconductivity and subsequently to the induction of the improvement of recording sensitivity. The saturation diffraction efficiency is measured up to 80.2%, and simultaneously the recording sensitivity of 0.91 cm/J is achieved to in the Hf:Fe:LiNbO3 crystal grown from the melt with the [Li]/[Nb] ratio of 1.20, which is significantly enhanced as compared with those of the Hf:Fe:LiNbO3 crystal with the [Li]/[Nb] ratio of 0.94 in melt under the same experimental conditions. Experimental results definitely show that increasing the [Li]/[Nb] ratio in crystal is an effective method'for Hf:Fe:LiNbO3 crystal to improve its photorefractive properties.展开更多
A novel organic–inorganic nanoparticle–photopolymer composite system is developed, and its fundamental holographic recording characteristics are studied. In this hydrophilic TiO2-nanoparticle-dispersed acrylamide ph...A novel organic–inorganic nanoparticle–photopolymer composite system is developed, and its fundamental holographic recording characteristics are studied. In this hydrophilic TiO2-nanoparticle-dispersed acrylamide photopolymer composite system, the counter-diffusion of monomers and nanoparticles plays a fundamental and key role in hologram grating formation. The experimental results indicate that the volume shrinkage of the nanoparticle–photopolymer film during the holographic recording can be drastically reduced compared with the undoped photopolymer film. It is also found that the diffraction efficiency of the grating recorded in the nanoparticle–photopolymer film depends strongly on the concentration of the TiO2-nanoparticles, and there exists an optimal TiO2-nanoparticle-doping concentration to make the diffraction efficiency and the refractive index modulation reach their maxima. Additionally, the digital data page is stored and reconstructed in the nanoparticle–photopolymer film.展开更多
The angular spectrum method(ASM) is a popular numerical approach for scalar diffraction calculations. However,traditional ASM has an inherent problem in that nonuniform sampling is precluded. In an attempt to addres...The angular spectrum method(ASM) is a popular numerical approach for scalar diffraction calculations. However,traditional ASM has an inherent problem in that nonuniform sampling is precluded. In an attempt to address this limitation,an improved trigonometric interpolation ASM(TIASM) is proposed, in which the fast Fourier transform(FFT) is replaced by a trigonometric interpolation. The results show that TIASM is more suitable to situations in which the source field has a simple and strong frequency contrast, irrespective of whether the original phase distribution is a plane wave or a Fresnel zone plate phase distribution.展开更多
A dynamic theoretical model of photochemistry and hologram formation in holographic photopolymer is established, and the dynamic development process of holographic gratings in the photopolymer is discussed with the mo...A dynamic theoretical model of photochemistry and hologram formation in holographic photopolymer is established, and the dynamic development process of holographic gratings in the photopolymer is discussed with the model. A novel multi-wavelength visible light sensitive photopolymer for holographic storage is prepared. The influence of exposure wavelength on holographic storage characteristics is analysed. By fitting the experimental data of transmittance and diffraction efficiency to a function of time with different exposure intensities and wavelengths, the variations of dynamic parameters of photochemistry and photopolymerization diffusion are presented.展开更多
Magneto-optic(MO)coupling of guided optical waves with microwave magnetostatic waves(MSWs)simultaneously excited by multiple radio frequency(RF)signals can lead to multifrequency diffraction effects and then parallel ...Magneto-optic(MO)coupling of guided optical waves with microwave magnetostatic waves(MSWs)simultaneously excited by multiple radio frequency(RF)signals can lead to multifrequency diffraction effects and then parallel processing of RF signals can be realized by using of the characteristics that diffraction efficiencies(DEs)are approximately in direct proportion to RF signals intensities and diffraction angles are related to frequencies of the corresponding RF signals within linear MO interaction region.In this paper,studied is the multifrequency MO Bragg diffraction in first-order MO interaction approximation,and obtained was the approximate analytical expression for principle diffraction efficiency(PDE).Also,put forward was a parallel imaging method of relative intensity of RF signals based on single-frequency diffraction.By calculation and analysis,it is shown that the relative error is not more than 0.3dB for the case of three RF signals within the frequency space of 60MHz.展开更多
A new scheme for recording a dynamic phase grating with an asymmetric profile in C60-doped homeotropically aligned nematic liquid crystal(NLC) was presented.An oblique incidence beam was used to record the thin asym...A new scheme for recording a dynamic phase grating with an asymmetric profile in C60-doped homeotropically aligned nematic liquid crystal(NLC) was presented.An oblique incidence beam was used to record the thin asymmetric dynamic phase holographic grating.The diffraction efficiency we achieved is more than 40%,exceeding the theoretical limit for symmetric profile gratings.Both facts can be explained by assuming that a grating with an asymmetric saw-tooth profile is formed in the NLC.Finally,physical mechanism and mathematical model for characterizing the asymmetric phase holographic grating were presented,based on the photo-refractive-like(PR-like) effect.展开更多
Diffraction efficiency of volume Bragg grating, whose period is in the same order as the incident wavelength, is related to the polarization direction of the incident linear polarized beam. When two linearly polarized...Diffraction efficiency of volume Bragg grating, whose period is in the same order as the incident wavelength, is related to the polarization direction of the incident linear polarized beam. When two linearly polarized recording beams with the same polarization direction are used for recording volume Bragg gratings in a photopolymer with diffusion amplification, the azimuth of polarization of the reconstruction beam influences the diffraction efficiency of the grating. When the probe beam is linearly polarized and oriented orthogonally to the grating vectors, the ±1-order diffraction beams are also linearly polarized with polarization direction parallel to that of the probe beam. According to the results, a two-dimensional nonspatial optical filter consisting of the volume Bragg gratings would achieve significantly higher efficiency.展开更多
Novel composite materials are synthesized by incorporating N-acryloylmorpholine(ACMO) in highly concentrated phenanthrenequinone(PQ) doped poly(methyl methacrylate)(PMMA). The photosensitizer concentration of PQ was i...Novel composite materials are synthesized by incorporating N-acryloylmorpholine(ACMO) in highly concentrated phenanthrenequinone(PQ) doped poly(methyl methacrylate)(PMMA). The photosensitizer concentration of PQ was increased from 0.7 wt. % to 1.8 wt. %. The doping of ACMO component results in a higher diffraction efficiency and photosensitivity than a typical PQ/PMMA system. The enhanced performance of the material may stem from the ACMO molecules, which might open a new route for improving the holographic performance of the PQ/PMMA photopolymer.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 91233202,91433205 and 51421002the Chinese Academy of Sciences
文摘A spectrum-splitting and beam-concentrating (SSBC) diffractive optical element (DOE) for three-junction pho- tovoltaics (PV) system is designed and fabricated by five-circ/e micro-fabrication. The incident solar light is efficiently split into three sub-spectrum ranges and strongly concentrated on the focal plane, which can be di- rectly utilized by suitable spectrum-matching solar cells. The system concentration factor reaches 12x. Moreover, the designed wavelengths (450nm, 550nm and 65Onto) are spatially distributed on the focal plane, in good agree- ment with the theoretical results. The average optical effic/ency of all the cells over the three designed wavelengths is 60.07%. The SSBC DOE with a high concentration factor and a high optical efficiency provides a cost-effective approach to achieve higher PV conversion efficieneies.
基金Project supported by the National Natural Science Foundation of China (Nos 60578035, 50473040) and the Science Foundation of Jilin Province (Nos 20050520, 20050321-2).
文摘The liquid crystal spatial light modulator (LC SLM) is very suitable for wavefront correction and optical testing and can produce a wavefront with large phase change and high accuracy. The LC SLM is composed of thousands of pixels and the pixel size and shape have effects on the diffractive characteristics of the LC SLM. This paper investigates the pixel effect on the phase of the wavefront with the scalar diffractive theory. The results show that the maximum optical path difference modulation is 41μm to produce the paraboloid wavefront with the peak to valley accuracy better than λ/10. Effects of the mismatch between the pixel and the period, and black matrix on the diffraction efficiency of the LC SLM are also analysed with the Fresnel phase lens model. The ability of the LC SLM is discussed for optical testing and wavefront correction based on the calculated results. It shows that the LC SLM can be used as a wavefront corrector and a compensator.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51578247).
文摘A two⁃port encapsulated low⁃contrast grating with suppressed zeroth order under normal incidence is described in this paper.Based on such grating configuration,the improved efficiency and spectral bandwidth of the first order for TE and TM polarizations with a designed period of 1860 nm can be obtained.On the one hand,some of the accurate grating parameters were numerically optimized utilizing a rigorous coupled⁃wave analysis;on the other hand,the inherent physical mechanism suppressing the zeroth order through an encapsulated fused⁃silica grating was adequately interpreted on account of a simplified modal method.Encapsulated grating with a cover layer cannot be simply considered as adding a coating on it.Compared with reported surface⁃relief grating,all parameters of encapsulated grating should be re⁃optimized and the optimized performances of encapsulated grating were greatly improved.Therefore,the encapsulated grating can be potentially applied in writing fiber Bragg gratings.
文摘A new polyvinylalcohol-based photopolymeric holographic recording material has been developed. The recording is obtained by the copolymerization of acrylamide and N-hydroxymethyl acrylamide. Diffraction efficiencies near 50% are obtained with energetic exposure of 80mJ/cm^2. N-hydroxymethyl acrylamide can improve the optical quality of the film. With the increase of the concentration of N-hydroxymethyl acrylamide, the flatness of the film increases, scattering reduces and the straight image is clearer with a small distortion. The postexposure effect on the grating is also studied. The diffraction efficiency of grating increases further during postexposure, gradient of monomer exists after exposure.
基金supported by the National Natural Science Foundation of China(Grants Nos.11004126 and 61275212)the Natural Science Foundation of Shanxi Province,China(Grant No.2011021003-1)
文摘The electromagnetically induced grating effect in thermal and cold atoms has been studied theoretically. Studies have shown that, by adjusting the parameters, the first-order diffraction efficiency of the probe beam in the cold atomic system and the thermal atomic system is 34% and 31%, respectively, which is very close to the ideal diffraction efficiency of the sinusoidal grating. However, it is more difficult to prepare the cold atomic system than to prepare the thermal atomic system in the practical application, so the study of the electromagnetically induced grating effect in the thermal atomic system may be helpful for practical applications.
基金supported by the National Natural Science Foundation of China under Grant No.11375175
文摘To reduce the cost and achieve high diffraction efficiency, a modified moir@ technique for fabricating a large- aperture multi-level Fresnel membrane optic by a novel design of alignment marks is proposed. The modified moire fringes vary more sensitively with the actual misalignment. Hence, the alignment accuracy is significantly improved. Using the proposed method, a 20 μm thick, four-level Fresnel diffractive polyimide membrane optic with a 200 mm diameter is made, which exhibits over 62% diffraction efficiency into the +1 order, and an efficiency root mean square of 0.051.
基金supported by the National Natural Science Foundation of China(Grants Nos.11004126 and 61275212)the Natural Science Foundation of ShanxiProvince,China(Grant No.2011021003-1)the National Basic Research Program of China(Grant No.2010CB923102)
文摘An electromagnetically induced grating in a four-level tripod-type atomic system is studied theoretically. By virtue of a weak standing-wave signal field, the phase modulation effectively diffracts a weak probe field into the first-order direction. By changing the weak signal field, the diffraction of the weak probe field can be modulated in real time, and a first-order diffraction efficiency of more than 32% can be obtained with proper parameters. Such a system has a potential application in an all-optical switch controlled by a weak optical signal.
基金supported by the Fundamental Research Foundation of Commission of Science Technology,Industry for National Defense of China (Grant No.2320060089)and National Basic Research and Development Program of China (Grant No.2007CB3070001)Program of Excellent Team in Harbin Institute of Technology,China
文摘Photorefractive properties of Hf:Fe:LiNbO3 crystals with various [Li]/[Nb] ratios have been investigated at 488 nm wavelength based on the two-wave coupling experiment. High diffraction efficiency and large recording sensitivity are observed and explained. The decrease in Li vacancies is suggested to be the main contributor to the increase in the photoconductivity and subsequently to the induction of the improvement of recording sensitivity. The saturation diffraction efficiency is measured up to 80.2%, and simultaneously the recording sensitivity of 0.91 cm/J is achieved to in the Hf:Fe:LiNbO3 crystal grown from the melt with the [Li]/[Nb] ratio of 1.20, which is significantly enhanced as compared with those of the Hf:Fe:LiNbO3 crystal with the [Li]/[Nb] ratio of 0.94 in melt under the same experimental conditions. Experimental results definitely show that increasing the [Li]/[Nb] ratio in crystal is an effective method'for Hf:Fe:LiNbO3 crystal to improve its photorefractive properties.
基金Project supported by the National Natural Science Foundation of China(Grant No.61177004)
文摘A novel organic–inorganic nanoparticle–photopolymer composite system is developed, and its fundamental holographic recording characteristics are studied. In this hydrophilic TiO2-nanoparticle-dispersed acrylamide photopolymer composite system, the counter-diffusion of monomers and nanoparticles plays a fundamental and key role in hologram grating formation. The experimental results indicate that the volume shrinkage of the nanoparticle–photopolymer film during the holographic recording can be drastically reduced compared with the undoped photopolymer film. It is also found that the diffraction efficiency of the grating recorded in the nanoparticle–photopolymer film depends strongly on the concentration of the TiO2-nanoparticles, and there exists an optimal TiO2-nanoparticle-doping concentration to make the diffraction efficiency and the refractive index modulation reach their maxima. Additionally, the digital data page is stored and reconstructed in the nanoparticle–photopolymer film.
基金Project supported by Chinese National Research Fund(Grant No.9140A02010514DZ01019)
文摘The angular spectrum method(ASM) is a popular numerical approach for scalar diffraction calculations. However,traditional ASM has an inherent problem in that nonuniform sampling is precluded. In an attempt to address this limitation,an improved trigonometric interpolation ASM(TIASM) is proposed, in which the fast Fourier transform(FFT) is replaced by a trigonometric interpolation. The results show that TIASM is more suitable to situations in which the source field has a simple and strong frequency contrast, irrespective of whether the original phase distribution is a plane wave or a Fresnel zone plate phase distribution.
基金Project supported by the Natural Science Foundation of Henan University, China (Grant No. 06ZDZR002)
文摘A dynamic theoretical model of photochemistry and hologram formation in holographic photopolymer is established, and the dynamic development process of holographic gratings in the photopolymer is discussed with the model. A novel multi-wavelength visible light sensitive photopolymer for holographic storage is prepared. The influence of exposure wavelength on holographic storage characteristics is analysed. By fitting the experimental data of transmittance and diffraction efficiency to a function of time with different exposure intensities and wavelengths, the variations of dynamic parameters of photochemistry and photopolymerization diffusion are presented.
基金National Natural Science Foundation of China(60671027)Sichuan Province Basic Research Project(07JY029-089)
文摘Magneto-optic(MO)coupling of guided optical waves with microwave magnetostatic waves(MSWs)simultaneously excited by multiple radio frequency(RF)signals can lead to multifrequency diffraction effects and then parallel processing of RF signals can be realized by using of the characteristics that diffraction efficiencies(DEs)are approximately in direct proportion to RF signals intensities and diffraction angles are related to frequencies of the corresponding RF signals within linear MO interaction region.In this paper,studied is the multifrequency MO Bragg diffraction in first-order MO interaction approximation,and obtained was the approximate analytical expression for principle diffraction efficiency(PDE).Also,put forward was a parallel imaging method of relative intensity of RF signals based on single-frequency diffraction.By calculation and analysis,it is shown that the relative error is not more than 0.3dB for the case of three RF signals within the frequency space of 60MHz.
基金Project supported by the Science and Technology Programs of the Educational Committee of Heilongjiang Province,China(Grant No.12541730)the National Natural Science Foundation of China(Grant No.61405057)
文摘A new scheme for recording a dynamic phase grating with an asymmetric profile in C60-doped homeotropically aligned nematic liquid crystal(NLC) was presented.An oblique incidence beam was used to record the thin asymmetric dynamic phase holographic grating.The diffraction efficiency we achieved is more than 40%,exceeding the theoretical limit for symmetric profile gratings.Both facts can be explained by assuming that a grating with an asymmetric saw-tooth profile is formed in the NLC.Finally,physical mechanism and mathematical model for characterizing the asymmetric phase holographic grating were presented,based on the photo-refractive-like(PR-like) effect.
基金supported by the National Natural Science Foundation of China(No.10676038)the China Academy of Engineering Physics(CAEP)
文摘Diffraction efficiency of volume Bragg grating, whose period is in the same order as the incident wavelength, is related to the polarization direction of the incident linear polarized beam. When two linearly polarized recording beams with the same polarization direction are used for recording volume Bragg gratings in a photopolymer with diffusion amplification, the azimuth of polarization of the reconstruction beam influences the diffraction efficiency of the grating. When the probe beam is linearly polarized and oriented orthogonally to the grating vectors, the ±1-order diffraction beams are also linearly polarized with polarization direction parallel to that of the probe beam. According to the results, a two-dimensional nonspatial optical filter consisting of the volume Bragg gratings would achieve significantly higher efficiency.
基金supported by the National Natural Science Foundation of China(NSFC)(Nos.61205053and 61475019)the International Graduate Exchange Program of Beijing Institute of Technology
文摘Novel composite materials are synthesized by incorporating N-acryloylmorpholine(ACMO) in highly concentrated phenanthrenequinone(PQ) doped poly(methyl methacrylate)(PMMA). The photosensitizer concentration of PQ was increased from 0.7 wt. % to 1.8 wt. %. The doping of ACMO component results in a higher diffraction efficiency and photosensitivity than a typical PQ/PMMA system. The enhanced performance of the material may stem from the ACMO molecules, which might open a new route for improving the holographic performance of the PQ/PMMA photopolymer.