In this paper we consider averaging and finite difference methods for solving the 3-D boundary-value problem in a multilayered domain. We consider the metal concentration in the 3 layered peat blocks. Using experiment...In this paper we consider averaging and finite difference methods for solving the 3-D boundary-value problem in a multilayered domain. We consider the metal concentration in the 3 layered peat blocks. Using experimental data the mathematical model for calculating the concentration of metal at different points in peat layers is developed. A specific feature of these problems is that it is necessary to solve the 3-D boundary-value problems for the partial differential equations (PDEs) of the elliptic type of second order with piece-wise diffusion coefficients in the three layer domain. We develop here a finite-difference method for solving a problem of the above type with the periodical boundary condition in x direction. This procedure allows reducing the 3-D problem to a system of 2-D problems by using a circulant matrix.展开更多
In this article, we introduce a coupled approach of local discontinuous Calerkin and standard finite element method for solving convection diffusion problems. The whole domain is divided into two disjoint subdomains. ...In this article, we introduce a coupled approach of local discontinuous Calerkin and standard finite element method for solving convection diffusion problems. The whole domain is divided into two disjoint subdomains. The discontinuous Galerkin method is adopted in the subdomain where the solution varies rapidly, while the standard finite element method is used in the other subdomain due to its lower computational cost. The stability and a priori error estimate are established. We prove that the coupled method has O(ε1/2 + h1/2)hk) convergence rate in an associated norm, where ε is the diffusion coefficient, h is the mesh size and k is the degree of polynomial. The numerical results verify our theoretical results. Moreover, 2k-order superconvergence of the numerical traces at the nodes, and the optimal convergence of the errors under L2 norm are observed numerically on the uniform mesh. The numerical results also indicate that the coupled method has the same convergence order and almost the same errors as the purely LDG method.展开更多
Studies of problems involving physical anisotropy are applied in sciences and engineering,for instance,when the thermal conductivity depends on the direction.In this study,the multigrid method was used in order to acc...Studies of problems involving physical anisotropy are applied in sciences and engineering,for instance,when the thermal conductivity depends on the direction.In this study,the multigrid method was used in order to accelerate the convergence of the iterative methods used to solve this type of problem.The asymptotic convergence factor of the multigrid was determined empirically(computer aided)and also by employing local Fourier analysis(LFA).The mathematical model studied was the 2D anisotropic diffusion equation,in whichε>0 was the coefficient of a nisotropy.The equation was discretized by the Finite Difference Method(FDM)and Central Differencing Scheme(CDS).Correction Scheme(CS),pointwise Gauss-Seidel smoothers(Lexicographic and Red-Black ordering),and line Gauss-Seidel smoothers(Lexicographic and Zebra ordering)in x and y directions were used for building the multigrid.The best asymptotic convergence factor was obtained by the Gauss-Seidel method in the direction x for 0<ε<<1 and in the direction y forε>>1.In this sense,an xy-zebra-GS smoother was proposed,which proved to be efficient and robust for the different anisotropy coefficients.Moreover,the convergence factors calculated empirically and by LFA are in agreement.展开更多
In this paper, the author analyzes the singularity of a boundary layer in a nonlinear diffusion problem. Results show when the limiting solution satisfies the boundary condition, there is no boundary singularity. Othe...In this paper, the author analyzes the singularity of a boundary layer in a nonlinear diffusion problem. Results show when the limiting solution satisfies the boundary condition, there is no boundary singularity. Otherwise, the boundary layer exists, and its thickness is proportional to epsilon(1/2), here epsilon is a small positive real parameter.展开更多
This paper concerns with properties of solutions of a nonlinear diffusion problem in non-divergence form. By constructing proper test functions, it is proved that solutions of the problem possess the property of local...This paper concerns with properties of solutions of a nonlinear diffusion problem in non-divergence form. By constructing proper test functions, it is proved that solutions of the problem possess the property of localization.展开更多
We construct an approximate Riemann solver for scalar advection-diffusion equations with piecewise polynomial initial data.The objective is to handle advection and diffusion simultaneously to reduce the inherent numer...We construct an approximate Riemann solver for scalar advection-diffusion equations with piecewise polynomial initial data.The objective is to handle advection and diffusion simultaneously to reduce the inherent numerical diffusion produced by the usual advection flux calculations.The approximate solution is based on the weak formulation of the Riemann problem and is solved within a space-time discontinuous Galerkin approach with two subregions.The novel generalized Riemann solver produces piecewise polynomial solutions of the Riemann problem.In conjunction with a recovery polynomial,the Riemann solver is then applied to define the numerical flux within a finite volume method.Numerical results for a piecewise linear and a piecewise parabolic approximation are shown.These results indicate a reduction in numerical dissipation compared with the conventional separated flux calculation of advection and diffusion.Also,it is shown that using the proposed solver only in the vicinity of discontinuities gives way to an accurate and efficient finite volume scheme.展开更多
Fractional calculus and special functions have contributed a lot to mathematical physics and its various branches. The great use of mathematical physics in distinguished astrophysical problems has attracted astronomer...Fractional calculus and special functions have contributed a lot to mathematical physics and its various branches. The great use of mathematical physics in distinguished astrophysical problems has attracted astronomers and physicists to pay more attention to available mathematical tools that can be widely used in solving several problems of astrophysics/physics. In view of the great importance and usefulness of kinetic equations in certain astrophysical problems, the authors derive a generalized fractional kinetic equation involving the Lorenzo-Hartley function, a generalized function for fractional calculus. The fractional kinetic equation discussed here can be used to investigate a wide class of known (and possibly also new) fractional kinetic equations, hitherto scattered in the literature. A compact and easily computable solution is established in terms of the Lorenzo-Hartley function. Special cases, involving the generalized Mittag-Leffler function and the R-function, are considered. The obtained results imply the known results more precisely.展开更多
In this paper,we construct a global repair technique for the finite element scheme of anisotropic diffusion equations to enforce the repaired solutions satisfying the discrete maximum principle.It is an extension of t...In this paper,we construct a global repair technique for the finite element scheme of anisotropic diffusion equations to enforce the repaired solutions satisfying the discrete maximum principle.It is an extension of the existing local repair technique.Both of the repair techniques preserve the total energy and are easy to be implemented.The numerical experiments show that these repair techniques do not destroy the accuracy of the finite element scheme,and the computational cost of the global repair technique is cheaper than the local repair technique when the diffusion tensors are highly anisotropic.展开更多
We present a new splitting method for time-dependent convention-dominated diffusion problems.The original convention diffusion system is split into two sub-systems:a pure convection system and a diffusion system.At ea...We present a new splitting method for time-dependent convention-dominated diffusion problems.The original convention diffusion system is split into two sub-systems:a pure convection system and a diffusion system.At each time step,a convection problem and a diffusion problem are solved successively.A few important features of the scheme lie in the facts that the convection subproblem is solved explicitly and multistep techniques can be used to essentially enlarge the stability region so that the resulting scheme behaves like an unconditionally stable scheme;while the diffusion subproblem is always self-adjoint and coercive so that they can be solved efficiently using many existing optimal preconditioned iterative solvers.The scheme can be extended for solving the Navier-Stokes equations,where the nonlinearity is resolved by a linear explicit multistep scheme at the convection step,while only a generalized Stokes problem is needed to solve at the diffusion step and the major stiffness matrix stays invariant in the time marching process.Numerical simulations are presented to demonstrate the stability,convergence and performance of the single-step and multistep variants of the new scheme.展开更多
Time-fractional diffusion equations are of great interest and importance on describing the power law decay for diffusion in porous media. In this paper, to identify the diffusion rate, i.e., the heterogeneity of mediu...Time-fractional diffusion equations are of great interest and importance on describing the power law decay for diffusion in porous media. In this paper, to identify the diffusion rate, i.e., the heterogeneity of medium, the authors consider an inverse coefficient problem utilizing finite measurements and obtain a local HSlder type conditional stability based upon two Carleman estimates for the corresponding differential equations of integer orders.展开更多
A nonlinear fully implicit finite difference scheme with second-order time evolution for nonlinear diffusion problem is studied.The scheme is constructed with two-layer coupled discretization(TLCD)at each time step.It...A nonlinear fully implicit finite difference scheme with second-order time evolution for nonlinear diffusion problem is studied.The scheme is constructed with two-layer coupled discretization(TLCD)at each time step.It does not stir numerical oscillation,while permits large time step length,and produces more accurate numerical solutions than the other two well-known second-order time evolution nonlinear schemes,the Crank-Nicolson(CN)scheme and the backward difference formula second-order(BDF2)scheme.By developing a new reasoning technique,we overcome the difficulties caused by the coupled nonlinear discrete diffusion operators at different time layers,and prove rigorously the TLCD scheme is uniquely solvable,unconditionally stable,and has second-order convergence in both s-pace and time.Numerical tests verify the theoretical results,and illustrate its superiority over the CN and BDF2 schemes.展开更多
In this paper,a nonlinear time-fractional coupled diffusion system is solved by using a mixed finite element(MFE)method in space combined with L1-approximation and implicit second-order backward difference scheme in t...In this paper,a nonlinear time-fractional coupled diffusion system is solved by using a mixed finite element(MFE)method in space combined with L1-approximation and implicit second-order backward difference scheme in time.The stability for nonlinear fully discrete finite element scheme is analyzed and a priori error estimates are derived.Finally,some numerical tests are shown to verify our theoretical analysis.展开更多
We study the asymptotic-preserving fully discrete schemes for nonequilibrium radiation diffusion problem in spherical and cylindrical symmetric geometry.The research is based on two-temperature models with Larsen’s f...We study the asymptotic-preserving fully discrete schemes for nonequilibrium radiation diffusion problem in spherical and cylindrical symmetric geometry.The research is based on two-temperature models with Larsen’s flux-limited diffusion operators.Finite volume spatially discrete schemes are developed to circumvent the singularity at the origin and the polar axis and assure local conservation.Asymmetric second order accurate spatial approximation is utilized instead of the traditional first order one for boundary flux-limiters to consummate the schemes with higher order global consistency errors.The harmonic average approach in spherical geometry is analyzed,and its second order accuracy is demonstrated.By formal analysis,we prove these schemes and their corresponding fully discrete schemes with implicitly balanced and linearly implicit time evolutions have first order asymptoticpreserving properties.By designing associated manufactured solutions and reference solutions,we verify the desired performance of the fully discrete schemes with numerical tests,which illustrates quantitatively they are first order asymptotic-preserving and basically second order accurate,hence competent for simulations of both equilibrium and non-equilibrium radiation diffusion problems.展开更多
The goal of this work is to study the behavior of solutions to a degenerate diffusion problem. The main interests center on the extinction properties and evolution of the supports of solutions for the equations consid...The goal of this work is to study the behavior of solutions to a degenerate diffusion problem. The main interests center on the extinction properties and evolution of the supports of solutions for the equations considered.展开更多
In this paper, we propose an Expanded Characteristic-mixed Finite Element Method for approximating the solution to a convection dominated transport problem. The method is a combination of characteristic approximation ...In this paper, we propose an Expanded Characteristic-mixed Finite Element Method for approximating the solution to a convection dominated transport problem. The method is a combination of characteristic approximation to handle the convection part in time and an expanded mixed finite element spatial approximation to deal with the diffusion part. The scheme is stable since fluid is transported along the approximate characteristics on the discrete level. At the same time it expands the standard mixed finite element method in the sense that three variables are explicitly treated: the scalar unknown, its gradient, and its flux. Our analysis shows the method approximates the scalar unknown, its gradient, and its flux optimally and simultaneously. We also show this scheme has much smaller time-truncation errors than those of standard methods. A numerical example is presented to show that the scheme is of high performance.展开更多
In this paper,we apply streamline-diffusion and Galerkin-least-squares fi-nite element methods for 2D steady-state two-phase model in the cathode of polymer electrolyte fuel cell(PEFC)that contains a gas channel and a...In this paper,we apply streamline-diffusion and Galerkin-least-squares fi-nite element methods for 2D steady-state two-phase model in the cathode of polymer electrolyte fuel cell(PEFC)that contains a gas channel and a gas diffusion layer(GDL).This two-phase PEFC model is typically modeled by a modified Navier-Stokes equation for the mass and momentum,with Darcy’s drag as an additional source term in momentum for flows through GDL,and a discontinuous and degenerate convectiondiffusion equation for water concentration.Based on the mixed finite element method for the modified Navier-Stokes equation and standard finite element method for water equation,we design streamline-diffusion and Galerkin-least-squares to overcome the dominant convection arising from the gas channel.Meanwhile,we employ Kirchhoff transformation to deal with the discontinuous and degenerate diffusivity in water concentration.Numerical experiments demonstrate that our finite element methods,together with these numerical techniques,are able to get accurate physical solutions with fast convergence.展开更多
This work develops near-optimal controls for systems given by differential equations with wideband noise and random switching.The random switching is modeled by a continuous-time,time-inhomogeneous Markov chain.Under ...This work develops near-optimal controls for systems given by differential equations with wideband noise and random switching.The random switching is modeled by a continuous-time,time-inhomogeneous Markov chain.Under broad conditions,it is shown that there is an associated limit problem,which is a switching jump diffusion.Using near-optimal controls of the limit system,we then build controls for the original systems.It is shown that such constructed controls are nearly optimal.展开更多
文摘In this paper we consider averaging and finite difference methods for solving the 3-D boundary-value problem in a multilayered domain. We consider the metal concentration in the 3 layered peat blocks. Using experimental data the mathematical model for calculating the concentration of metal at different points in peat layers is developed. A specific feature of these problems is that it is necessary to solve the 3-D boundary-value problems for the partial differential equations (PDEs) of the elliptic type of second order with piece-wise diffusion coefficients in the three layer domain. We develop here a finite-difference method for solving a problem of the above type with the periodical boundary condition in x direction. This procedure allows reducing the 3-D problem to a system of 2-D problems by using a circulant matrix.
基金Supported by National Natural Science Foundation of China (10571046, 10571053, and 10871066)Program for New Century Excellent Talents in University (NCET-06-0712)+2 种基金Key Laboratory of Computational and Stochastic Mathematics and Its Applications, Universities of Hunan Province, Hunan Normal Universitythe Project of Scientific Research Fund of Hunan Provincial Education Department (09K025)the Key Scientific Research Topic of Jiaxing University (70110X05BL)
文摘In this article, we introduce a coupled approach of local discontinuous Calerkin and standard finite element method for solving convection diffusion problems. The whole domain is divided into two disjoint subdomains. The discontinuous Galerkin method is adopted in the subdomain where the solution varies rapidly, while the standard finite element method is used in the other subdomain due to its lower computational cost. The stability and a priori error estimate are established. We prove that the coupled method has O(ε1/2 + h1/2)hk) convergence rate in an associated norm, where ε is the diffusion coefficient, h is the mesh size and k is the degree of polynomial. The numerical results verify our theoretical results. Moreover, 2k-order superconvergence of the numerical traces at the nodes, and the optimal convergence of the errors under L2 norm are observed numerically on the uniform mesh. The numerical results also indicate that the coupled method has the same convergence order and almost the same errors as the purely LDG method.
文摘Studies of problems involving physical anisotropy are applied in sciences and engineering,for instance,when the thermal conductivity depends on the direction.In this study,the multigrid method was used in order to accelerate the convergence of the iterative methods used to solve this type of problem.The asymptotic convergence factor of the multigrid was determined empirically(computer aided)and also by employing local Fourier analysis(LFA).The mathematical model studied was the 2D anisotropic diffusion equation,in whichε>0 was the coefficient of a nisotropy.The equation was discretized by the Finite Difference Method(FDM)and Central Differencing Scheme(CDS).Correction Scheme(CS),pointwise Gauss-Seidel smoothers(Lexicographic and Red-Black ordering),and line Gauss-Seidel smoothers(Lexicographic and Zebra ordering)in x and y directions were used for building the multigrid.The best asymptotic convergence factor was obtained by the Gauss-Seidel method in the direction x for 0<ε<<1 and in the direction y forε>>1.In this sense,an xy-zebra-GS smoother was proposed,which proved to be efficient and robust for the different anisotropy coefficients.Moreover,the convergence factors calculated empirically and by LFA are in agreement.
文摘In this paper, the author analyzes the singularity of a boundary layer in a nonlinear diffusion problem. Results show when the limiting solution satisfies the boundary condition, there is no boundary singularity. Otherwise, the boundary layer exists, and its thickness is proportional to epsilon(1/2), here epsilon is a small positive real parameter.
文摘This paper concerns with properties of solutions of a nonlinear diffusion problem in non-divergence form. By constructing proper test functions, it is proved that solutions of the problem possess the property of localization.
基金This work was supported by the German Research Foundation(DFG)through the Collaborative Research Center SFB TRR 75 Droplet Dynamics Under Extreme Ambient Conditions
文摘We construct an approximate Riemann solver for scalar advection-diffusion equations with piecewise polynomial initial data.The objective is to handle advection and diffusion simultaneously to reduce the inherent numerical diffusion produced by the usual advection flux calculations.The approximate solution is based on the weak formulation of the Riemann problem and is solved within a space-time discontinuous Galerkin approach with two subregions.The novel generalized Riemann solver produces piecewise polynomial solutions of the Riemann problem.In conjunction with a recovery polynomial,the Riemann solver is then applied to define the numerical flux within a finite volume method.Numerical results for a piecewise linear and a piecewise parabolic approximation are shown.These results indicate a reduction in numerical dissipation compared with the conventional separated flux calculation of advection and diffusion.Also,it is shown that using the proposed solver only in the vicinity of discontinuities gives way to an accurate and efficient finite volume scheme.
文摘Fractional calculus and special functions have contributed a lot to mathematical physics and its various branches. The great use of mathematical physics in distinguished astrophysical problems has attracted astronomers and physicists to pay more attention to available mathematical tools that can be widely used in solving several problems of astrophysics/physics. In view of the great importance and usefulness of kinetic equations in certain astrophysical problems, the authors derive a generalized fractional kinetic equation involving the Lorenzo-Hartley function, a generalized function for fractional calculus. The fractional kinetic equation discussed here can be used to investigate a wide class of known (and possibly also new) fractional kinetic equations, hitherto scattered in the literature. A compact and easily computable solution is established in terms of the Lorenzo-Hartley function. Special cases, involving the generalized Mittag-Leffler function and the R-function, are considered. The obtained results imply the known results more precisely.
基金supported by General Program of Science and Technology Development Project of Beijing Municipal Education Commission KM201310011006,Program of the Young People of Outstanding Ability for the Construction of the Teachers Procession YETP1445,Major Research Plan of the National Natural Science Foundation of China 91130015,National Natural Science Foundation of China 61201113,11101013,11401015.The second author is supported by the National Nature Science Foundation of China 11171036.
文摘In this paper,we construct a global repair technique for the finite element scheme of anisotropic diffusion equations to enforce the repaired solutions satisfying the discrete maximum principle.It is an extension of the existing local repair technique.Both of the repair techniques preserve the total energy and are easy to be implemented.The numerical experiments show that these repair techniques do not destroy the accuracy of the finite element scheme,and the computational cost of the global repair technique is cheaper than the local repair technique when the diffusion tensors are highly anisotropic.
基金The work of F.Shi was partially supported by NSFC(Projects 41104039 and 11401563)Guangdong Natural Science Foundation(Project S201204007760)+2 种基金Tianyuan Fund for Mathematics of the NSFC(Project 11226314)the Knowledge Innovation Program of the Chinese Academy of Sciences(China)under KJCX2-EW-L01,and the international cooperation project of Guangdong province(China)under 2011B050400037J.Zou was substantially supported by Hong Kong RGC grants(Projects 404611 and 405513)。
文摘We present a new splitting method for time-dependent convention-dominated diffusion problems.The original convention diffusion system is split into two sub-systems:a pure convection system and a diffusion system.At each time step,a convection problem and a diffusion problem are solved successively.A few important features of the scheme lie in the facts that the convection subproblem is solved explicitly and multistep techniques can be used to essentially enlarge the stability region so that the resulting scheme behaves like an unconditionally stable scheme;while the diffusion subproblem is always self-adjoint and coercive so that they can be solved efficiently using many existing optimal preconditioned iterative solvers.The scheme can be extended for solving the Navier-Stokes equations,where the nonlinearity is resolved by a linear explicit multistep scheme at the convection step,while only a generalized Stokes problem is needed to solve at the diffusion step and the major stiffness matrix stays invariant in the time marching process.Numerical simulations are presented to demonstrate the stability,convergence and performance of the single-step and multistep variants of the new scheme.
基金supported by the National Natural Science Foundation of China(No.11101093)Shanghai Science and Technology Commission(Nos.11ZR1402800,11PJ1400800)
文摘Time-fractional diffusion equations are of great interest and importance on describing the power law decay for diffusion in porous media. In this paper, to identify the diffusion rate, i.e., the heterogeneity of medium, the authors consider an inverse coefficient problem utilizing finite measurements and obtain a local HSlder type conditional stability based upon two Carleman estimates for the corresponding differential equations of integer orders.
基金This work is supported by the National Natural Science Foundation of China(11871112,11971069,11971071,U1630249)Yu Min Foundation and the Foundation of LCP.
文摘A nonlinear fully implicit finite difference scheme with second-order time evolution for nonlinear diffusion problem is studied.The scheme is constructed with two-layer coupled discretization(TLCD)at each time step.It does not stir numerical oscillation,while permits large time step length,and produces more accurate numerical solutions than the other two well-known second-order time evolution nonlinear schemes,the Crank-Nicolson(CN)scheme and the backward difference formula second-order(BDF2)scheme.By developing a new reasoning technique,we overcome the difficulties caused by the coupled nonlinear discrete diffusion operators at different time layers,and prove rigorously the TLCD scheme is uniquely solvable,unconditionally stable,and has second-order convergence in both s-pace and time.Numerical tests verify the theoretical results,and illustrate its superiority over the CN and BDF2 schemes.
基金the National Natural Science Fund(11661058,11301258,11361035)the Natural Science Fund of Inner Mongolia Autonomous Region(2016MS0102,2015MS0101)+1 种基金the Scientific Research Projection of Higher Schools of Inner Mongolia(NJZZ12011)the National Undergraduate Innovative Training Project(201510126026).
文摘In this paper,a nonlinear time-fractional coupled diffusion system is solved by using a mixed finite element(MFE)method in space combined with L1-approximation and implicit second-order backward difference scheme in time.The stability for nonlinear fully discrete finite element scheme is analyzed and a priori error estimates are derived.Finally,some numerical tests are shown to verify our theoretical analysis.
基金The authors are very grateful to the editors and the anonymous referees for helpful suggestions to enhance the paper.This work is supported by the National Natural Science Foundation of China(11271054,11471048,11571048,U1630249)the Science Foundation of CAEP(2014A0202010)the Science Challenge Project(No.JCKY2016212A502)and the Foundation of LCP.
文摘We study the asymptotic-preserving fully discrete schemes for nonequilibrium radiation diffusion problem in spherical and cylindrical symmetric geometry.The research is based on two-temperature models with Larsen’s flux-limited diffusion operators.Finite volume spatially discrete schemes are developed to circumvent the singularity at the origin and the polar axis and assure local conservation.Asymmetric second order accurate spatial approximation is utilized instead of the traditional first order one for boundary flux-limiters to consummate the schemes with higher order global consistency errors.The harmonic average approach in spherical geometry is analyzed,and its second order accuracy is demonstrated.By formal analysis,we prove these schemes and their corresponding fully discrete schemes with implicitly balanced and linearly implicit time evolutions have first order asymptoticpreserving properties.By designing associated manufactured solutions and reference solutions,we verify the desired performance of the fully discrete schemes with numerical tests,which illustrates quantitatively they are first order asymptotic-preserving and basically second order accurate,hence competent for simulations of both equilibrium and non-equilibrium radiation diffusion problems.
文摘The goal of this work is to study the behavior of solutions to a degenerate diffusion problem. The main interests center on the extinction properties and evolution of the supports of solutions for the equations considered.
基金This work is supported by the Natural Science Foundation of China (Grant No.10271068), the Natural Science Foundation of Shandong Province (No.Y2002A01), China, and the Science Foundation For Young Scientist in Shandong Province (No.2004BS01009).
文摘In this paper, we propose an Expanded Characteristic-mixed Finite Element Method for approximating the solution to a convection dominated transport problem. The method is a combination of characteristic approximation to handle the convection part in time and an expanded mixed finite element spatial approximation to deal with the diffusion part. The scheme is stable since fluid is transported along the approximate characteristics on the discrete level. At the same time it expands the standard mixed finite element method in the sense that three variables are explicitly treated: the scalar unknown, its gradient, and its flux. Our analysis shows the method approximates the scalar unknown, its gradient, and its flux optimally and simultaneously. We also show this scheme has much smaller time-truncation errors than those of standard methods. A numerical example is presented to show that the scheme is of high performance.
基金This work was supported in part by NSF DMS-0609727,the Center for Computa-tional Mathematics and Applications of Penn State University.J.Xu was also supported in part by NSFC-10501001 and Alexander H.Humboldt Foundation.
文摘In this paper,we apply streamline-diffusion and Galerkin-least-squares fi-nite element methods for 2D steady-state two-phase model in the cathode of polymer electrolyte fuel cell(PEFC)that contains a gas channel and a gas diffusion layer(GDL).This two-phase PEFC model is typically modeled by a modified Navier-Stokes equation for the mass and momentum,with Darcy’s drag as an additional source term in momentum for flows through GDL,and a discontinuous and degenerate convectiondiffusion equation for water concentration.Based on the mixed finite element method for the modified Navier-Stokes equation and standard finite element method for water equation,we design streamline-diffusion and Galerkin-least-squares to overcome the dominant convection arising from the gas channel.Meanwhile,we employ Kirchhoff transformation to deal with the discontinuous and degenerate diffusivity in water concentration.Numerical experiments demonstrate that our finite element methods,together with these numerical techniques,are able to get accurate physical solutions with fast convergence.
基金supported in part by the National Science Foundation under DMS-1207667supported in part by NSFC and RFDP
文摘This work develops near-optimal controls for systems given by differential equations with wideband noise and random switching.The random switching is modeled by a continuous-time,time-inhomogeneous Markov chain.Under broad conditions,it is shown that there is an associated limit problem,which is a switching jump diffusion.Using near-optimal controls of the limit system,we then build controls for the original systems.It is shown that such constructed controls are nearly optimal.