期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Metal-organic framework-derive d carbon-base d composites for electromagnetic wave absorption:Dimension design and morphology regulation 被引量:5
1
作者 Yujie Ren Xin Wang +3 位作者 Jiaxin Ma Qi Zheng Lianjun Wang Wan Jiang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第1期223-251,共29页
Developing highly efficient microwave absorbing materials(MAMs)to ameliorate the electromagnetic(EM)response and facilitate energy absorption is crucial in both the civil and military industries.Metal-organic framewor... Developing highly efficient microwave absorbing materials(MAMs)to ameliorate the electromagnetic(EM)response and facilitate energy absorption is crucial in both the civil and military industries.Metal-organic framework(MOF)derived nanoporous carbon composites have emerged as advanced MAMs ow-ing to their rich porosity,tunable compositions,facile functionalization,and morphology diversity.To-gether with the flourishing development of composition-tuning strategy,the rational dimension design and elaborate control over the architectures have also evolved into an effective approach to regulating their EM properties.Herein,we provide a comprehensive review of the recent advances in using di-mension and morphology modulation to adjust the microwave attenuation capacities for MOF-derived carbon composites.The underlying design rules and unique advantages for the MAMs of various dimen-sions were discussed with the selection of representative work,providing general concepts and insight on how to efficiently tune the morphologies.Accordingly,the fundamental dimension-morphology-function relationship was also elucidated.Finally,the challenges and perspectives of dimension design and mor-phology control over MOF-derived MAMs were also presented. 展开更多
关键词 MOF-derived carbon composites Electromagnetic microwave absorption Dimension design Morphology regulation
原文传递
Variable-fidelity optimization with design space reduction 被引量:2
2
作者 Mohammad Kashif Zahir Gao Zhenghong 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第4期841-849,共9页
Advanced engineering systems, like aircraft, are defined by tens or even hundreds of design variables. Building an accurate surrogate model for use in such high-dimensional optimization problems is a difficult task ow... Advanced engineering systems, like aircraft, are defined by tens or even hundreds of design variables. Building an accurate surrogate model for use in such high-dimensional optimization problems is a difficult task owing to the curse of dimensionality. This paper presents a new algorithm to reduce the size of a design space to a smaller region of interest allowing a more accurate surrogate model to be generated. The framework requires a set of models of different physical or numerical fidelities. The low-fidelity (LF) model provides physics-based approximation of the high-fidelity (HF) model at a fraction of the computational cost. It is also instrumental in identifying the small region of interest in the design space that encloses the high-fidelity optimum. A surrogate model is then constructed to match the low-fidelity model to the high-fidelity model in the identified region of interest. The optimization process is managed by an update strategy to prevent convergence to false optima. The algorithm is applied on mathematical problems and a two-dimen-sional aerodynamic shape optimization problem in a variable-fidelity context. Results obtained are in excellent agreement with high-fidelity results, even with lower-fidelity flow solvers, while showing up to 39% time savings. 展开更多
关键词 Airfoil optimization Curse of dimensionality design space reduction Genetic algorithms Kriging Surrogate models Surrogate update strategies Variable fidelity
原文传递
Unveiling the surface-interface properties of perovskite crystals and pivotal regulation strategies 被引量:1
3
作者 Qin Li Ziyu Wang +6 位作者 Junjie Ma Mengqi Han Peng Gao Meng Cai Yiqiang Zhang Yanlin Song Shou Peng 《Nano Research》 SCIE EI CSCD 2024年第5期3950-3981,共32页
Metal-halide perovskite solar cells have garnered significant research attention in the last decade due to their exceptional photovoltaic performance and potential for commercialization.Despite achieving remarkable po... Metal-halide perovskite solar cells have garnered significant research attention in the last decade due to their exceptional photovoltaic performance and potential for commercialization.Despite achieving remarkable power conversion efficiency of up to 26.1%,a substantial discrepancy persists when compared to the theoretical Shockley-Queisser(SQ)limit.One of the most serious challenges facing perovskite solar cells is the energy loss incurred during photovoltaic conversion,which affects the SQ limits and stability of the device.More significant than the energy loss occurring in the bulk phase of the perovskite is the energy loss occurring at the surface-interface.Here,we provide a systematic overview of the physical and chemical properties of the surface-interface.Firstly,we delve into the underlying mechanism causing the energy deficit and structural degradation at the surface-interface,aiming to enhance the understanding of carrier transport processes and structural chemical reactivity.Furthermore,we systematically summarized the primary modulating pathways,including surface reconstruction,dimensional construction,and electric-field regulation.Finally,we propose directions for future research to advance the efficiency of perovskite solar cells towards the radiative limit and their widespread commercial application. 展开更多
关键词 perovskite solar cells surface-interface treatment defect modification dimensional design energy regulation heterojunction and homojunction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部