A necessary and suffcient condition is given for the equation Ax4+ 1 =By2 to have positive integer solution, and an effective method is derived for solving equation a2x4 + 1 = By2 in positive integers x, y for given h...A necessary and suffcient condition is given for the equation Ax4+ 1 =By2 to have positive integer solution, and an effective method is derived for solving equation a2x4 + 1 = By2 in positive integers x, y for given ho and B completely. Also, using a recently result of Ribet, Darmon and Merel, we proved that Erdos’ conjecture on combinatorial number is right.展开更多
The Diophantine equation X( X + 1 ) ( X + 2 ) ( X + 3 ) = 14Y( Y + 1 ) ( Y + 2 ) ( Y + 3 ) still remains open. Using recurrence sequence, Maple software, Pell equation and quadraric residue, this pap...The Diophantine equation X( X + 1 ) ( X + 2 ) ( X + 3 ) = 14Y( Y + 1 ) ( Y + 2 ) ( Y + 3 ) still remains open. Using recurrence sequence, Maple software, Pell equation and quadraric residue, this paper proved it has only two positive integer solutions, i. e., (X,Y) = (5,2) ,(7,3).展开更多
In this paper, we prove that if p, q are distinct primes, (p,q)≡(1,7) (mod 12) and Legendres symbol pq=1 , then the equation 1+p a=2 bq c+2 dp eq f has only solutions of the form (a,b,c,d,e,f)=...In this paper, we prove that if p, q are distinct primes, (p,q)≡(1,7) (mod 12) and Legendres symbol pq=1 , then the equation 1+p a=2 bq c+2 dp eq f has only solutions of the form (a,b,c,d,e,f)=(t,0,0,0,t,0), where t is a non negative integer. We also give all solutions of a kind of generalized Ramanujan Nagell equations by using the theories of imaginary quadratic field and Pells equation.展开更多
We prove that diophantine equation in title has at most one positive integer solution for any positive integers A>1, B>1. It follows that Lucas problem is very simple to solve and a recent result of Bennett ...We prove that diophantine equation in title has at most one positive integer solution for any positive integers A>1, B>1. It follows that Lucas problem is very simple to solve and a recent result of Bennett is very simple to prove.展开更多
In this paper, we study the quantic Diophantine equation (1) with elementary geometry method, therefore all positive integer solutions of the equation (1) are obtained, and existence of Heron triangle whose median...In this paper, we study the quantic Diophantine equation (1) with elementary geometry method, therefore all positive integer solutions of the equation (1) are obtained, and existence of Heron triangle whose median lengths are all positive integer are discussed here.展开更多
For any fixed odd prime p, let N(p) denote the number of positive integer solutions (x, y) of the equation y^2 = px(x^2 + 2). In this paper, using some properties of binary quartic Diophantine equations, we pro...For any fixed odd prime p, let N(p) denote the number of positive integer solutions (x, y) of the equation y^2 = px(x^2 + 2). In this paper, using some properties of binary quartic Diophantine equations, we prove that ifp ≡ 5 or 7(mod 8), then N(p) = 0; ifp ≡ 1(mod 8), then N(p) 〈 1; if p〉 3 andp ≡ 3(rood 8), then N(p) ≤ 2.展开更多
We consider the Pythagoras equation X<sup>2</sup> +Y<sup>2</sup> = Z<sup>2</sup>, and for any solution of the type (a,b = 2<sup>s</sup>b<sub>1 </sub>≠0,c) ...We consider the Pythagoras equation X<sup>2</sup> +Y<sup>2</sup> = Z<sup>2</sup>, and for any solution of the type (a,b = 2<sup>s</sup>b<sub>1 </sub>≠0,c) ∈ N<sup>*3</sup>, s ≥ 2, b<sub>1</sub>odd, (a,b,c) ≡ (±1,0,1)(mod 4), c > a , c > b, and gcd(a,b,c) = 1, we then prove the Pythagorician divisors Theorem, which results in the following: , where (d,d′′) (resp. (e,e<sup>n</sup>)) are unique particular divisors of a and b, such that a = dd′′ (resp. b = ee′′ ), these divisors are called: Pythagorician divisors from a, (resp. from b). Let’s put λ ∈{0,1}, defined by: and S = s -λ (s -1). Then such that . Moreover the map is a bijection. We apply this new tool to obtain a new classification of the primitive, positive and non-trivial solutions of the Pythagoras equations: a<sup>2</sup> + b<sup>2</sup> = c<sup>2</sup> via the Pythagorician parameters (d,e,S ). We obtain for (d, e) fixed, the equivalence class of any Pythagorician solution (a,b,c), checking , namely: . We also update the solutions of some Diophantine equations of degree 2, already known, but very important for the resolution of other equations. With this tool of Pythagorean divisors, we have obtained (in another paper) new recurrent methods to solve Fermat’s equation: a<sup>4</sup> + b<sup>4 </sup>= c<sup>4</sup>, other than usual infinite descent method;and to solve congruent numbers problem. We believe that this tool can bring new arguments, for Diophantine resolution, of the general equations of Fermat: a<sup>2p</sup> + b<sup>2p</sup> = c<sup>2p</sup> and a<sup>p</sup> + b<sup>p</sup> = c<sup>p</sup>. MSC2020-Mathematical Sciences Classification System: 11A05-11A51-11D25-11D41-11D72.展开更多
A variant of Fermat’s last Diophantine equation is proposed by adjusting the number of terms in accord with the power of terms and a theorem describing the solubility conditions is stated. Numerically obtained primit...A variant of Fermat’s last Diophantine equation is proposed by adjusting the number of terms in accord with the power of terms and a theorem describing the solubility conditions is stated. Numerically obtained primitive solutions are presented for several cases with number of terms equal to or greater than powers. Further, geometric representations of solutions for the second and third power equations are devised by recasting the general equation in a form with rational solutions less than unity. Finally, it is suggested to consider negative and complex integers in seeking solutions to Diophantine forms in general.展开更多
In this paper, we study two Diophantine equations of the type p<sup>x</sup> + 9<sup>y</sup> = z<sup>2</sup> , where p is a prime number. We find that the equation 2<sup>x</...In this paper, we study two Diophantine equations of the type p<sup>x</sup> + 9<sup>y</sup> = z<sup>2</sup> , where p is a prime number. We find that the equation 2<sup>x</sup> + 9<sup>y</sup> = z<sup>2</sup> has exactly two solutions (x, y, z) in non-negative integer i.e., {(3, 0, 3),(4, 1, 5)} but 5<sup>x</sup> + 9<sup>y</sup> = z<sup>2</sup> has no non-negative integer solution.展开更多
Let p and q be two fixed non zero integers verifying the condition gcd(p,q) = 1. We check solutions in non zero integers a1,b1,a2,b2 and a3 for the following Diophantine equations: (B1) (B2) . The equations (B1) and (...Let p and q be two fixed non zero integers verifying the condition gcd(p,q) = 1. We check solutions in non zero integers a1,b1,a2,b2 and a3 for the following Diophantine equations: (B1) (B2) . The equations (B1) and (B2) were considered by R.C. Lyndon and J.L. Ullman in [1] and A.F. Beardon in [2] in connection with the freeness of the M?bius group generated by two matrices of namely and where .?They proved that if one of the equations (B1) or (B2) has solutions in non zero integers then the group is not free. We give algorithms to decide if these equations admit solutions. We obtain an arithmetical criteria on p and q for which (B1) admits solutions. We show that for all p and q the equations (B1) and (B2) have only a finite number of solutions.展开更多
We apply a new, deep theorem of Bilu, Hanrot & Voutier and some fine results on the representation of the solutions of quadratic Diophantine equations to solve completely the exponential Diophantine equation x^2+(3...We apply a new, deep theorem of Bilu, Hanrot & Voutier and some fine results on the representation of the solutions of quadratic Diophantine equations to solve completely the exponential Diophantine equation x^2+(3a^2-1)^m = (4a^2-1)^n when 3a^2-1 is a prime or a prime power.展开更多
Let a, b, c, r be fixed positive integers such that a^2 + b^2 = c^r, min(a, b, c, r) 〉 1 and 2 r. In this paper we prove that if a ≡ 2 (mod 4), b ≡ 3 (mod 4), c 〉 3.10^37 and r 〉 7200, then the equation a...Let a, b, c, r be fixed positive integers such that a^2 + b^2 = c^r, min(a, b, c, r) 〉 1 and 2 r. In this paper we prove that if a ≡ 2 (mod 4), b ≡ 3 (mod 4), c 〉 3.10^37 and r 〉 7200, then the equation a^x + b^y = c^z only has the solution (x, y, z) = (2, 2, r).展开更多
We obtain all positive integer solutions(m1,m2,a,b) with a &gt; b,gcd(a,b) = 1 to the system of Diophantine equations km21- lat1bt2a2r= C1,km22- lat1bt2b2r= C2,with C1,C2 ∈ {-1,1,-2,2,-4,4},and k,l,t1,t2,r ∈ Z ...We obtain all positive integer solutions(m1,m2,a,b) with a &gt; b,gcd(a,b) = 1 to the system of Diophantine equations km21- lat1bt2a2r= C1,km22- lat1bt2b2r= C2,with C1,C2 ∈ {-1,1,-2,2,-4,4},and k,l,t1,t2,r ∈ Z such that k &gt; 0,l &gt; 0,r &gt; 0,t1 &gt; 0,t2 0,gcd(k,l) = 1,and k is square-free.展开更多
Let l be a given nonzero integer. The authors give an explicit characterization of the positive integer k that makes the Diophantine equation x2 - kxy + y2 + 1x = 0 have infinitely many positive integer solutions (...Let l be a given nonzero integer. The authors give an explicit characterization of the positive integer k that makes the Diophantine equation x2 - kxy + y2 + 1x = 0 have infinitely many positive integer solutions (x, y).展开更多
Different from previous viewpoints,multivariate polynomial matrix Diophantine equations are studied from the perspective of modules in this paper,that is,regarding the columns of matrices as elements in modules.A nece...Different from previous viewpoints,multivariate polynomial matrix Diophantine equations are studied from the perspective of modules in this paper,that is,regarding the columns of matrices as elements in modules.A necessary and sufficient condition of the existence for the solution of equations is derived.Using powerful features and theoretical foundation of Gr?bner bases for modules,the problem for determining and computing the solution of matrix Diophantine equations can be solved.Meanwhile,the authors make use of the extension on modules for the GVW algorithm that is a signature-based Gr?bner basis algorithm as a powerful tool for the computation of Gr?bner basis for module and the representation coefficients problem directly related to the particular solution of equations.As a consequence,a complete algorithm for solving multivariate polynomial matrix Diophantine equations by the Gr?bner basis method is presented and has been implemented on the computer algebra system Maple.展开更多
Two new results on the nonexistence of generalized bent functions are presented by using properties of the decomposition law of primes in cyclotomic fields and properties of solutions of some Diophantine equations, an...Two new results on the nonexistence of generalized bent functions are presented by using properties of the decomposition law of primes in cyclotomic fields and properties of solutions of some Diophantine equations, and examples satisfying our results are given.展开更多
In this paper, by using model-theoretic methods, it is shown that some systems of unsolved cubic diophantine equations in number theory can have solutions in certain inductive extension rings of the ring I of rational...In this paper, by using model-theoretic methods, it is shown that some systems of unsolved cubic diophantine equations in number theory can have solutions in certain inductive extension rings of the ring I of rational integers. These inductive rings are not fields, and every element of them is a sum of 4 cubes and a sum of 3 squares. Also some of them satisfy the Goldbach conjecture and some others don't.展开更多
Ljunggren proved that the equations x^3+1=Dy^2, D】2, d|D, 3D, d is not a square (1) and x^3-1=Dy^2, d is not prime of the form 6l+1 (1)′have one positive integral solution at most. Ko Chao and Sun Chi proved that eq...Ljunggren proved that the equations x^3+1=Dy^2, D】2, d|D, 3D, d is not a square (1) and x^3-1=Dy^2, d is not prime of the form 6l+1 (1)′have one positive integral solution at most. Ko Chao and Sun Chi proved that eqs.(1) and(1)′both have no nontrivial integral solution. In this letter, we prove the following theorems.展开更多
Mordell asked for the integer solutions of(1/x)+(1/y)+(1/z)+(1/w)+(1/xyxw)=0.(1)In this paper,we give some parametrio solutions of (1)and prove that thegeneral equationsum form i=1 to n(1/x)i)+multiply from i=1 to n=1...Mordell asked for the integer solutions of(1/x)+(1/y)+(1/z)+(1/w)+(1/xyxw)=0.(1)In this paper,we give some parametrio solutions of (1)and prove that thegeneral equationsum form i=1 to n(1/x)i)+multiply from i=1 to n=1(n>1)(2)展开更多
基金Supported by the Natural Science Foundation of Heilongjiang Province
文摘A necessary and suffcient condition is given for the equation Ax4+ 1 =By2 to have positive integer solution, and an effective method is derived for solving equation a2x4 + 1 = By2 in positive integers x, y for given ho and B completely. Also, using a recently result of Ribet, Darmon and Merel, we proved that Erdos’ conjecture on combinatorial number is right.
基金The Natural Science Foundation of Chongqing University of Post and Telecommunications (No.A2008-40)
文摘The Diophantine equation X( X + 1 ) ( X + 2 ) ( X + 3 ) = 14Y( Y + 1 ) ( Y + 2 ) ( Y + 3 ) still remains open. Using recurrence sequence, Maple software, Pell equation and quadraric residue, this paper proved it has only two positive integer solutions, i. e., (X,Y) = (5,2) ,(7,3).
文摘In this paper, we prove that if p, q are distinct primes, (p,q)≡(1,7) (mod 12) and Legendres symbol pq=1 , then the equation 1+p a=2 bq c+2 dp eq f has only solutions of the form (a,b,c,d,e,f)=(t,0,0,0,t,0), where t is a non negative integer. We also give all solutions of a kind of generalized Ramanujan Nagell equations by using the theories of imaginary quadratic field and Pells equation.
文摘We prove that diophantine equation in title has at most one positive integer solution for any positive integers A>1, B>1. It follows that Lucas problem is very simple to solve and a recent result of Bennett is very simple to prove.
基金Foundation item: Supported by the Natural Science Foundation of China(10271104)Supported by the Natural Science Foundation of Education Department of Sichuan Province(2004B25)
文摘In this paper, we study the quantic Diophantine equation (1) with elementary geometry method, therefore all positive integer solutions of the equation (1) are obtained, and existence of Heron triangle whose median lengths are all positive integer are discussed here.
基金Foundation item: Supported by the Natural Science Foundation of Shaanxi Province(2009JM1006)
文摘For any fixed odd prime p, let N(p) denote the number of positive integer solutions (x, y) of the equation y^2 = px(x^2 + 2). In this paper, using some properties of binary quartic Diophantine equations, we prove that ifp ≡ 5 or 7(mod 8), then N(p) = 0; ifp ≡ 1(mod 8), then N(p) 〈 1; if p〉 3 andp ≡ 3(rood 8), then N(p) ≤ 2.
文摘We consider the Pythagoras equation X<sup>2</sup> +Y<sup>2</sup> = Z<sup>2</sup>, and for any solution of the type (a,b = 2<sup>s</sup>b<sub>1 </sub>≠0,c) ∈ N<sup>*3</sup>, s ≥ 2, b<sub>1</sub>odd, (a,b,c) ≡ (±1,0,1)(mod 4), c > a , c > b, and gcd(a,b,c) = 1, we then prove the Pythagorician divisors Theorem, which results in the following: , where (d,d′′) (resp. (e,e<sup>n</sup>)) are unique particular divisors of a and b, such that a = dd′′ (resp. b = ee′′ ), these divisors are called: Pythagorician divisors from a, (resp. from b). Let’s put λ ∈{0,1}, defined by: and S = s -λ (s -1). Then such that . Moreover the map is a bijection. We apply this new tool to obtain a new classification of the primitive, positive and non-trivial solutions of the Pythagoras equations: a<sup>2</sup> + b<sup>2</sup> = c<sup>2</sup> via the Pythagorician parameters (d,e,S ). We obtain for (d, e) fixed, the equivalence class of any Pythagorician solution (a,b,c), checking , namely: . We also update the solutions of some Diophantine equations of degree 2, already known, but very important for the resolution of other equations. With this tool of Pythagorean divisors, we have obtained (in another paper) new recurrent methods to solve Fermat’s equation: a<sup>4</sup> + b<sup>4 </sup>= c<sup>4</sup>, other than usual infinite descent method;and to solve congruent numbers problem. We believe that this tool can bring new arguments, for Diophantine resolution, of the general equations of Fermat: a<sup>2p</sup> + b<sup>2p</sup> = c<sup>2p</sup> and a<sup>p</sup> + b<sup>p</sup> = c<sup>p</sup>. MSC2020-Mathematical Sciences Classification System: 11A05-11A51-11D25-11D41-11D72.
文摘A variant of Fermat’s last Diophantine equation is proposed by adjusting the number of terms in accord with the power of terms and a theorem describing the solubility conditions is stated. Numerically obtained primitive solutions are presented for several cases with number of terms equal to or greater than powers. Further, geometric representations of solutions for the second and third power equations are devised by recasting the general equation in a form with rational solutions less than unity. Finally, it is suggested to consider negative and complex integers in seeking solutions to Diophantine forms in general.
文摘In this paper, we study two Diophantine equations of the type p<sup>x</sup> + 9<sup>y</sup> = z<sup>2</sup> , where p is a prime number. We find that the equation 2<sup>x</sup> + 9<sup>y</sup> = z<sup>2</sup> has exactly two solutions (x, y, z) in non-negative integer i.e., {(3, 0, 3),(4, 1, 5)} but 5<sup>x</sup> + 9<sup>y</sup> = z<sup>2</sup> has no non-negative integer solution.
文摘Let p and q be two fixed non zero integers verifying the condition gcd(p,q) = 1. We check solutions in non zero integers a1,b1,a2,b2 and a3 for the following Diophantine equations: (B1) (B2) . The equations (B1) and (B2) were considered by R.C. Lyndon and J.L. Ullman in [1] and A.F. Beardon in [2] in connection with the freeness of the M?bius group generated by two matrices of namely and where .?They proved that if one of the equations (B1) or (B2) has solutions in non zero integers then the group is not free. We give algorithms to decide if these equations admit solutions. We obtain an arithmetical criteria on p and q for which (B1) admits solutions. We show that for all p and q the equations (B1) and (B2) have only a finite number of solutions.
基金the Natural Science Foundation of Guangdong Province (04009801)the Important Science Research Foundation of Foshan University.
文摘We apply a new, deep theorem of Bilu, Hanrot & Voutier and some fine results on the representation of the solutions of quadratic Diophantine equations to solve completely the exponential Diophantine equation x^2+(3a^2-1)^m = (4a^2-1)^n when 3a^2-1 is a prime or a prime power.
基金Supported by the National Natural Science Foundation of China(No.10271104)the Guangdong Provincial Natural Science Foundation(No.011781)the Natural Science Foundation of the Education Department of Guangdong Province(No.0161)
文摘Let a, b, c, r be fixed positive integers such that a^2 + b^2 = c^r, min(a, b, c, r) 〉 1 and 2 r. In this paper we prove that if a ≡ 2 (mod 4), b ≡ 3 (mod 4), c 〉 3.10^37 and r 〉 7200, then the equation a^x + b^y = c^z only has the solution (x, y, z) = (2, 2, r).
基金supported by the Guangdong Provincial Natural Science Foundation (Grant Nos.10152606101000000 and S2012040007653)National Natural Science Foundation of China (Grant No.11271142)
文摘We obtain all positive integer solutions(m1,m2,a,b) with a &gt; b,gcd(a,b) = 1 to the system of Diophantine equations km21- lat1bt2a2r= C1,km22- lat1bt2b2r= C2,with C1,C2 ∈ {-1,1,-2,2,-4,4},and k,l,t1,t2,r ∈ Z such that k &gt; 0,l &gt; 0,r &gt; 0,t1 &gt; 0,t2 0,gcd(k,l) = 1,and k is square-free.
基金the National Natural Science Foundation of China(No.10971184)
文摘Let l be a given nonzero integer. The authors give an explicit characterization of the positive integer k that makes the Diophantine equation x2 - kxy + y2 + 1x = 0 have infinitely many positive integer solutions (x, y).
基金supported by the National Natural Science Foundation of China under Grant No.12001030the CAS Key Project QYZDJ-SSW-SYS022the National Key Research and Development Project2020YFA0712300。
文摘Different from previous viewpoints,multivariate polynomial matrix Diophantine equations are studied from the perspective of modules in this paper,that is,regarding the columns of matrices as elements in modules.A necessary and sufficient condition of the existence for the solution of equations is derived.Using powerful features and theoretical foundation of Gr?bner bases for modules,the problem for determining and computing the solution of matrix Diophantine equations can be solved.Meanwhile,the authors make use of the extension on modules for the GVW algorithm that is a signature-based Gr?bner basis algorithm as a powerful tool for the computation of Gr?bner basis for module and the representation coefficients problem directly related to the particular solution of equations.As a consequence,a complete algorithm for solving multivariate polynomial matrix Diophantine equations by the Gr?bner basis method is presented and has been implemented on the computer algebra system Maple.
基金Supported by National Natural Science Foundation of China (Grant Nos. 10771100, 10971250)
文摘Two new results on the nonexistence of generalized bent functions are presented by using properties of the decomposition law of primes in cyclotomic fields and properties of solutions of some Diophantine equations, and examples satisfying our results are given.
基金Supported by NNSF(No. 19931020, No. 10001006 and No. 60273015)of China
文摘In this paper, by using model-theoretic methods, it is shown that some systems of unsolved cubic diophantine equations in number theory can have solutions in certain inductive extension rings of the ring I of rational integers. These inductive rings are not fields, and every element of them is a sum of 4 cubes and a sum of 3 squares. Also some of them satisfy the Goldbach conjecture and some others don't.
文摘Ljunggren proved that the equations x^3+1=Dy^2, D】2, d|D, 3D, d is not a square (1) and x^3-1=Dy^2, d is not prime of the form 6l+1 (1)′have one positive integral solution at most. Ko Chao and Sun Chi proved that eqs.(1) and(1)′both have no nontrivial integral solution. In this letter, we prove the following theorems.
文摘Mordell asked for the integer solutions of(1/x)+(1/y)+(1/z)+(1/w)+(1/xyxw)=0.(1)In this paper,we give some parametrio solutions of (1)and prove that thegeneral equationsum form i=1 to n(1/x)i)+multiply from i=1 to n=1(n>1)(2)