期刊文献+
共找到24篇文章
< 1 2 >
每页显示 20 50 100
Numerical Study on Hydraulic Characteristics and Discharge Capacity of Modified Piano Key Weir with Various Inlet/Outlet Width Ratio
1
作者 Ilan Ich Genguang Zhang +2 位作者 Anbin Li Vinhteang Kaing Ty Sok 《World Journal of Engineering and Technology》 2023年第1期113-135,共23页
A modified piano key weir with a rounded nose and a parapet wall (MPKW) can improve the discharge capacity significantly compared to a standard piano key weir. However, the optimum of the inlet/outlet width ratio (Wi/... A modified piano key weir with a rounded nose and a parapet wall (MPKW) can improve the discharge capacity significantly compared to a standard piano key weir. However, the optimum of the inlet/outlet width ratio (Wi/Wo) on the discharge efficiency of MPKW is still not investigated numerically. The present work utilized the numerical modeling to investigate and analyze the effects of the inlet/outlet key width ratios on the hydraulic characteristics and discharge capacity of the MPKW. To validate the numerical model with the experimental data, the results indicate that the average relative error is 2.96%, which confirms that the numerical model is fairly well to predictthe specifications of flow over on the MPKW. Numerical simulation results indicated that the discharge capacity of the MPKW can be improved up to 8.5% by optimizing the Wi/Wo ratio ranging from 1.53 to 1.67 even if the other parameters of the MPKW keep unchanged. A big Wi/Wo ratio generally leads to an increase in discharge capacity at low heads and a little effect on the discharge efficiency at high heads. The discharge efficiency of the inlet and outlet crests increases up to 9.6% for high heads, while discharge efficiency of the lateral crest decreases up to 23.5% compared with the reference model. The findings of the study revealed that the intrinsic influencing mechanism of the Wi/Wo ratio on the discharge performance of MPKWs. 展开更多
关键词 discharge Capacity FLOW-3D Hydraulic Characteristics Numerical Simulation Modified Piano Key Weir Parameter Optimization
下载PDF
Accurate estimation of Li/Ni mixing degree of lithium nickel oxide cathode materials
2
作者 陈鹏浩 徐磊 +1 位作者 禹习谦 李泓 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期631-635,共5页
Li/Ni mixing negatively influences the discharge capacity of lithium nickel oxide and high-nickel ternary cathode materials.However,accurately measuring the Li/Ni mixing degree is difficult due to the preferred orient... Li/Ni mixing negatively influences the discharge capacity of lithium nickel oxide and high-nickel ternary cathode materials.However,accurately measuring the Li/Ni mixing degree is difficult due to the preferred orientation of labbased XRD measurements using Bragg–Brentano geometry.Here,we find that employing spherical harmonics in Rietveld refinement to eliminate the preferred orientation can significantly decrease the measurement error of the Li/Ni mixing ratio.The Li/Ni mixing ratio obtained from Rietveld refinement with spherical harmonics shows a strong correlation with discharge capacity,which means the electrochemical capacity of lithium nickel oxide and high-nickel ternary cathode can be estimated by the Li/Ni mixing degree.Our findings provide a simple and accurate method to estimate the Li/Ni mixing degree,which is valuable to the structural analysis and screening of the synthesis conditions of lithium nickel oxide and high-nickel ternary cathode materials. 展开更多
关键词 lithium nickel oxide high-nickel ternary cathode Li/Ni mixing spherical harmonics function discharge capacity
下载PDF
Study on High Rate Discharge Performance and Mechanism of AB_5 Type Hydrogen Storage Alloys 被引量:6
3
作者 郭靖洪 陈德敏 +3 位作者 于军 张建海 刘国忠 杨柯 《Journal of Rare Earths》 SCIE EI CAS CSCD 2004年第4期509-513,共5页
The effects of surface treatment, particle size distribution,rare earth composition and B additive on the high rate discharge performance of hydrogen storage alloys were investigated. It is found that the activity, di... The effects of surface treatment, particle size distribution,rare earth composition and B additive on the high rate discharge performance of hydrogen storage alloys were investigated. It is found that the activity, discharge capacity and high rate dischargeability of the alloys are improved after physical and chemical modification as a result of the increase of the surface area and formation of the electrocatalysis layers, which increase both the electrochemical reaction rate on the alloy surface and H diffusion rate in the alloy bulk. It is also found that both the over-coarse and over-fine particle size increase the contact resistance of the electrode, resulting in a decrease of discharge capacity, deterioration of high rate dischargeability and lower discharge plateau. In another word, a suitable particle size distribution can enhance the alloy activity, discharge capacity and high rate dischargeability. In addition, the high rate dischargeability is enhanced by increasing La content and decreasing Ce content of the alloy composition because of enlargement of the unit cell volume and the improvement of the surface activity. Moreover, B additive resultes in the formation of the second phase, and makes the alloys easier pulverization, which greatly improves the activity, discharge capacity and high rate dischargeability. 展开更多
关键词 storage energy technology hydrogen storage alloy discharge capacity ACTIVITY high rate dischargeability rare earths
下载PDF
Research on characteristics of acoustic signal of typical partial discharge models 被引量:1
4
作者 Hang Ji Xing Lei +3 位作者 Qiang Xu Chengjun Huang Ting Ye Shangqing Yuan 《Global Energy Interconnection》 EI CAS CSCD 2022年第1期118-130,共13页
The pulse current method,acoustic and ultrasonic partial discharge(PD)detection,and voiceprint PD detection are commonly used detection methods for the PD detection of power equipment.To study the characteristics of P... The pulse current method,acoustic and ultrasonic partial discharge(PD)detection,and voiceprint PD detection are commonly used detection methods for the PD detection of power equipment.To study the characteristics of PD signals of typical discharge models based on the principles of the above three detection methods,an acoustic detection experimental system consisting of a needle-tip model and a surface model was built.Acoustic tests were carried out on needle-tip models with different curvature radii and surface discharge models with different lengths of conductive paste.The experimental results showed that acoustic and ultrasonic PD detection and voiceprint PD detection exhibited different sensitivities to the needle-tip discharge models,and the combination of acoustic and ultrasonic PD and voiceprint PD detection was more beneficial for the comprehensive detection of cable PD signals.Based on voiceprint recognition technology,this study drew FFT(Fast Fourier Transformation)diagrams of different types of PD acoustic signals and analyzed the differences in the ultrasonic signal frequency distribution.The frequency band of the voiceprint PD signal of the needle-tip discharge models was concentrated in the range 17-27 kHz,and the frequency band of the voiceprint PD signal of the conductive paste discharge models was concentrated in the range 20-25 kHz.The measurement of voiceprint PD signals in these frequency bands were strengthened when the PD of a cable was detected on-site,which provides the basis for the use of the cable model for on-site PD detection. 展开更多
关键词 Needle-tip model Radius of curvature Surface model discharge capacity Number of pulses
下载PDF
A New Perspective on the 5 V Discharge Capacity of Li/Al Doped Manganese Spinels
5
作者 李全华 WANG Yong +3 位作者 QU Deyu XIAO Liang 邓伯华 CHENG JinShu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第1期52-56,共5页
A series of manganese spinels LiMn2-yMeyO4 (Me = Li, A1, Mg) were prepared and examined by XRD and electrochemical methods. The spinels doped with Li or high content of A1 can exhibit discharge capacity in the 5 V r... A series of manganese spinels LiMn2-yMeyO4 (Me = Li, A1, Mg) were prepared and examined by XRD and electrochemical methods. The spinels doped with Li or high content of A1 can exhibit discharge capacity in the 5 V region, but spinels doped with Mg do not exhibit any 5 V discharge capacity. It is also observed that the 5 V discharge capacity of Li/A1 doped spinels will be greatly suppressed once calcinated at temperatures above 900 ℃ in preparation. It is suggested that the 5 V discharge capacity of Li/A1 doped spinels may be originated from the special chemical/structural characteristics of spinel phases containing Li or high content of A1 prepared at temperatures below 900 ℃. 展开更多
关键词 manganese spinels DOPING 5 V discharge capacity ORIGIN
下载PDF
Influence of Four Factors on Discharge Capacity and Self-Discharge Rate of Iron Electrode
6
作者 Dongfeng LIN, Shihai YE, Rong CAI, Deying SONG and Panwen SHENInstitute of New Energy Material Chemistry, Nankai University, Tianjin 300071, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2003年第6期515-517,共3页
Ni-Fe rechargeable batteries possess the advantages of long cycle life, high theoretical specific energy, abundant raw material, low price and environmental friendship. It has a wide applied perspective. The advantage... Ni-Fe rechargeable batteries possess the advantages of long cycle life, high theoretical specific energy, abundant raw material, low price and environmental friendship. It has a wide applied perspective. The advantages, disadvantages and preparation methods of iron electrodes were summarized. The influence of four factors on discharge capacity and self-discharge rate of iron electrode were discussed by means of orthogonal experiments, galvanostatic charges and discharges. The influences of graphite on the discharge capacity and self-discharge rate of iron electrode were the most remarkable, the most unapparent influences on the discharge capacity and self-discharge rate were HPMC (hydroxy propoxy methoxy cellulose) and sodium sulphide, respectively. The aim of the present research was to study the effects of graphite, HPMC and iron powder added in the electrodes, sodium sulphide added in the electrolytes on the discharge capacity and self-discharge rate of iron electrodes. The largest discharge capacity of the iron electrodes was 488.5 mAh/g-Fe at 66.4 mA/g-Fe in the first ten cycles, and the average self-discharge rate was 0.367% per hour. 展开更多
关键词 Iron electrode discharge capacity Self-discharge rate Ni-Fe battery
下载PDF
A superhigh discharge capacity induced by a synergetic effect between high-surface-area carbons and a carbon paper current collector in a lithium–oxygen battery
7
作者 罗广生 黄诗婷 +2 位作者 赵宁 崔忠慧 郭向欣 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第8期570-576,共7页
This paper invesitages the synergetic effect between high-surface-area carbons, such as Ketjan Black(KB) or Super P(SP) carbon materials, and low-surface-area carbon paper(CP) current collectors and it also examines t... This paper invesitages the synergetic effect between high-surface-area carbons, such as Ketjan Black(KB) or Super P(SP) carbon materials, and low-surface-area carbon paper(CP) current collectors and it also examines their influence on the discharge performance of nonaqueous Li–O2cells. Ultra-large specific discharge capacities are found in the KB/CP cathodes, which are much greater than those observed in the individual KB or CP cathodes. Detailed analysis indicates that such unexpectedly large capacities result from the synergetic effect between the two components. During the initial discharges of KB or SP materials, a large number of superoxide radical(O·-2) species in the electrolytes and Li2O2 nuclei at the CP surfaces are formed, which activate the CP current collectors to contribute considerable capacities. These results imply that CP could be a superior material for current collectors in terms of its contribution to the overall discharge capacity.On the other hand, we should be careful to calculate the specific capacities of the oxygen cathodes when using CP as a current collector; i.e., ignoring the contribution from the CP may cause overstated discharge capacities. 展开更多
关键词 lithium–oxygen batteries high discharge capacity carbon paper current collectors large-surface carbon-based cathodes synergetic
下载PDF
Effect of Al substitution on phase evolution in synthesized Mg_(2)Cu nanoparticles
8
作者 Elham Mohseni-Sohi Farshid Kashani Bozorg 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第1期63-71,共9页
The effect of Mg replacement with Al on the discharge capacity of Mg_(2)Cu powder mixture was investigated.The mixture of nano-crystalline powder was prepared via mechanical alloying(MA)technique with a high energy pl... The effect of Mg replacement with Al on the discharge capacity of Mg_(2)Cu powder mixture was investigated.The mixture of nano-crystalline powder was prepared via mechanical alloying(MA)technique with a high energy planetary ball mill.In addition,different moles of Al(0.05,0.1,0.15,0.2,and 0.3 M)were substituted to Mg_(2)Cu powder.X-ray diffraction(XRD),scanning electron microscopy(SEM),and transmission electron microscopy(TEM)were used to analyze changes in structure,morphology,and grain size.The obtained powder was utilized as an anode in a nickel-metal hydride battery(Ni-MH).In the specimens with 0.05 M Al content,the orthorhombic structure of Mg_(2)Cu is emerged after 5 h milling.The results reveal that more than 0.1 M Al substitution leads to an appearance of MgCu_(2) peaks.Al substi-tution does not affect microstructure uniformity;however,it causes a decrease in crystalline size and lattice parameters.The selected area diffraction(SAD)pattern elucidates that the electrode with the Mg_(1.9)Al_(0.1)Cu chemical composition and 20 h milling has the maximum discharge capacity. 展开更多
关键词 Mg_(2)Cu mechanical alloying NANOCRYSTALLINE discharge capacity
下载PDF
Research on cathode material of Li-ion battery by yttrium doping 被引量:14
9
作者 田彦文 康晓雪 +2 位作者 刘丽英 徐茶青 曲涛 《Journal of Rare Earths》 SCIE EI CAS CSCD 2008年第2期279-283,共5页
Modification of LiFePO4, LiMn2O4 and Li1+xV3O8 by doping yttrium was investigated. The influences of doping Y on structure, morphology and electrochemical performance of cathode materials were investigated systematic... Modification of LiFePO4, LiMn2O4 and Li1+xV3O8 by doping yttrium was investigated. The influences of doping Y on structure, morphology and electrochemical performance of cathode materials were investigated systematically. The results indicated that the mechanisms of Y doping in three cathode materials were different, so the influences on the material performance were different. The crystal structure of the three materials was not changed by Y doping. However, the crystal parameters were influenced. The crystal parameters of LiMn2O4 became smaller, and the interlayer distance of (100) crystal plane of Li1-xV3O8 was lengthened after Y doping. The grain size of Y-doped LiFePO4 became smaller and grain morphology became more regular than that of undoped LiFePO4. It indicated that Y doping had no influence on crystal particle and morphology of LiMn2O4. The morphology of Li1+xV3O8 became irregular and its size became larger with the increase of Y. For LiFePOaand Li1+xV3O8, both the initial discharge capacities and the cyclic performance were improved by Y doping. For LiMn2O4, the cyclic performance became better and the initial discharge capacities declined with increasing Y doping. 展开更多
关键词 YTTRIUM cathode material Li-ion battery DOPING CONDUCTIVITY discharge capacity rare earths
下载PDF
Effects of Doped Elements on Electrochemical Performance of Ni(OH)_2 Materials 被引量:5
10
作者 LEE Chang-sheng 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2007年第4期452-455,共4页
High energy ball milling (HEBM) method was applied to synthesize Ni (OH)2 with different doped elements sub-stitution for Ni^2+. The morphology, structure and electrochemical behavior of prepared powders were stu... High energy ball milling (HEBM) method was applied to synthesize Ni (OH)2 with different doped elements sub-stitution for Ni^2+. The morphology, structure and electrochemical behavior of prepared powders were studied. The re-suits reveal that all the synthesized Ni(OH)2 particles were in sub-micron sizes and greatly agglomerated. Co-, Mg-,Fe- or Mn-doped Ni (OH) 2 was of β-phase with 0.400-0.500 nm crystal interlayer distance, while A1- and Zn-doped products displayed a-phase with larger crystal interlayer spaces. The electrochemical mechanisms of synthe-sized Ni(OH)2 electrodes were discussed by EIS spectra. The specific capacity of Co-doped Ni (OH)2 is 245 mA·h · g^-1, i. e. , 60 mA· h · g^-1 higher than that of Al-doped electrode, which has the highest discharging plat-form of a mid-voltage of 1.30 V. 展开更多
关键词 Nickel hydroxide High energy ball milling method Metallic ion adulteration Electrochemical discharging capacity
下载PDF
High Temperature Performances of Spherical Nickel Hydroxide with Additive Y_2O_3 被引量:2
11
作者 米欣 叶茂 +2 位作者 阎杰 魏进平 高学平 《Journal of Rare Earths》 SCIE EI CAS CSCD 2004年第3期422-426,共5页
The effect Of Y2O3 as additive to the positive electrode on the high-temperature performances of the Ni-MH batteries was studied. The specific capacities of the positive electrode in Ni-MH battery at higher temperatur... The effect Of Y2O3 as additive to the positive electrode on the high-temperature performances of the Ni-MH batteries was studied. The specific capacities of the positive electrode in Ni-MH battery at higher temperatures are much lower than usual. In order to improve high-temperature performances, charge/discharge curves of the Ni(OH)(2) electrodes with different amounts Of Y2O3 it different temperatures were studied. It is found that the specific capacities of the spherical Ni (OH)(2) with Y2O3 as additive are much higher than those of the regular at higher temperatures. The specific capacity of Ni (OH)(2) containing 1% Y2O3 at 0.2C C/D rate is 35% higher than that of the regular. The specific capacity of Ni (OH)(2) containing 0.2% Y2O3 at 1C C/D rate is 15% higher than that of the regular. Mechanism Of Y2O3 improving high temperature performances of Ni(OH)(2) electrode was also discussed in detail. 展开更多
关键词 energy materials Y2O3 spherical Ni(OH)(2) high temperature performance discharge capacity rare earths
下载PDF
Improved electrochemical hydrogen storage properties of Mg-Y thin films as a function of substrate temperature 被引量:1
12
作者 Yanyan Wang Gongbiao Xin +4 位作者 Chongyun Wang Huiyu Li Wei Li Jie Zheng Xingguo Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2014年第3期287-290,共4页
Pd-capped Mg78Y22 thin films have been prepared by direct current magnetron co-sputtering system at different substrate temperatures and their electrochemical hydrogen storage properties have been investigated.It is f... Pd-capped Mg78Y22 thin films have been prepared by direct current magnetron co-sputtering system at different substrate temperatures and their electrochemical hydrogen storage properties have been investigated.It is found that rising substrate temperature to 60 ℃ can coarsen the surface of thin film,thus facilitating the diffusion of hydrogen atoms and then enhancing its discharge capacity to 1725 mAh·g-1.Simultaneously,the cyclic stability is effectively improved due to the increased adhesion force between film and substrate as a function of temperature.In addition,the specimen exhibits a very long and flat discharge plateau at about —0.67 V,at which nearly 60%of capacity is maintained.The property is favorable for the application in metal hydride/nickel secondary batteries.The results indicate that rising optimal substrate temperature has a beneficial effect on the electrochemical hydrogen storage of Mg-Y thin films. 展开更多
关键词 Mg-Y thin films substrate temperature electrochemical hydrogen storage discharge capacity cyclic stability metal hydride/nickel secondary batteries
下载PDF
Effect of Al on Behavior of AB_5-Type Metal Hydride Anodes at Elevated Temperature 被引量:1
13
作者 Shou-shi Fang Xiao-chun Li +1 位作者 Jin-long Zhang Jian-sheng Ge 《Advances in Manufacturing》 SCIE CAS 2000年第4期335-337,共3页
AB 5 type hydrogen storage alloys are the most promising materials used as the anode in commercial Ni MH secondary battery. It is very important for electrode materials to have a wider operation temperature range. ... AB 5 type hydrogen storage alloys are the most promising materials used as the anode in commercial Ni MH secondary battery. It is very important for electrode materials to have a wider operation temperature range. The component Al is the dominant element to control the electrochemical behavior of the AB 5 type alloys at elevated temperature. With the increase of the amount of Al the discharge capacity decreases and the retention of discharge capacity increases with increasing temperature. It is mainly due to the formation of stable and dense surface oxide film Al 2O 3, which inhibits the electrode corrosion and the further oxidation underneath the surface films. 展开更多
关键词 hydrogen storage alloys discharge capacity elevated temperature
下载PDF
Effect of electroless plating nickel treatment on electrode properties of Zr-based AB_2 type alloy 被引量:1
14
作者 文明芬 翟玉春 +3 位作者 陈廉 佟敏 郑华 马荣骏 《中国有色金属学会会刊:英文版》 CSCD 2001年第6期856-859,共4页
An electroless plating nickel treatment was processed to improve the active behaviors and discharge capacities of Zr based AB 2 alloys. The effects of the nickel coating on the surface appearance, the structure of the... An electroless plating nickel treatment was processed to improve the active behaviors and discharge capacities of Zr based AB 2 alloys. The effects of the nickel coating on the surface appearance, the structure of the alloy powders and the electrode characteristics were investigated. It is found that the Ni rich layer formed through electroless plating nickel treatment plays an important role on the initial activation property and the discharge capacity of Zr based alloy. The optimal content of electroless plating nickel is about 15%, and the discharge capacity of the electrode can be increased to 400?mA·h·g -1 after 6 cycles. Although coated nickel is beneficial for quick activation and discharge capacity, excessive electroless plating nickel can result in a decreased discharge capacity. 展开更多
关键词 Zr based AB 2 alloy electroless plating nickel activation behavior discharge capacity
下载PDF
Boron-doped Ketjenblack based high performances cathode for rechargeable Li–O2 batteries 被引量:3
15
作者 Yueyan Li Li Wang +3 位作者 Xiangming He Bin Tang Yunxue Jin Jianlong Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第1期131-135,共5页
Boron-doped Ketjenblack is attempted as cathode catalyst for non-aqueous rechargeable Li–O2 batteries. The boron-doped Ketjenblack delivers an extremely high discharge capacity of 7193 m Ah/g at a current density of ... Boron-doped Ketjenblack is attempted as cathode catalyst for non-aqueous rechargeable Li–O2 batteries. The boron-doped Ketjenblack delivers an extremely high discharge capacity of 7193 m Ah/g at a current density of 0.1 m A/cm2, and the capacity is about 2.3 times as that of the pristine KB. When the batteries are cycled with different restricted capacity, the boron-doped Ketjenblack based cathodes exhibits higher discharge platform and longer cycle life than Ketjenblack based cathodes. Additionally, the boron-doped Ketjenblack also shows a superior electrocatalytic activity for oxygen reduction in 0.1 mol/L KOH aqueous solution. The improvement in catalytic activity results from the defects and activation sites introduced by boron doping. 展开更多
关键词 Li–O2 battery Rechargeable discharge capacity Boron-doped Ketjenblack Oxygen reduction
下载PDF
Study on Structure and Electrochemical Properties of La_( 0.7)Mg_(0.3)Ni_ (2.98)Co_ (0.52) Hydrogen Storage Alloy
16
作者 郑雪萍 李平 +1 位作者 董桂霞 曲选辉 《Journal of Rare Earths》 SCIE EI CAS CSCD 2005年第S1期350-352,共3页
A hydrogen storage electrode alloy La_ 0.7Mg_ 0.3Ni_ 2.98Co_ 0.52 was obtained by electromagnetism inductive melting of alloys such as La, Mg, Ni and Co. XRD analyses indicate that the microstructure of the prepared a... A hydrogen storage electrode alloy La_ 0.7Mg_ 0.3Ni_ 2.98Co_ 0.52 was obtained by electromagnetism inductive melting of alloys such as La, Mg, Ni and Co. XRD analyses indicate that the microstructure of the prepared alloy was composed of LaNi_5 phase as matrix and another unknown phase as secondary phase. In this experiment, the highest discharge capacity of alloy is 378 mAh·g -1 at 293 K, which is 20% higher than the discharge capacity of LaNi_5-type alloys. The alloy was activated after two cycles and the discharge potential is high and stable, and more than 90% of the discharge time is in a voltage higher than 1.2 V. However, the cycle stability is poor as practical application, to improve the cycle life of the alloy becomes the key factor. Moreover, the loose structure of the alloy is maybe one reason that makes the cycle stability capacity of the alloy decrease by SEM. 展开更多
关键词 hydrogen storage electrode alloy discharge capacity cycle stability
下载PDF
Mesoporous molecular sieve confined phase change materials with high absorption,enhanced thermal conductivity,and cooling energy charging/discharging capacity
17
作者 Qi Zhang Chongyang Liu +2 位作者 Xuehong Wu Xueling Zhang Jun Song 《Frontiers of Materials Science》 SCIE CSCD 2024年第1期1-14,共14页
The biggest challenge for organic phase change materials(PCMs)used in cold energy storage is to maintain high heat storage capacity while reducing the leakage risk of PCMs during the phase transition process.This is c... The biggest challenge for organic phase change materials(PCMs)used in cold energy storage is to maintain high heat storage capacity while reducing the leakage risk of PCMs during the phase transition process.This is crucial for expanding their applications in the more demanding cold storage field.In this study,novel formstable low-temperature composite PCMs are prepared with mesoporous materials,namely SBA-15 and CMK-3(which are prepared using the template method),as supporting matrices and dodecane as the PCM.Owing to the combined effects of capillary forces within mesoporous materials and interactions among dodecane molecules,both dodecane/SBA-15 and dodecane/CMK-3 exhibit outstanding shape stability and thermal cycling stability even after 200 heating/cooling cycles.In comparison to those of dodecane/SBA-15,dodecane/CMK-3 exhibits superior cold storage performance and higher thermal conductivity.Specifically,the phase transition temperature of dodecane/CMK-3 is-8.81℃ with a latent heat of 122.4 J·g^(-1).Additionally,it has a thermal conductivity of 1.21 W·m^(-1)·K^(-1),which is 9.45 times that of dodecane alone.All these highlight its significant potential for applications in the area of cold energy storage. 展开更多
关键词 cold energy storage phase change material mesoporous molecular sieve CMK-3 SBA-15 cooling energy charging/discharging capacity
原文传递
Surface carboxyl groups enhance the capacities of carbonaceous oxygen electrodes for aprotic lithiumoxygen batteries: A direct observation on binder-free electrodes
18
作者 Ming Li Liang Xiao +3 位作者 Duo Wang Haoyang Dong Bohua Deng Jinping Liu 《Chinese Chemical Letters》 SCIE CAS CSCD 2019年第12期2328-2332,共5页
In order to achieve the high capacities of carbonaceous oxygen diffusion electrodes for aprotic lithiumoxygen batteries(Li-O2 batteries),most efforts currently focus on the design of rational porous architectures.Only... In order to achieve the high capacities of carbonaceous oxygen diffusion electrodes for aprotic lithiumoxygen batteries(Li-O2 batteries),most efforts currently focus on the design of rational porous architectures.Only few works study the surface chemistry effect that might be a critical factor influencing the capacities of carbonaceous electrodes.In addition,the surface chemistry effect is very difficult to be studied in composite electrodes due to the influences of binders and additives.Herein,we propose chemically activated carbon cloth(CACC) as an ideal model to investigate the effect of surface functional groups on the discharge capacities of carbonaceous oxygen electrodes for Li-O2 batteries.The intrinsic surface chemistry effect on the performance of carbonaceous cathode is directly observed for the first time without the influences of binders and additives.Results indicate that the surface carboxyl groups introduced by the chemical treatment not only function as the appropriate nucleation sites for Li2 O2 but also induce the formation of toroid-like Li2 O2.Thus,the surface carboxyl modification enhances the discharge capacities from 0.48 mAh/cm^2 of pristine carbon cloth to 1.23 mAh/cm^2 of CACC.This work presents an effective way to further optimize the carbonaceous oxygen electrodes via surface functional group engineering. 展开更多
关键词 Surface functional group Chemically activated carbon cloth Carbonaceous oxygen electrode Specific discharge capacity Lithium-oxygen battery
原文传递
HYBRID SIMULATION OF THE HYDRAULIC CHARACTERISTICS AT RIVER AND LAKE CONFLUENCE 被引量:4
19
作者 LIU Shi-he CAO Bing 《Journal of Hydrodynamics》 SCIE EI CSCD 2011年第1期105-113,共9页
The hydraulic characteristics at the confluence reach of river and lake are influenced by multiple factors such as inflow,topography and vegetation resistance,and are very complicated.In this article,the confluence re... The hydraulic characteristics at the confluence reach of river and lake are influenced by multiple factors such as inflow,topography and vegetation resistance,and are very complicated.In this article,the confluence reach of Yangtze River and Dong-ting Lake is selected as a special example and a hybrid model is built to study the flow at this confluence,with the consideration of the interactions between aquatic vegetation and flow.Validation tests and calculations show that the model is effective and highly accurate.The simulations show that the separation levee at the confluence reach may change the discharge capacity in the flood plain,which would be enhanced in the upper reach of the levee,hardly changed in the middle reach and reduced at the lower place.Moreover,the separation levee also limits the water exchange between the Yangtze River and Dong-ting Lake. 展开更多
关键词 confluence reach hybrid model separation levee discharge capacity in flood plain
原文传递
Microstructure and electrochemical properties of La0.8-xMMxMg0.2Ni3.1Co0.3Al0.1(x=0,0.1,0.2,0.3)alloys 被引量:2
20
作者 Na Zhou Wen-Bo Du +4 位作者 Pei-Long Zhang Yong-Guo Zhu Zhao-Hui Wang Ke Liu Shu-Bo Li 《Rare Metals》 SCIE EI CAS CSCD 2017年第8期645-650,共6页
The present study aims to improve electrochemical properties of the La-Mg-Ni-based hydrogen storage alloys through partial substitution for La by mischmetal(MM).The La_(0.8-x)MM_xMg_(0.2)Ni_(3.1)Co_(0.3)Al_... The present study aims to improve electrochemical properties of the La-Mg-Ni-based hydrogen storage alloys through partial substitution for La by mischmetal(MM).The La_(0.8-x)MM_xMg_(0.2)Ni_(3.1)Co_(0.3)Al_(0.1)(x=0,0.1,0.2,0.3)alloys were prepared by inductive melting,and their phase structures and electrochemical properties were studied by X-ray diffraction(XRD),scanning electron microscope(SEM),energy-dispersive X-ray spectrometry(EDX)and electrochemical tests.Results show that the alloys mainly consist of La_2Ni_7-type phase,La_5Ni_(19)-type phase,LaNi_5-type phase and LaNi_3-type phase.The addition of MM does not change the phase compositions,while it leads to more uniform phase distribution and obviously promotes the formation of La_2Ni_7-type phase which possesses favorable electrochemical properties.Electrochemical studies indicate that the substitution for La by MM could effectively improve the high rate dischargeability(HRD)of the alloy electrode,and the optimal value of HRD_(1500)(HRD at 1500 mA·g^(-1))increases from 40.63%(x=0)to 60.55%(x=0.3).Although the activation properties of the alloy electrodes keep almost unchanged,both the maximum discharge capacity(C_(max))and the cycling stability are significantly improved by MM addition. 展开更多
关键词 Hydrogen storage alloy MICROSTRUCTURE discharge capacity High rate dischargeability Cyclingstability
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部