In micro electrical discharge machining (micro EDM), it is difficult for servo controlling the narrow discharge gap with the characters of non-linear and quick change. In this paper, aiming at solving the problems a...In micro electrical discharge machining (micro EDM), it is difficult for servo controlling the narrow discharge gap with the characters of non-linear and quick change. In this paper, aiming at solving the problems above, a self-adaptive fuzzy controller with formulary rule (SAFCFR) is presented based on the dual feedbacks composed by gap electric signal and discharge-ratio statistics. To ensure the properties of self-optimizing and fast stabilization, the formulary rule was designed with a tuning factor. In addition, the fast-convergence algorithms were introduced to adjust control target center and output scale factor. In this way, the normal discharge ratio can tend to the highest value during micro-EDM process. Experimental results show that the proposed algorithms are effective in improving the servo-control performance. According to the drilling-micro-EDM experiments, the machining efficiency is improved by 20% through applying SAFCFR. Moreover, SAFCFR is a prompt way to optimize parameters of discharge-gap servo control.展开更多
The influence of actuating voltage and discharge gap on plasma assisted detonation initiation by alternating current dielectric barrier discharge was studied in detail.A loose coupling method was used to simulate the ...The influence of actuating voltage and discharge gap on plasma assisted detonation initiation by alternating current dielectric barrier discharge was studied in detail.A loose coupling method was used to simulate the detonation initiation process of a hydrogen–oxygen mixture in a detonation tube under different actuating voltage amplitudes and discharge gap sizes.Both the discharge products and the detonation forming process assisted by the plasma were analyzed.It was found that the patterns of the temporal and spatial distributions of discharge products in one cycle keep unchanged as changing the two discharge operating parameters.However,the adoption of a higher actuating voltage leads to a higher active species concentration within the discharge zone,and atom H is the most sensitive to the variations of the actuating voltage amplitude among the given species.Adopting a larger discharge gap results in a lower concentration of the active species,and all species have the same sensitivity to the variations of the gap.With respect to the reaction flow of the detonation tube,the corresponding deflagration to detonation transition(DDT) time and distance become slightly longer when a higher actuating voltage is chosen.The acceleration effect of plasma is more prominent with a smaller discharge gap,and the benefit builds gradually throughout the DDT process.Generally,these two control parameters have little effect on the amplitude of the flow field parameters,and they do not alter the combustion degree within the reaction zone.展开更多
One of the main problems in the Ultra High Voltage (UHV) transmission project is to choose the external insulation distance, which requires a deep understanding of the long air gap discharge mechanism. The leader-st...One of the main problems in the Ultra High Voltage (UHV) transmission project is to choose the external insulation distance, which requires a deep understanding of the long air gap discharge mechanism. The leader-streamer propagation is one of most important stages in long air gap discharge. In the conductor-tower lattice configuration, we have measured the voltage, the current on the high voltage side and the electric field in the gap. While the streamer in the leader-streamer system presented a conical or hyperboloid diffuse shape, the clear branch structure streamer in front of the leader was firstly observed by a high speed camera in: the experiment. Besides, it is found that the leader velocity, width and injected charge for the branch type streamer are greater than those of a diffuse type. We propose that the phenomenon results from the high humidity, which was 15.5-16.5 g/m3 in our experiment.展开更多
The leader propagation is one of the most important stages in long air gap discharge.The mechanism behind leader re-illumination remains unclear.In high humidity conditions(20.0–30.1 g/m^(3)),we have conducted experi...The leader propagation is one of the most important stages in long air gap discharge.The mechanism behind leader re-illumination remains unclear.In high humidity conditions(20.0–30.1 g/m^(3)),we have conducted experiments of long sparks in a 10 m ultra-high voltage(UHV)transmission line gap under switching impulse voltages.The positive leaders predominantly propagate discontinuously,with almost no significantly continuous propagation occurring.The leader channels are intensely luminous and each elongation segment is straight,with streamers resembling the“branch type”which differs from the“diffuse type”streamers at the front of continuous propagation leaders.The distribution of the propagation velocities is highly random(3.7–18.4 cm/μs),and the average velocity(9.2 cm/μs)significantly exceeds that of continuous propagation(1.5–2.0 cm/μs).Analysis suggests that the current-velocity models suitable for continuous leader propagation do not align well with the experimental data in re-illumination mode.Based on the discharge current waveforms and optical images,it is speculated that the newly elongated leader in re-illumination mode does not evolve gradually from the stem(about 1 cm)but rather evolves overall from a thermal channel much longer than stem.展开更多
Measuring the pre-breakdown current of long sparks in air is important for investigating the discharge mechanism.Since the breakdown of long air gaps is conducted by a series of streamer-leader processes,the correspon...Measuring the pre-breakdown current of long sparks in air is important for investigating the discharge mechanism.Since the breakdown of long air gaps is conducted by a series of streamer-leader processes,the corresponding current signals cover a bandwidth of 0 to more than 20 MHz.Measurement accuracy of the current from the high voltage side is affected by the displacement current and impulse electromagnetic interference.In this paper,a coaxial current sensor with a DC bandwidth of 74.45 MHz is developed.A displacement current-restrained electrode structure is proposed to reduce the equivalent capacitance between the current sensor and the ground over 30 times.Combined with the digital optical fiber synchronous acquisition unit,a current measurement system for long air gap discharge is established.For the purpose of the UHV system’s external insulation optimization design,the discharge current waveform of a 6 m rod-plane air gap under positive switching impulse voltage with 250µs and 1000µs time to crest is obtained.Discharge images and stressed voltage are combined to analyze the continuous feature of a current waveform under critical time to crest impulse and discontinuous feature under long front duration impulse.For the purposes of a lightning protection study,the current waveform of a 10 m rod-plane air gap is subjected to negative switching impulse.Finally,the pulse characteristics of the current corresponding to the single channel and branching stepped negative leader are discussed.展开更多
Rapid developments in EHV/UHV transmission systems require a deeper understanding of the mechanism of long air gap discharge.Leader propagation is one of the main processes in long gap breakdown.In this paper,the lead...Rapid developments in EHV/UHV transmission systems require a deeper understanding of the mechanism of long air gap discharge.Leader propagation is one of the main processes in long gap breakdown.In this paper,the leader propagation characteristics of real size±800 kV UHVDC transmission tower gaps under positive switching impulse voltages(185/2290μs)are investigated.An integrated observation platform consisting of an impulse voltage divider,a coaxial shunt,a high-speed video camera,and a set of integrated optical electric field sensors(IOES),is established.The waveforms of impulse voltage,discharge current,electric field variation at specific positions,and time-resolved photographs of discharge morphology are recorded.Axial leader velocity and the relationship between leader advancements and injected charge are obtained.The typical value of leader stable propagation velocity is 1.7–2.2 cm/μs,which varies slightly with the gap length and applied voltage amplitude.The leader velocity in the re-illumination process is much higher,and is seen as varying from 5 cm/μs to 30 cm/μs,with an average value around 10 cm/μs.The charge in leader channel per unit length is 20–40μC/m,which illustrates a near-direct proportion relationship between discharge current and leader velocity.The observed parameters are important for further simulation of the tower gap breakdown processes.展开更多
基金Supported by the National High Technology Research and Development Program of China (No. 2007AA04Z346) , the National Natural Science Foundation of China ( No. 50905094) and China Postdoctoral Science Foundation ( No. 20080440378, 200902097).
文摘In micro electrical discharge machining (micro EDM), it is difficult for servo controlling the narrow discharge gap with the characters of non-linear and quick change. In this paper, aiming at solving the problems above, a self-adaptive fuzzy controller with formulary rule (SAFCFR) is presented based on the dual feedbacks composed by gap electric signal and discharge-ratio statistics. To ensure the properties of self-optimizing and fast stabilization, the formulary rule was designed with a tuning factor. In addition, the fast-convergence algorithms were introduced to adjust control target center and output scale factor. In this way, the normal discharge ratio can tend to the highest value during micro-EDM process. Experimental results show that the proposed algorithms are effective in improving the servo-control performance. According to the drilling-micro-EDM experiments, the machining efficiency is improved by 20% through applying SAFCFR. Moreover, SAFCFR is a prompt way to optimize parameters of discharge-gap servo control.
基金supported by National Natural Science Foundation of China with grant numbers 91441123,51777214the Open Project of Science and Technology on Scramjet Laboratory with grant number CG-2014-05-118 under the technical monitor of program manager Dr Zhiyong Lin
文摘The influence of actuating voltage and discharge gap on plasma assisted detonation initiation by alternating current dielectric barrier discharge was studied in detail.A loose coupling method was used to simulate the detonation initiation process of a hydrogen–oxygen mixture in a detonation tube under different actuating voltage amplitudes and discharge gap sizes.Both the discharge products and the detonation forming process assisted by the plasma were analyzed.It was found that the patterns of the temporal and spatial distributions of discharge products in one cycle keep unchanged as changing the two discharge operating parameters.However,the adoption of a higher actuating voltage leads to a higher active species concentration within the discharge zone,and atom H is the most sensitive to the variations of the actuating voltage amplitude among the given species.Adopting a larger discharge gap results in a lower concentration of the active species,and all species have the same sensitivity to the variations of the gap.With respect to the reaction flow of the detonation tube,the corresponding deflagration to detonation transition(DDT) time and distance become slightly longer when a higher actuating voltage is chosen.The acceleration effect of plasma is more prominent with a smaller discharge gap,and the benefit builds gradually throughout the DDT process.Generally,these two control parameters have little effect on the amplitude of the flow field parameters,and they do not alter the combustion degree within the reaction zone.
基金supported by the Fund of the National Priority Basic Research of China(2011CB209403)National Natural Science Foundation of China(Nos.51325703,51377094,51577098)
文摘One of the main problems in the Ultra High Voltage (UHV) transmission project is to choose the external insulation distance, which requires a deep understanding of the long air gap discharge mechanism. The leader-streamer propagation is one of most important stages in long air gap discharge. In the conductor-tower lattice configuration, we have measured the voltage, the current on the high voltage side and the electric field in the gap. While the streamer in the leader-streamer system presented a conical or hyperboloid diffuse shape, the clear branch structure streamer in front of the leader was firstly observed by a high speed camera in: the experiment. Besides, it is found that the leader velocity, width and injected charge for the branch type streamer are greater than those of a diffuse type. We propose that the phenomenon results from the high humidity, which was 15.5-16.5 g/m3 in our experiment.
基金supported by National Key R&D Program of China(No.2022YFB3206800)Scientific Research Fund of Hunan Provincial Education Department(No.23A0240)+1 种基金Scientific Research Fund of Hunan Provincial Education Department(No.23C0128)CSUST Training Program of Innovation and Entrepreneurship for Undergraduates(No.202410536044)。
文摘The leader propagation is one of the most important stages in long air gap discharge.The mechanism behind leader re-illumination remains unclear.In high humidity conditions(20.0–30.1 g/m^(3)),we have conducted experiments of long sparks in a 10 m ultra-high voltage(UHV)transmission line gap under switching impulse voltages.The positive leaders predominantly propagate discontinuously,with almost no significantly continuous propagation occurring.The leader channels are intensely luminous and each elongation segment is straight,with streamers resembling the“branch type”which differs from the“diffuse type”streamers at the front of continuous propagation leaders.The distribution of the propagation velocities is highly random(3.7–18.4 cm/μs),and the average velocity(9.2 cm/μs)significantly exceeds that of continuous propagation(1.5–2.0 cm/μs).Analysis suggests that the current-velocity models suitable for continuous leader propagation do not align well with the experimental data in re-illumination mode.Based on the discharge current waveforms and optical images,it is speculated that the newly elongated leader in re-illumination mode does not evolve gradually from the stem(about 1 cm)but rather evolves overall from a thermal channel much longer than stem.
基金supported by the Fund of the National Basic Research of China(2011CB 209403).
文摘Measuring the pre-breakdown current of long sparks in air is important for investigating the discharge mechanism.Since the breakdown of long air gaps is conducted by a series of streamer-leader processes,the corresponding current signals cover a bandwidth of 0 to more than 20 MHz.Measurement accuracy of the current from the high voltage side is affected by the displacement current and impulse electromagnetic interference.In this paper,a coaxial current sensor with a DC bandwidth of 74.45 MHz is developed.A displacement current-restrained electrode structure is proposed to reduce the equivalent capacitance between the current sensor and the ground over 30 times.Combined with the digital optical fiber synchronous acquisition unit,a current measurement system for long air gap discharge is established.For the purpose of the UHV system’s external insulation optimization design,the discharge current waveform of a 6 m rod-plane air gap under positive switching impulse voltage with 250µs and 1000µs time to crest is obtained.Discharge images and stressed voltage are combined to analyze the continuous feature of a current waveform under critical time to crest impulse and discontinuous feature under long front duration impulse.For the purposes of a lightning protection study,the current waveform of a 10 m rod-plane air gap is subjected to negative switching impulse.Finally,the pulse characteristics of the current corresponding to the single channel and branching stepped negative leader are discussed.
基金supported by the National Natural Science Foundation of China under Grant 51325703,51377094Fund of the National Priority Basic Research of China(2011CB209403)。
文摘Rapid developments in EHV/UHV transmission systems require a deeper understanding of the mechanism of long air gap discharge.Leader propagation is one of the main processes in long gap breakdown.In this paper,the leader propagation characteristics of real size±800 kV UHVDC transmission tower gaps under positive switching impulse voltages(185/2290μs)are investigated.An integrated observation platform consisting of an impulse voltage divider,a coaxial shunt,a high-speed video camera,and a set of integrated optical electric field sensors(IOES),is established.The waveforms of impulse voltage,discharge current,electric field variation at specific positions,and time-resolved photographs of discharge morphology are recorded.Axial leader velocity and the relationship between leader advancements and injected charge are obtained.The typical value of leader stable propagation velocity is 1.7–2.2 cm/μs,which varies slightly with the gap length and applied voltage amplitude.The leader velocity in the re-illumination process is much higher,and is seen as varying from 5 cm/μs to 30 cm/μs,with an average value around 10 cm/μs.The charge in leader channel per unit length is 20–40μC/m,which illustrates a near-direct proportion relationship between discharge current and leader velocity.The observed parameters are important for further simulation of the tower gap breakdown processes.