The oxidation of elemental mercury (Hg~) by dielectric barrier discharge reactors was studied at room temperature, where concentric cylinder discharge reactor (CCDR) and surface discharge plasma reactor (SDPR) w...The oxidation of elemental mercury (Hg~) by dielectric barrier discharge reactors was studied at room temperature, where concentric cylinder discharge reactor (CCDR) and surface discharge plasma reactor (SDPR) were employed. The parameters (e.g. Hg^0 oxidation efficiency, energy constant, energy yield, energy consumption, and O3 concentration) were discussed. From comparison of the two reactors, higher Hg^0 oxidation efficiency and energy constant in the SDPR system were obtained by using lower specific energy density. At the same applied voltage, energy yield in the SDPR system was larger than that in the CCDR system, and energy consumption in the SDPR system was much less. Additionally, more 03 was generated in the SDPR system. The experimental results showed that 98% of Hg^0 oxidation efficiency, 0.6 J·L^-1 of energy constant, 13.7 μg·J^-1 of energy yield, 15.1 eV·molecule^-1 of energy consumption, and 12.7 μg·J^-1 of O3 concentration were achieved in the SDPR system. The study reveals an alternative and economical technology for Hg^0 oxidation in the coal-fired flue gas.展开更多
The purpose of the present study is to develop a methodology to evaluate fuel discharge through the CRGT (control-rod guide tube) during CDAs (core-disruptive accidents) of SFRs (sodium-cooled fast reactors), si...The purpose of the present study is to develop a methodology to evaluate fuel discharge through the CRGT (control-rod guide tube) during CDAs (core-disruptive accidents) of SFRs (sodium-cooled fast reactors), since fuel discharge will decrease the core reactivity and CRGTs have a potential to provide an effective discharge path. Fuel discharge contains multi-component fluid dynamics with phase changes, and, in the present study, the SFR safety analysis code SIMMER (Sn, implicit, multifield, multicomponent, Eulerian recriticality) was utilized as a technical basis. First, dominant phenomena affecting fuel discharge through the CRGT are identified based on parametric calculations by the SIMMER code. Next, validations on the code models closely relating to these phenomena were carried out based on experimental data. It was shown that the SIMMER code with some model modifications could reproduce the experimental results appropriately. Through the present study, the evaluation methodology for the molten-fuel discharge through the CRGT was successfully developed.展开更多
PCDD/Fs have been become a serious issue because of their toxicological effects and associated adverse health implications. In this study, the gliding arc plasma was tested for treatment of polychlorinated dibenzo-p-d...PCDD/Fs have been become a serious issue because of their toxicological effects and associated adverse health implications. In this study, the gliding arc plasma was tested for treatment of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs), which was synthesized from pentachlorophenol in atmospheric condition at 350℃ with or without the catalysis of CuCl2. From the experiment, we found that the destruction efficiency of PCDD/F homologues after gliding was discharge ranged from 25% to 79%. This result demonstrates that gliding arc plasma is an effective technology to decompose PCDDs/Fs in flue gas. A plausible degradation mechanism for PCDD/Fs by gliding arc was discussed. Finally, a multistage reactor structure of gliding arc was proposed to upgrade removal efficiency for PCDD/Fs.展开更多
基金supported by National Natural Science Foundation of China(No.51177007)Ministry of Science and Technology of China(No.2009AA064101-4)
文摘The oxidation of elemental mercury (Hg~) by dielectric barrier discharge reactors was studied at room temperature, where concentric cylinder discharge reactor (CCDR) and surface discharge plasma reactor (SDPR) were employed. The parameters (e.g. Hg^0 oxidation efficiency, energy constant, energy yield, energy consumption, and O3 concentration) were discussed. From comparison of the two reactors, higher Hg^0 oxidation efficiency and energy constant in the SDPR system were obtained by using lower specific energy density. At the same applied voltage, energy yield in the SDPR system was larger than that in the CCDR system, and energy consumption in the SDPR system was much less. Additionally, more 03 was generated in the SDPR system. The experimental results showed that 98% of Hg^0 oxidation efficiency, 0.6 J·L^-1 of energy constant, 13.7 μg·J^-1 of energy yield, 15.1 eV·molecule^-1 of energy consumption, and 12.7 μg·J^-1 of O3 concentration were achieved in the SDPR system. The study reveals an alternative and economical technology for Hg^0 oxidation in the coal-fired flue gas.
文摘The purpose of the present study is to develop a methodology to evaluate fuel discharge through the CRGT (control-rod guide tube) during CDAs (core-disruptive accidents) of SFRs (sodium-cooled fast reactors), since fuel discharge will decrease the core reactivity and CRGTs have a potential to provide an effective discharge path. Fuel discharge contains multi-component fluid dynamics with phase changes, and, in the present study, the SFR safety analysis code SIMMER (Sn, implicit, multifield, multicomponent, Eulerian recriticality) was utilized as a technical basis. First, dominant phenomena affecting fuel discharge through the CRGT are identified based on parametric calculations by the SIMMER code. Next, validations on the code models closely relating to these phenomena were carried out based on experimental data. It was shown that the SIMMER code with some model modifications could reproduce the experimental results appropriately. Through the present study, the evaluation methodology for the molten-fuel discharge through the CRGT was successfully developed.
基金Project supported by the National Natural Science Foundation of China(No.50476058)Natural Science Foundation of Zhejiang Province(No.X506214)
文摘PCDD/Fs have been become a serious issue because of their toxicological effects and associated adverse health implications. In this study, the gliding arc plasma was tested for treatment of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs), which was synthesized from pentachlorophenol in atmospheric condition at 350℃ with or without the catalysis of CuCl2. From the experiment, we found that the destruction efficiency of PCDD/F homologues after gliding was discharge ranged from 25% to 79%. This result demonstrates that gliding arc plasma is an effective technology to decompose PCDDs/Fs in flue gas. A plausible degradation mechanism for PCDD/Fs by gliding arc was discussed. Finally, a multistage reactor structure of gliding arc was proposed to upgrade removal efficiency for PCDD/Fs.