期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Performance of Dielectric Barrier Discharge Reactors on Elemental Mercury Oxidation in the Coal-Fired Flue Gas
1
作者 安久涛 商克峰 +4 位作者 鲁娜 洪义 姜雨泽 李杰 吴彦 《Plasma Science and Technology》 SCIE EI CAS CSCD 2014年第2期155-160,共6页
The oxidation of elemental mercury (Hg~) by dielectric barrier discharge reactors was studied at room temperature, where concentric cylinder discharge reactor (CCDR) and surface discharge plasma reactor (SDPR) w... The oxidation of elemental mercury (Hg~) by dielectric barrier discharge reactors was studied at room temperature, where concentric cylinder discharge reactor (CCDR) and surface discharge plasma reactor (SDPR) were employed. The parameters (e.g. Hg^0 oxidation efficiency, energy constant, energy yield, energy consumption, and O3 concentration) were discussed. From comparison of the two reactors, higher Hg^0 oxidation efficiency and energy constant in the SDPR system were obtained by using lower specific energy density. At the same applied voltage, energy yield in the SDPR system was larger than that in the CCDR system, and energy consumption in the SDPR system was much less. Additionally, more 03 was generated in the SDPR system. The experimental results showed that 98% of Hg^0 oxidation efficiency, 0.6 J·L^-1 of energy constant, 13.7 μg·J^-1 of energy yield, 15.1 eV·molecule^-1 of energy consumption, and 12.7 μg·J^-1 of O3 concentration were achieved in the SDPR system. The study reveals an alternative and economical technology for Hg^0 oxidation in the coal-fired flue gas. 展开更多
关键词 surface discharge plasma reactor concentric cylinder discharge reactor ele- mental mercury mercury oxidation
下载PDF
Development of an Evaluation Methodology for Fuel Discharge in Core Disruptive Accidents of Sodium-Cooled Fast Reactors
2
作者 Kenji Kamiyama Yoshiharu Tobita Tohru Suzuki Ken-ichi Matsuba 《Journal of Energy and Power Engineering》 2014年第5期785-793,共9页
The purpose of the present study is to develop a methodology to evaluate fuel discharge through the CRGT (control-rod guide tube) during CDAs (core-disruptive accidents) of SFRs (sodium-cooled fast reactors), si... The purpose of the present study is to develop a methodology to evaluate fuel discharge through the CRGT (control-rod guide tube) during CDAs (core-disruptive accidents) of SFRs (sodium-cooled fast reactors), since fuel discharge will decrease the core reactivity and CRGTs have a potential to provide an effective discharge path. Fuel discharge contains multi-component fluid dynamics with phase changes, and, in the present study, the SFR safety analysis code SIMMER (Sn, implicit, multifield, multicomponent, Eulerian recriticality) was utilized as a technical basis. First, dominant phenomena affecting fuel discharge through the CRGT are identified based on parametric calculations by the SIMMER code. Next, validations on the code models closely relating to these phenomena were carried out based on experimental data. It was shown that the SIMMER code with some model modifications could reproduce the experimental results appropriately. Through the present study, the evaluation methodology for the molten-fuel discharge through the CRGT was successfully developed. 展开更多
关键词 Sodium-cooled fast reactor core disruptive accident molten-fuel discharge FBR (fast breeder reactor safety analysis code SIMMER.
下载PDF
Destruction of PCDD/Fs by gliding arc discharges 被引量:9
3
作者 YAN Jian-hua PENG Zheng +5 位作者 LU Sheng-yong DU Chang-ming LI Xiao-dong CHEN Tong NI Ming-jiang CEN Ke-fa 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2007年第11期1404-1408,共5页
PCDD/Fs have been become a serious issue because of their toxicological effects and associated adverse health implications. In this study, the gliding arc plasma was tested for treatment of polychlorinated dibenzo-p-d... PCDD/Fs have been become a serious issue because of their toxicological effects and associated adverse health implications. In this study, the gliding arc plasma was tested for treatment of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs), which was synthesized from pentachlorophenol in atmospheric condition at 350℃ with or without the catalysis of CuCl2. From the experiment, we found that the destruction efficiency of PCDD/F homologues after gliding was discharge ranged from 25% to 79%. This result demonstrates that gliding arc plasma is an effective technology to decompose PCDDs/Fs in flue gas. A plausible degradation mechanism for PCDD/Fs by gliding arc was discussed. Finally, a multistage reactor structure of gliding arc was proposed to upgrade removal efficiency for PCDD/Fs. 展开更多
关键词 PCDD/FS DESTRUCTION gliding arc discharges multistage reactor
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部