期刊文献+
共找到153篇文章
< 1 2 8 >
每页显示 20 50 100
Role of tannin pretreatment in flotation separation of magnesite and dolomite
1
作者 Xiufeng Gong Jin Yao +5 位作者 Jun Guo Bin Yang Haoran Sun Wanzhong Yin Yulian Wang Yafeng Fu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第3期452-461,共10页
Flotation separation of magnesite and its calcium-containing carbonate minerals is a difficult problem.Recently,new regulat-ors have been proposed for magnesite flotation decalcification,although traditional regulator... Flotation separation of magnesite and its calcium-containing carbonate minerals is a difficult problem.Recently,new regulat-ors have been proposed for magnesite flotation decalcification,although traditional regulators such as tannin,water glass,sodium carbon-ate,and sodium hexametaphosphate are more widely used in industry.However,they are rarely used as the main regulators in research because they perform poorly in magnesite and dolomite single-mineral flotation tests.Inspired by the limonite presedimentation method and the addition of a regulator to magnesite slurry mixing,we used a tannin pretreatment method for separating magnesite and dolomite.Microflotation experiments confirmed that the tannin pretreatment method selectively and largely reduces the flotation recovery rate of dolomite without affecting the flotation recovery rate of magnesite.Moreover,the contact angles of the tannin-pretreated magnesite and dolomite increased and decreased,respectively,in the presence of NaOl.Zeta potential and Fourier transform infrared analyses showed that the tannin pretreatment method efficiently hinders NaOl adsorption on the dolomite surface but does not affect NaOl adsorption on the magnesite surface.X-ray photoelectron spectroscopy and density functional theory calculations confirmed that tannin interacts more strongly with dolomite than with magnesite. 展开更多
关键词 tannin pretreatment selective inhibition flotation separation MAGNESITE dolomite
下载PDF
Characteristics and main controlling factors of intra-platform shoal thin-layer dolomite reservoirs:A case study of Middle Permian Qixia Formation in Gaoshiti-Moxi area of Sichuan Basin,SW China
2
作者 HE Jiang LIAN Zhihua +5 位作者 LUO Wenjun ZHOU Hui XU Huilin HE Puwei Yang Yi LAN Xuemei 《Petroleum Exploration and Development》 SCIE 2024年第1期69-80,共12页
Based on the study of the distribution of intra-platform shoals and the characteristics of dolomite reservoirs in the Middle Permian Qixia Formation in the Gaoshiti–Moxi area of the Sichuan Basin,SW China,the control... Based on the study of the distribution of intra-platform shoals and the characteristics of dolomite reservoirs in the Middle Permian Qixia Formation in the Gaoshiti–Moxi area of the Sichuan Basin,SW China,the controlling factors of reservoir development were analyzed,and the formation model of“intra-platform shoal thin-layer dolomite reservoir”was established.The Qixia Formation is a regressive cycle from bottom to top,in which the first member(Qi1 Member)develops low-energy open sea microfacies,and the second member(Qi2 Member)evolves into intra-platform shoal and inter-shoal sea with decreases in sea level.The intra-platform shoal is mainly distributed near the top of two secondary shallowing cycles of the Qi2 Member.The most important reservoir rock of the Qixia Formation is thin-layer fractured-vuggy dolomite,followed by vuggy dolomite.The semi-filled saddle dolomite is common in fracture-vug,and intercrystalline pores and residual dissolution pores combined with fractures to form the effective pore-fracture network.Based on the coupling analysis of sedimentary and diagenesis characteristics,the reservoir formation model of“pre-depositional micro-paleogeomorphology controlling shoal,sedimentary shoal controlling dolomite,penecontemporaneous dolomite benefiting preservation of pores,and late hydrothermal action effectively improving reservoir quality”was systematically established.The“first-order high zone”micro-paleogeomorphology before the deposition of the Qixia Formation controlled the development of large area of intra-platform shoals in Gaoshiti area during the deposition of the Qi2 Member.Shoal facies is the basic condition of early dolomitization,and the distribution range of intra-platform shoal and dolomite reservoir is highly consistent.The grain limestone of shoal facies is transformed by two stages of dolomitization.The penecontemporaneous dolomitization is conducive to the preservation of primary pores and secondary dissolved pores.The burial hydrothermal fluid enters the early dolomite body along the fractures associated with the Emeishan basalt event,makes it recrystallized into medium–coarse crystal dolomite.With the intercrystalline pores and the residual vugs after the hydrothermal dissolution along the fractures,the high-quality intra-platform shoal-type thin-layer dolomite reservoirs are formed.The establishment of this reservoir formation model can provide important theoretical support for the sustainable development of Permian gas reservoirs in the Sichuan Basin. 展开更多
关键词 Middle Permian Qixia Formation intra-platform shoal thin-layer dolomite paleogeomorphology diagenesis Gaoshiti-Moxi area Sichuan Basin
下载PDF
Effect of depressants on flotation separation of magnesite from dolomite and calcite 被引量:2
3
作者 Wenqing Qin Junjie Hu +4 位作者 Hailing Zhu Fen Jiao Wenhao Jia Junwei Han Chen Chen 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第1期83-91,共9页
The flotation separation of magnesite from calcium-containing minerals has always been a difficult subject in minerals processing.This work studied the inhibition effects of carboxymethyl cellulose(CMC),sodium lignosu... The flotation separation of magnesite from calcium-containing minerals has always been a difficult subject in minerals processing.This work studied the inhibition effects of carboxymethyl cellulose(CMC),sodium lignosulphonate,polyaspartic acid(PASP)and sodium silicate on flotation behaviors of magnesite,dolomite and calcite,providing guidance for the development of reagents in magnesite flotation.The micro-flotation results showed that among these four depressants,sodium silicate presented the strongest selectivity due to the highest recovery difference,and the flotation separation of magnesite from dolomite and calcite could be achieved by using sodium silicate as the depressant.Contact angle measurement indicated that the addition of sodium silicate caused the largest differences in surface wettability of the three minerals,which was in line with micro-flotation tests.Furthermore,zeta potential test,the Fourier transform infrared(FT-IR)spectroscopy and atomic force microscope(AFM)imaging were used to reveal the inhibition mechanism of sodium silicate.The results indicated that the dominated component SiO(OH)3of sodium silicate could adsorb on minerals surfaces,and the adsorption of sodium silicate hardly affected the adsorption of NaOL on magnesite surface,but caused the reduction of NaOL adsorption on dolomite and calcite surfaces,thereby increasing the flotation selectivity. 展开更多
关键词 Sodium silicate MAGNESITE dolomite CALCITE Flotation separation INHIBITION
下载PDF
Removal of dolomite and potassium feldspar from apatite using simultaneous flotation with a mixed cationic-anionic collector
4
作者 Haoyong Yu Yangge Zhu +2 位作者 Liang Lu Xiaoxing Hu Songqing Li 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第6期783-791,共9页
This study aims to investigate the effect of a cationic-anionic mixed collector(dodecyltrimethyl ammonium bromide/sodium oleate(DTAB/NaOL)on the selective separation of apatite,dolomite,and potassium feldspar.Herein,s... This study aims to investigate the effect of a cationic-anionic mixed collector(dodecyltrimethyl ammonium bromide/sodium oleate(DTAB/NaOL)on the selective separation of apatite,dolomite,and potassium feldspar.Herein,several experimental methods,including flotation experiments,zeta-potential detection,microcalorimetry detection,XPS analysis and FTIR measurements,were used.The flotation tests showed that dolomite and potassium feldspar can be successfully removed from apatite simultaneously when the molar ratio of DTAB to NaOL was 2:1 with pH 4.5.Zeta-potential and microcalorimetry detection suggested that NaOL and DTAB were adsorbed on the surface of dolomite and potassium feldspar respectively,and part of NaOL and DTAB formed co-adsorption on the surface of potassium feldspar to enhance the floatability of potassium feldspar.The XPS and FTIR spectra analysis demonstrated that the cationic collector,DTAB,was first adsorbed on the surface of potassium feldspar through electrostatic attraction in the DTAB/NaOL mixture system.Subsequently,the anionic NaOL collector and cationic DTAB collector form an electron neutralisation complex,thereby resulting in co-adsorption on the surface of potassium feldspar.NaOL was chemically reacted and adsorbed on dolomite surface,but almost no collector was adsorbed on apatite surface.Finally,the adsorption models of different collectors on mineral surface were obtained. 展开更多
关键词 FLOTATION Mixed collectors APATITE Potassium feldspar dolomite
下载PDF
Production of high-purity Mg metal from dolomite through novel molten salt electrolysis and vacuum distillation
5
作者 Hyeong-Jun Jeoung Tae-Hyuk Lee +2 位作者 Jin-Young Lee Kyung-Woo Yi Jungshin Kang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第4期1308-1320,共13页
In this study,a novel Mg production process for producing high-purity Mg metal from dolomite was developed.When the electrolysis of calcined dolomite was conducted using Cu cathode and C anode in MgF_(2)–LiF molten s... In this study,a novel Mg production process for producing high-purity Mg metal from dolomite was developed.When the electrolysis of calcined dolomite was conducted using Cu cathode and C anode in MgF_(2)–LiF molten salt at 1083–1173 K by applying an average current of 1.42–1.46 A for 9.50–21.0 h,the current efficiency of 66.4–88.6%was obtained.The produced Mg alloys consisted of MgCu_(2)and Cu(Mg)or MgCu_(2)and CuMg_(2)phases,depending on the Mg concentration in the Mg alloy.When the electrolysis of calcined dolomite was conducted in MgF_(2)–LiF–CaF_(2)molten salt at 1083 K,the current efficiency was 40.9–71.4%,owing to undesired reactions such as electroreduction of Ca^(2+)or/and CO_(3)^(2−)ions.Meanwhile,the current efficiency increased from 40.9%to 63.2%by utilizing a Pt anode,because the occurrence of CO_(3)^(2−)ions in the molten salt was prevented.After vacuum distillation of the obtained Mg alloys at 1300 K for 10 h,Mg metal with a purity of 99.9996–99.9998%was produced.Therefore,the feasibility of this novel process for the production of high-purity Mg metal from dolomite was demonstrated. 展开更多
关键词 High-purity magnesium dolomite Magnesium oxide Electrolytic process Copper metal cathode Vacuum distillation
下载PDF
Origin of dolomites in the Permian dolomitic reservoirs of Fengcheng Formation in Mahu Sag,Junggar Basin, NW China
6
作者 TANG Yong LYU Zhengxiang +7 位作者 HE Wenjun QING Yuanhua LI Xiang SONG Xiuzhang YANG Sen CAO Qinming QIAN Yongxin ZHAO Xinmei 《Petroleum Exploration and Development》 2023年第1期43-56,共14页
Origin of authigenic dolomites in the dolomitic reservoir of the Permian Fengcheng Formation in the Mahu Sag of Junggar Basin is unclear.Occurrence and genetic evolution of the authigenic dolomites in dolomitic rock r... Origin of authigenic dolomites in the dolomitic reservoir of the Permian Fengcheng Formation in the Mahu Sag of Junggar Basin is unclear.Occurrence and genetic evolution of the authigenic dolomites in dolomitic rock reservoir of the Fengcheng Formation in the Mahu Sag were analyzed by polarized and fluorescence thin sections,scanning electron microscope(SEM),electron microprobe(EMP),C,O and Sr isotopes analysis,and other techniques.(1)Dolomites were mainly precipitated in three stages:penecontemporaneous-shallow burial stage(early stage of the Middle Permian),middle burial stage(middle stage of the Middle Permian),and middle-deep burial stage,with the former two stages in dominance.(2)Dolomitization fluid was high-salinity brine originating from alkaline lake.In the penecontemporaneous-shallow burial stage,Mg^(2+)was mainly supplied by alkaline-lake fluid and devitrification of volcanic glass.In the middle burial stage,Mg^(2+)mainly came from the transformation of clay minerals,devitrification of volcanic glass and dissolution of aluminosilicates such as feldspar.(3)Regular changes of Mg,Mn,Fe,Sr,Si and other elements during the growth of dolomite were mainly related to the alkaline-lake fluid,and to different influences of devitrification and diagenetic alteration of volcanic materials during the burial.(4)In the penecontemporaneous stage,induced by alkaline-lake microorganisms,the micritic-microcrystalline dolomites were formed by primary precipitation,replacement of aragonite and high-Mg calcite,and other processes;in the shallow burial stage,the silt-sized dolomites were formed by continuous growth of micritic-microcrystalline dolomite and replacement of calcites,tuffs and other substances;in the middle burial stage,the dolomites,mainly silt-and fine-sized,were formed by replacement of volcanic materials.The research results are referential for investigating the formation mechanism and distribution patterns of tight dolomitic reservoirs in the Mahu Sag and other similar oil and gas bearing areas. 展开更多
关键词 dolomitic rock dolomite origin tight oil reservoir Permian Fengcheng Formation Mahu Sag Junggar Basin fluid source fluid evolution isotopic composition
下载PDF
Reservoir Characterization of Special Dolomite Rock of Fengcheng Formation in Junggar Basin, China
7
作者 Famu Huang Yun Liu +8 位作者 Chenhao Pan Duocai Wang Ping Zhang Yaping Fu Hong Zhang Haibo Su Jun Lu Zhi Zhong Bin Wei 《Journal of Geoscience and Environment Protection》 2023年第9期333-350,共18页
Dolomites and eruptive rocks are well-developed in the Permian Fengcheng Formation in Junggar Basin in China, in which oil and gas are accumulated extensively. Until now, high-yield industrial oil and gas flows have b... Dolomites and eruptive rocks are well-developed in the Permian Fengcheng Formation in Junggar Basin in China, in which oil and gas are accumulated extensively. Until now, high-yield industrial oil and gas flows have been obtained in the dolomitic tuff of the second unit of the Fengcheng Formation, which demonstrates the huge exploration potential of the thick layer of massive dolomitic tuff. The lithology of the second unit of the Fengcheng Formation in this area has gradually transformed from the dolomite, dolomitic tuff to siltstone from east to west. Moreover, the well testing shows that the reservoir is oil-saturated, and the production rate mainly depends on the reservoir’s physical properties and fracture development. In this study, different types of data including core data, well log and seismic data are used cooperatively to characterize the sedimentary, structure and fracture features of the Fengcheng Formation, and then characterize the promising target zone in the study area. The result indicates that hydrocarbons are most accumulated along the deep fault in the Wu-Xia fault zone, which will be the favorable zone for the next progressive exploration. 展开更多
关键词 Junggar Basin Fengcheng Formation Section II PARAGENESIS Dolomitic Tuff Fracture
下载PDF
The relationship between dolomite textures and their formation temperature: a case study from the Permian-Triassic of the Sichuan Basin and the Lower Paleozoic of the Tarim Basin 被引量:9
8
作者 Huang Sijing Huang Keke +1 位作者 Lü Jie Lan Yefang 《Petroleum Science》 SCIE CAS CSCD 2014年第1期39-51,共13页
Study of dolomite texture can contribute to understanding the process of dolomitization.This research reports textures and homogenization temperatures of dolomites from the Permian-Triassic strata in the Sichuan Basin... Study of dolomite texture can contribute to understanding the process of dolomitization.This research reports textures and homogenization temperatures of dolomites from the Permian-Triassic strata in the Sichuan Basin and the Lower Paleozoic strata in the Tarim Basin,which provided insights into relationships between dolomite textures and their formation temperatures.Our results are summarized as follows:1) dolomites with well-preserved texture indicate low dolomitization temperature.However,in certain diagenetic environments,the hydrothermal dolomitization may completely or partially preserve the original texture of dolomites.2) The formation temperatures of non-planar dolomites are always higher than those of planar dolomites.3) The formation temperatures of dolomite cements are generally higher than those of replacive dolomites.4) Although the formation temperatures of saddle dolomite cements have a wide range,they show higher values than those of the planar subhedral to euhedral dolomite cements.Thus,saddle dolomites could generally be an indicator of high precipitation temperature.5) The fluid Mg/Ca ratio is another element controlling dolomite morphology.Micritic dolomites,which precipitate from hypersaline fluids with a high Mg/Ca ratio in a subaerial environment could also have features of non-planar anhedral crystal shape because of rapid nucleation and crystallization during dolomitization. 展开更多
关键词 The Permian-Triassic of the Sichuan Basin the Lower Paleozoic of the Tarim Basin dolomite textures formation temperature of dolomites
下载PDF
Features and origins of massive dolomite of Lower Ordovician Penglaiba Formation in the northwest Tarim Basin:Evidence from petrography and geochemistry 被引量:5
9
作者 Zhan-Feng Qiao Shao-Nan Zhang +7 位作者 An-Jiang Shen Guan-Ming Shao Min She Peng Cao Xiao-Wei Sun Jie Zhang Rui-Xin Guo Xiu-Cheng Tan 《Petroleum Science》 SCIE CAS CSCD 2021年第5期1323-1341,共19页
An integrated petrographical and geochemical study of the massive dolomite of the lower Ordovician Penglaiba Formation of the Tarim Basin,outcropping at Yonganba recognized three dolomite types:very finely to finely c... An integrated petrographical and geochemical study of the massive dolomite of the lower Ordovician Penglaiba Formation of the Tarim Basin,outcropping at Yonganba recognized three dolomite types:very finely to finely crystalline nonplanar-a to planar-s dolomite(D1);medium crystalline planar-s to planar-e dolomite(D2);and coarse crystalline nonplanar-a dolomite(D3).All have been affected by burial.D1 and D2 dolomites developed initially before or during shallow burial and later recrystallized,whereas D3 dolomite replaced the initial limestone entirely during burial.All three dolomites have similar geochemical features.The D2 dolomite tends to have more inter-crystalline pores(inherited from primary pores)and higher porosity due to its outstanding compaction resistance during shallow burial;whereas D3 dolomite does not retain appreciable primary pores due to strong cementation and pressure dissolution before dolomitization.This study provides a useful model for understanding the origin and porosity development of burial dolomite,in particular Paleozoic dolomite. 展开更多
关键词 Burial dolomite DOLOMITIZATION Massive dolomite Lower Ordovician Penglaiba Formation Tarim Basin
下载PDF
Characterization of the Microbial Dolomite of the Upper Sinian Dengying Formation in the Hanyuan Area of Sichuan Province,China 被引量:1
10
作者 LIN Xiaoxian PENG Jun +2 位作者 DU Lingchun YAN Jianping HOU Zhongjian 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第3期806-821,共16页
The algal dolostone of the Upper Sinian Dengying Formation (corresponding to the Ediacaran system) in the Upper Yangtze Platform of China possesses a rich diversity of microorganisms and is an ideal site for the stu... The algal dolostone of the Upper Sinian Dengying Formation (corresponding to the Ediacaran system) in the Upper Yangtze Platform of China possesses a rich diversity of microorganisms and is an ideal site for the study of ancient microbial dolomite. We focused on algal dolostone and its microbial dolomite in the Hanyuan area of Sichuan Province, China. The macroscopic petrological features, microscopic morphology, texture characteristics of the fossil microorganisms and microbial dolomite, and geochemical characteristics were investigated. We found rich fossil microorganisms and microbial dolomites in the laminated, stromatolithic, uniform and clotted (algal) dolostones. The microorganisms present were mainly body fossils of cyanobacteria (including Renalcis, Girvanella, Nanococcus, and Epiphyton) and their trace fossils (including microbial mats (biofilms), algal traces, and spots). In addition, there was evidence of sulfate-reducing bacteria (SRB), moderately halophilic aerobic bacteria, and red algae. The microbial dolomites presented cryptocrystalline textures under polarizing microscope and nanometer-sized granular (including spherulitic and pene-cubical granular) and (sub) micron-sized sheet-like, irregular, spherical and ovoidal morphologies under scanning electron microscope (SEM). The microbial dolomites were formed by microbialiy induced mineralization in the intertidal zone and lagoon environments during the depositional and syngenetic stages and microbially influenced mineralization in the supratidal zone environment during the penecontemporaneous stage. The microbial metabolic activities and extracellular polymeric substances (EPS) determined the morphology and element composition of microbial dolomite. During the depositional and syngenetic stages, the metabolic activities of cyanobacteria and SRB were active and EPS, biofilms and microbial mats were well-developed. EPS provided a large number of nucleation sites. Accordingly, many nanometer-sized pene-cubical granular and (sub) micron-sized sheet-like microbial dolomites were formed. During the penecontemporaneous stage, SBR, cyanobacteria, and moderately halophilic aerobic bacteria were inactive. Furthermore, nucleation sites reduced significantly and were derived from both the EPS of surviving microorganisms and un-hydrolyzed EPS from dead microorganisms. Consequently the microbial dolomites present nanometer-sized spherulitic and micron-sized irregular, spherical, and ovoidal morphologies. Overall, the microbial dolomites evolved from nanometer-sized granular (including spherulitic and pene-cubical granular) dolomites to (sub) micron-sized sheet-like, irregular, spherical and ovoidal dolomites, and then to macroscopic laminated, stromatolithic, uniform, and clotted dolostones. These findings reveal the correlation between morphological evolution of microbial dolomite and microbial activities showing the complexity and diversity of mineral (dolomite)-microbe interactions, and providing new insight into microbial biomineralization and microbial dolomite in the Precambrian era. 展开更多
关键词 microbial dolomite microbial biomineralization morphological evolution of dolomite algal dolostone Dengying Formation
下载PDF
Genetic types and distinguished characteristics of dolomite and the origin of dolomite reservoirs 被引量:1
11
作者 ZHAO Wenzhi SHEN Anjiang +3 位作者 QIAO Zhanfeng PAN Liyin HU Anping ZHANG Jie 《Petroleum Exploration and Development》 2018年第6期983-997,共15页
To find out the origin of dolomite, the precipitation of primary dolomite, and the formation of pores in dolomite, petrologic and geochemical characteristics of typical samples from Sichuan and Tarim Basin were analyz... To find out the origin of dolomite, the precipitation of primary dolomite, and the formation of pores in dolomite, petrologic and geochemical characteristics of typical samples from Sichuan and Tarim Basin were analyzed based on the previous understandings, and three aspects of results were achieved.(1) A classification of dolomite origins based on petrologic features, forming environment, and time sequence was proposed, which shows clear boundaries of diagenetic and characteristic realms and evolved clues between different types of dolomite.(2) Petrographic and geochemical identification marks for different types of dolomite were presented, revealing that the orderly geochemical variation of different types of dolomite is the response to the change of forming environment of dolomite during continuous time sequence.(3) The contribution of dolomitization to the formation of porosity was re-evaluated, revealing that the porosity in dolomite was mostly attributed to the primary pores and supergene dissolution and burial dissolution, and early dolomitization was conducive to the preservation of primary pores. These understandings are of great theoretical significance for identifying the origins and types of dolomite, and can guide the prediction of dolomite reservoirs. 展开更多
关键词 dolomite GENETIC types dolomite distinguished CHARACTERISTICS dolomite POROSITY ORIGIN protodolomite PRIMARY POROSITY
下载PDF
Behavior of REE Fractionation during Weathering of Dolomite Regolith Profile in Southwest China 被引量:15
12
作者 GONG Qingjie ZHANG Gaixia +2 位作者 ZHANG Jing JIANG Biao MA Nan 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2010年第6期1439-1447,共9页
REE fractionation during the weathering of dolomite has been recognized for decades.A regolith profile on dolomite in southwest Yunnan of China was selected to investigate the behaviors of REE during weathering.The we... REE fractionation during the weathering of dolomite has been recognized for decades.A regolith profile on dolomite in southwest Yunnan of China was selected to investigate the behaviors of REE during weathering.The weathering of dolomite is divided into two stages:the pedogenesis stage and soil evolution stage,corresponding to the saprolites and soils respectively in the regolith profile. SiO_2,TiO_2,P_2O_5,Zr,Hf,Nb and Ta were immobile components during the weathering by and large, while Al_2O_3,K_2O and Fe_2O_3 were lost during the soil evolution stage in the physical form(clay minerals probably).REE were fractionated during the whole weathering of dolomite.The field weathering profile and the lab acid-leaching experiments on dolomite indicate that MREE were enriched clearly relative to other REE during the pedogenesis stage in a "capillary ascending-adsorption" mechanism, but they did not fractionate clearly in the soil evolution stage.REE were lost and accumulated in the weathering front of dolomite during the soil evolution stage in a "physical-chemical leaching" mechanism. 展开更多
关键词 REE FRACTIONATION WEATHERING dolomite
下载PDF
Geochemical characteristics and genetic model of dolomite reservoirs in the eastern margin of the Pre-Caspian Basin 被引量:12
13
作者 Wang Shuqin Zhao Lun +2 位作者 Cheng Xubin Fan Zifei He Ling 《Petroleum Science》 SCIE CAS CSCD 2012年第2期161-169,共9页
The widespread Carboniferous KT-I dolomite in the eastern margin of the Pre-Caspian Basin is an important hydrocarbon reservoir. The dolomite lithology is dominated by crystalline dolomite. The δ18O values range from... The widespread Carboniferous KT-I dolomite in the eastern margin of the Pre-Caspian Basin is an important hydrocarbon reservoir. The dolomite lithology is dominated by crystalline dolomite. The δ18O values range from -6.71‰ to 2.45‰, and average 0.063‰, obviously larger than -2.5‰, indicating low-temperature dolomite of evaporation origin. Stable strontium isotope ratios (87Sr/86Sr) range from 0.70829 to 0.70875 and average 0.708365, very consistent with 87Sr/86Sr ratios in Carboniferous seawater. Chemical analysis of Ca and Mg elements shows that the dolomite has 9.1 mole% excess Ca or even higher before stabilization. The degree of order of dolomite is medium–slightly poor, varying in a range of 0.336-0.504 and averaging 0.417. It suggests that the dolomite formed under near-surface conditions. There are two models for the origin of the Carboniferous KT-I dolomite reservoir. These are 1) the evaporation concentration – weathering crust model and 2) the shoal facies – seepage reflux model. The former is mainly developed in restricted platforms – evaporate platforms of restricted marine deposition environments with a representation of dolomite associated with gypsum and mudstone. The latter mainly formed in platform edge shoals and intra-platform shoals and is controlled by dolomitization due to high salinity sea water influx from adjacent restricted sea or evaporate platform. 展开更多
关键词 ISOTOPE dolomite CARBONIFEROUS genetic model eastern margin of Pre-Caspian Basin
下载PDF
Hydrothermal Dolomite in the Upper Sinian (Upper Proterozoic) Dengying Formation, East Sichuan Basin, China 被引量:11
14
作者 LIU Shugen HUANG Wenming +5 位作者 JANSA Luba F. WANG Guozhi SONG Guangyong ZHANG Changjun SUN Wei MA Wenxin 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2014年第5期1466-1487,共22页
Hydrothermal Dolomite (HTD) is present in the Upper Sinian (Upper Proterozoic) Dengying Formation, east Sichuan Basin, China. The strata are comprised by primary dolomite. The HTD has various textures, including z... Hydrothermal Dolomite (HTD) is present in the Upper Sinian (Upper Proterozoic) Dengying Formation, east Sichuan Basin, China. The strata are comprised by primary dolomite. The HTD has various textures, including zebra dolomite, subhorizontal sheet-like cavities filled by saddle dolomite and breccias cemented by saddle dolomites as well occur as a fill of veins and fractures. Also co-occur MVT type lead-zinc ores in the study area. The δ13C and δ18O isotopes of HTD in the Upper Sinian Dengying Formation are lighter than those of the host rocks, while STSr/86Sr is higher. The apparent difference in carbon, oxygen and strontium isotopes, especially the large difference in S7Sr/S6Sr isotopes ratio indicate crystallization from hot basinal and/or hydrothermal fluids. Saddle dolomite was precipitated at temperatures of 270-320℃. The diagenetic parasequences of mineral assemblage deposited in the Dengying Formation are: (1) dolomite host rock →sphalerite-galena-barite-fluorite; (2) dolomite host rock →saddle dolomite →quartz; (3) dolomite host rock →saddle dolomite→bitumen; (4) dolomite host rock →saddle dolomite →barite. The mean chemical composition of the host dolomite matrix and HTD didn't change much during hydrothermal process. The fluids forming the HTDs in the Dengying Formation were mixtures of freshwater from the unconformity at the top of Sinian, fluids from diagenetic compaction and hydrocarbon generation & expulsion from the Lower Cambrian Niutitang Formation mudstones or the Doushantuo Formation silty mudstones, and hydrothermal fluids from the basement. The hydrocarbon reservoirs associated with the HTD were mostly controlled by the basement faults and fractures and karsting processes at the unconformity separating Sinian and Cambrian strata. The hydrocarbon storage spaces of HTD included dissolved cavities and intercrystalline pores. Dissolution cavities are extensive at the top of Dengying Formation, up to about 46m below the unconformity between Sinian and Cambrian and were generated mainly during karstification. Hydrothermal alteration enhanced the reservoir property of the Dengying Formation dolomites with 3%-5% increase in porosity. No agreement has been reached why zebra dolomite occurs only in the Upper Sinian strata, which would indicate that HTD mineralization occurred during two different periods, each of them related to major extensional tectonic event. The early one related to the Xingkai taphrogenesis (Z2-C1) and the later one to the Emei taphrogenesis (D2-T2). But, all the data from saddle dolomite suggest that the predominant crystallization occurred during the latter event. 展开更多
关键词 Hydrothermal dolomite (HTD) Upper Sinian Series Dengying Formation Sichuan basin
下载PDF
Geochemical characteristics and diagenetic systems of dolomite reservoirs of the Changxing Formation in the eastern Sichuan Basin, China 被引量:9
15
作者 Zhang Bing Zheng Rongcai +4 位作者 Wang Xuben Zheng Chao Wen Huaguo Luo Yuan Chi Yuelong 《Petroleum Science》 SCIE CAS CSCD 2012年第2期141-153,共13页
In order to discuss the relationship between dolomite reservoirs and diagenetic systems of the Changxing Formation, we studied carbon, oxygen and strontium stable isotopes, iron, manganese and strontium trace elements... In order to discuss the relationship between dolomite reservoirs and diagenetic systems of the Changxing Formation, we studied carbon, oxygen and strontium stable isotopes, iron, manganese and strontium trace elements and the Mg/Ca (mol%) ratio, dolomite order degree, and determined that burial dolomitization is the key to controlling the distribution of high quality dolomite reservoir in the Changxing Formation in the eastern Sichuan Basin. The dolomite of the Changxing Formation is divided into four diagenetic systems: (1) penecontemporaneous stage syngenetic brine diagenetic system, (2) early diagenetic stage strata seal brine diagenetic system, (3) middle-late diagenetic stage mixed hot brine diagenetic system and (4) tectonic uplift stage mixed hydrothermal fluid diagenetic system. New understanding of the controlling factors and distribution of dolomite reservoir development is discussed. Reef shoal facies belts controlled regional reservoir distribution and the scale of development. Burial dolomitization of a strata seal brine diagenetic system is the foundation of reservoir development, mainly developing pore reservoir. Burial dolomitization of mixed hot brine diagenetic system expanded the reservoir distribution and improved the reservoir quality, mainly developing pore-vug reservoir. Fracturing and dissolution of a mixed hydrothermal fluid diagenetic system is the key to improving the reservoir quality, mainly developing pore-vug-crack complex reservoirs. 展开更多
关键词 Eastern Sichuan Basin Changxing Formation dolomite reservoir DIAGENESIS geochemical characteristics diagenetic system
下载PDF
A Model of Hydrothermal Dolomite Reservoir Facies in Precambrian Dolomite, Central Sichuan Basin, SW China and its Geochemical Characteristics 被引量:5
16
作者 GU Yifan ZHOU Lu +3 位作者 JIANG Yuqiang JIANG Chan LUO Mingsheng ZHU Xun 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2019年第1期130-145,共16页
Hydrothermal mineral assemblages and related hydrothermally enhanced fracturing are common in the Precambrian Dengying Formation of Central Sichuan Basin. Petrographic and geochemical analyses of core samples show tha... Hydrothermal mineral assemblages and related hydrothermally enhanced fracturing are common in the Precambrian Dengying Formation of Central Sichuan Basin. Petrographic and geochemical analyses of core samples show that the hydrothermal dolomite reservoirs of Dengying Formation consist of four main types of pores in the reservoir facies. These include: 1) hydrothermal dissolution vug(or pore), 2) intercrystalline pore, 3) residual inter-breccia vug(or pore), and 4) enlarged dissolved-fracture. There are three different fabrics dolomite in hydrothermal dolomite reservoirs, namely, saddle dolomite, fine-medium dolomite and micritic dolomite. Micritic dolomite is the original lithology of host rock. Saddle dolomite with curved or irregular crystal faces was directly crystallized from hydrothermal fluids(average temperature 192°C). Fine-medium dolomites are the products of recrystallization of micritic dolomite, resulting in abnormal geochemical characteristics, such as slight depletion of δ^(18)O, significant enrichment of Mn-Fe and ^(87)Sr/^(86)Sr, and positive Eu anomaly. A model for the distribution of various hydrothermal dolomite reservoir facies is proposed here, which incorporates three fundamental geological controls: 1) extensional tectonics and tectono-hydrothermal events(i.e., the Xingkai Taphrogenesis of Late Sinian-Early Cambrian, and Emei Taphrogenesis of Late Permian), 2) hydrothermal fluid storage in clastic rocks with large thickness(e.g., Nanhua System of Chengjiang Formation and part of Doushantuo Formation), and 3) confining bed for hydrothermal fluids(such as, the shale in Qiongzhusi Formation). The supply of hydrothermal fluid is critical. Large basement-rooted faults and associated grid-like fracture system may function as the channels for upward migration of hydrothermal fluid flow. The intersection of the above-mentioned faults(including the conversion fault), especially transtensional sags above negative flower structures on wrench faults can serve as a key target for future hydrocarbon exploration. 展开更多
关键词 HYDROTHERMAL dolomite reservoir FACIES geochemical characteristics PRECAMBRIAN Dengying Formation central Sichuan Basin
下载PDF
Geochemical characteristics of the Permian Changxing Formation reef dolomites,northeastern Sichuan Basin,China 被引量:6
17
作者 Hu Zuowei Huang Sijing +3 位作者 Li Zhiming Zhang Yingying Xu Ershe Qi Shichao 《Petroleum Science》 SCIE CAS CSCD 2013年第1期38-49,共12页
The recent discovery of deep and ultra-deep gas reservoirs in the Permian Changxing Formation reefs, northeastern Sichuan Basin is a significant development in marine carbonate oil & gas exploration in China. Reef do... The recent discovery of deep and ultra-deep gas reservoirs in the Permian Changxing Formation reefs, northeastern Sichuan Basin is a significant development in marine carbonate oil & gas exploration in China. Reef dolomites and their origins have been major research topics for sedimentologists and oil & gas geologists. The petrography, trace element and isotope geochemistry of the reef dolomites indicated that the dolomites are characterized by low Sr and Mn contents, relatively low Fe contents, very similar δ13C and 6180 values and very different 87Sr/86Sr ratios. Although the calculated results of the fluid mixing suggested that a mixture with 85%-95% meteoric water and 50/o- 15% seawater seemed to be the dolomitizing fluids of the reef dolomites, the low Mn contents, relatively low Fe contents, high δ13c values and high homogenization temperatures of the dolomites did not support that there were large proportions of meteoric water in the dolomitization process, and the 87Sr/86Sr ratios which were close to coeval seawater also did not support the possibility of the mixture of deep-burial circulated fluids from clastic rocks. High temperature deep-burial circulated seawater with low Mn and Fe contents, high Sr content and high δ13C values from the dissolution of widely distributed Triassic evaporites during the burial diagenetic processes (including dehydration of water-bearing evaporites) could have been the dolomitizing fluids of the reef dolomites. 展开更多
关键词 PERMIAN Changxing Formation dolomite REEF GEOCHEMISTRY northeastern Sichuan Basin
下载PDF
Ferroan dolomites in Miocene sediments of the Xisha Islands and their genetic model 被引量:7
18
作者 许红 张威威 +7 位作者 魏凯 赫庆坤 江云水 许婷婷 姜学钧 闫桂京 宋红瑛 王江海 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2018年第1期165-180,共16页
Carbonate rocks are important reservoirs for global petroleum exploration.The largest oilfield in the South China Sea,Liuhua 11-1,is distributed in the massive carbonate reef area of the Zhujiang(Pearl)River Mouth Bas... Carbonate rocks are important reservoirs for global petroleum exploration.The largest oilfield in the South China Sea,Liuhua 11-1,is distributed in the massive carbonate reef area of the Zhujiang(Pearl)River Mouth Basin.Previous studies showed that one 802.17-m-long core from well Xichen-1 in the South China Sea mainly consisted of white and light gray-white organic reefs.Recently,a Miocene whole core(161.9 m long)of well Xiyong-2,near well Xichen-1,was found to contain six layers of yellowish brown,light yellowish gray,iron black,or light yellowish gray-white organic reefs.Scanning electron microscope images of these layers reveal a typical ferroan dolomite rich in Fe(up to 29%),with the high concentrations of Mn,Cu,W,Zn,Cr,Ni,and Co.Systematic X-ray powder diffraction analysis yields a 1.9–6.1 match in phase ratio with ankerite,5.4–26.9 with dolomite,and zero with calcite,which indicate that the samples can be classified as ferroan dolomite.The iron and heavy metals are inferred to be originated from multiple volcanic eruptions of Gaojianshi Island in the Dongdao Atoll during the middle-late Miocene.These elements were dissolved in seawater,likely as a sol,and carried to Yongxing Island in the Xuande Atoll by sea currents and tides enhanced by prevailing winds,and deposited as a part of the sedimentation process in the study area.The ferroan dolomite has Sr content of (125–285)×10^(-6),which is lower than the accepted Sr boundary value of dolomite.This finding suggests that dolomitization occurred during large-scale global glacial regression in the late Miocene.The isolated Xisha carbonate platform,exposed to air,underwent freshwater leaching and dolomitization induced by mixed water,and caused the extensive Fe-Mg exchange along the organic reef profile to form ankerite and ferroan dolomite.These results may help to understand paleoceanographic environmental changes in the South China Sea during the Miocene. 展开更多
关键词 ferroan dolomite X-ray powder dif fraction sedimentation mechanism MIOCENE Xisha Islands
下载PDF
Dolomite fracture modeling using the Johnson-Holmquist concrete material model:Parameter determination and validation 被引量:7
19
作者 Michal Kucewicz Pawel Baranowski Jerzy Maachowski 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第2期335-350,共16页
In this paper,the Johnson-Holmquist concrete(JHC)constitutive model is adopted for modeling and simulating the fracture of dolomite.A detailed step-by-step procedure for determining all required parameters,based on a ... In this paper,the Johnson-Holmquist concrete(JHC)constitutive model is adopted for modeling and simulating the fracture of dolomite.A detailed step-by-step procedure for determining all required parameters,based on a series of experiments under quasi-static and dynamic regimes,is proposed.Strain rate coefficients,failure surfaces,equations of state and damage/failure constants are acquired based on the experimental data and finite element analyses.The JHC model with the obtained parameters for dolomite is subsequently validated using quasi-static uniaxial and triaxial compression tests as well as dynamic split Hopkinson pressure bar(SHPB)tests.The influence of mesh size is also analyzed.It shows that the simulated fracture behavior and waveform data are in good agreement with the experimental data for all tests under both quasi-static and dynamic loading conditions.Future studies will implement the validated JHC model in small-and large-scale blasting simulations. 展开更多
关键词 Johnson-Holmquist concrete(JHC)model Rock modeling dolomite Constitutive modeling Split Hopkinson pressure bar(SHPB) Fracture Triaxial compression
下载PDF
Mechanism of separating pyrite and dolomite by flotation 被引量:6
20
作者 Anping Liu Wen Ni Wei Wu 《Journal of University of Science and Technology Beijing》 CSCD 2007年第4期291-296,共6页
To study the mechanism of separating pyrite and dolomite by flotation, the acting mechanisms of WHL depressor and both the minerals were studied by means of thermogravimetric and differential thermal analysis (TG-DTA... To study the mechanism of separating pyrite and dolomite by flotation, the acting mechanisms of WHL depressor and both the minerals were studied by means of thermogravimetric and differential thermal analysis (TG-DTA), Fourier transform infrareddiffuse reflection spectroscopy (PTIR-DRS), and X-ray photoelectron spectroscopy (XPS). The results indicated that WHL formed metal salts with metal ions dissolved in water from dolomite and pyrite, which then deposited on their surfaces. Both of the minerals could be depressed by WHL. In the process of flotation, sulfur was created besides the WIlL being absorbed on the surface of the sulfur concentrate, and its recovery rate was slightly affected. 展开更多
关键词 FLOTATION dolomite PYRITE depressor MECHANISM
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部