Weiyuan shale gas play is characterized by thin high-quality reservoir thickness,big horizontal stress difference,and big productivity differences between wells.Based on integrated evaluation of shale gas reservoir ge...Weiyuan shale gas play is characterized by thin high-quality reservoir thickness,big horizontal stress difference,and big productivity differences between wells.Based on integrated evaluation of shale gas reservoir geology and well logging interpretation of more than 20 appraisal wells,a correlation was built between the single well test production rate and the high-quality reservoir length drilled in the horizontal wells,high-quality reservoir thickness and the stimulation treatment parameters in over 100 horizontal wells,the dominating factors on horizontal well productivity were found out,and optimized development strategies were proposed.The results show that the deployed reserves of high-quality reservoir are the dominating factors on horizontal well productivity.In other words,the shale gas well productivity is controlled by the thickness of the high-quality reservoir,the high-quality reservoir drilling length and the effectiveness of stimulation.Based on the above understanding,the development strategies in Weiyuan shale gas play are optimized as follows:(1)The target of horizontal wells is located in the middle and lower parts of Longyi 11(Wei202 area)and Longyi 11(Wei204 area).(2)Producing wells are drilled in priority in the surrounding areas of Weiyuan county with thick high-quality reservoir.(3)A medium to high intensity stimulation is adopted.After the implementation of these strategies,both the production rate and the estimated ultimate recovery(EUR)of individual shale gas wells have increased substantially.展开更多
This research was undertaken to clarify the characteristics of vegetation change and its main influencing factors on the Qinghai-Tibet Plateau. Using the greenness rate of change(GRC) and correlation factors, we analy...This research was undertaken to clarify the characteristics of vegetation change and its main influencing factors on the Qinghai-Tibet Plateau. Using the greenness rate of change(GRC) and correlation factors, we analyzed the trend of vegetation change and its dominant factors from 2000 to 2015. The results indicate that the vegetation tended to improve from 2000 to 2015 on the Qinghai-Tibet Plateau, with the improved area accounting for 39.93% of the total; and the degraded area accounting for 19.32%. The areas of degraded vegetation are mainly concentrated in the low-relief and intermediate-relief mountains of the high-altitude and extremely high-altitude areas on the Qinghai-Tibet Plateau, as the vegetation characteristics are impacted by the terrain. Temperature and precipitation have obvious response mechanisms to vegetation growth, but the effects of precipitation and temperature on vegetation degradation are not significant over a short time frame. Overgrazing and population growth are the dominant factors of vegetation degradation on the Qinghai-Tibet Plateau.展开更多
The dominant factors during early hydration process of cement paste containing 10% metakaolin replacement (MK10) and 10% kaolin replacement (K10) are investigated in comparison to neat cement paste (NCP), and X-...The dominant factors during early hydration process of cement paste containing 10% metakaolin replacement (MK10) and 10% kaolin replacement (K10) are investigated in comparison to neat cement paste (NCP), and X-ray Diffraction (XRD) analysis is employed to identify the crystalline phases of all specimens. Thermogravimetric (TG) and Differential Scanning Calorimetry (DSC) are used to identify the phase constituents. The amount of acid-insoluble residue (AIR) of all specimens is used to evaluate the unreacted materials. The results indicate that, after the first day, MK act as nuclei for the formation of C-S-H during hydration of C3S and C2S, densifying the microstructure of cement paste. Its contribution is mainly due to the fine nature of the MK. From 3 days to 7 days, more and more MK reacts with CH to form C-S-H, making the microstructure denser. The strength contribution is mainly due to the chemical activity of MK.展开更多
This paper proposes a connected dominating set (CDS) based mobility management algorithm, CMMA, to solve the problems of node entering, exiting and movement in mobile ad hoc networks (MANETs), which ensures the connec...This paper proposes a connected dominating set (CDS) based mobility management algorithm, CMMA, to solve the problems of node entering, exiting and movement in mobile ad hoc networks (MANETs), which ensures the connectivity and efficiency of the CDS. Compared with Wu's algorithm, the proposed algorithm can make full use of present network conditions and involves fewer nodes. Also it has better performance with regard to the approximation factor, message complexity, and time complexity.展开更多
The cone penetration test(CPT)contributes to the design and analysis of piles regarding geometry,installation effect,and pile capacity(shaft and toe resistance).MiniCone,as an alternative to CPT sounding,has been used...The cone penetration test(CPT)contributes to the design and analysis of piles regarding geometry,installation effect,and pile capacity(shaft and toe resistance).MiniCone,as an alternative to CPT sounding,has been used to carry outfield and laboratory investigations by physical modeling.More tests can be practically carried out through light equipment and small soil mass,involving fewer errors caused by boundary conditions.Furthermore,it can be used for in situ testing,such as quality control,assessment of ground improvement,and subgrade characterization.A database comprising MiniCone and CPT records infield and physical modeling is proposed with a variety of cone diameters.The case study records in the database have been obtained from 140 tests compiled from data from 26 sources.The sources include the results of 20 physical modelings andfield data from six sites in 10 countries.The data comprise MiniCone and CPT cone tip resistance(qc),and sleeve friction(fs).The different cones are used in sandy,silty sand,and clayey soils via simple chambers(1 g),calibration chambers,and frustum confining vessels.In addition,correlations were found in penetration records in terms of physical modeling types,cone diameters,penetration rates,and soil densities.Moreover,qc and fs are related to capacities of pile toes and shafts using proper correlation coefficients less than unity,respectively.Correlations and dominant factors in geotechnical practice between MiniCone,CPT,and pile have been reviewed and discussed.展开更多
Based on three reanalysis datasets—ERA-Interim,NCAR–NCEP and JRA-55—the classification of25 commonly used indexes of the East Asian summer monsoon(EASM)was investigated.The physical nature of two categories of mons...Based on three reanalysis datasets—ERA-Interim,NCAR–NCEP and JRA-55—the classification of25 commonly used indexes of the East Asian summer monsoon(EASM)was investigated.The physical nature of two categories of monsoon index,together with their circulation pattern,climate anomalies,and driving factors,were investigated.Results suggest that the selected 25 monsoon indexes can be classified into two typical categories(CategoryⅠandⅡ),which are dominated by interannual and decadal variabilities of the EASM,respectively.The anomalous circulation patterns and summer rainfall patterns related to the two categories of index also exhibit evident differences.CategoryⅠis closely linked to the low-latitude circulation system and the anomalous circulation pattern is a typical East Asia–Pacific teleconnection pattern.The summer rainfall anomaly exhibits a typical tripole pattern.However,CategoryⅡmainly reflects the impacts of the middle–high latitude circulation system on the summer monsoon and is closely linked to a typical Eurasian teleconnection pattern,which corresponds to a dipole of summer rainfall anomalies.Further analysis suggests that the underlying thermal driving factors of the two categories of monsoon are distinct.The main driving factors of CategoryⅠare the tropical sea surface temperature anomalies(SSTAs),especially ENSO-related SSTAs in the preceding winter and summer SSTAs in the tropical Indian Ocean.The winter signal of Category II summer monsoon anomalous activity mainly originates from the polar region and the middle and high latitudes of the Eurasian continent.CategoryⅡmonsoon activity is also associated with summer SSTAs in the equatorial central Pacific.展开更多
Based on meteorological data collected over nearly 60 years(1960-2017)from four national meteorological stations along the margins of the Badain Jaran Desert,this study analyzed the spatiotemporal variations in evapor...Based on meteorological data collected over nearly 60 years(1960-2017)from four national meteorological stations along the margins of the Badain Jaran Desert,this study analyzed the spatiotemporal variations in evaporation from water surfaces and identified the dominant controlling factors.Methods used included linear trend analysis,linear tendency estimation,the departure method,the rank correlation coefficient-based method,and Multiple Linear Regression(MLR).Results indicate notable spatiotemporal differences in evaporation distribution and evolution.Spatially,average annual evaporation exhibited a pronounced altitude effect,decreasing at a rate of about 8.23 mm/m from east to west with increasing altitude.Temporally,annual evaporation showed significant upward trends after 1996 at the northeastern(Guaizi Lake)and western(Dingxin)margins,with rates of 132 mm/10a and 105 mm/10a,respectively.Conversely,along the northwestern(Ejina Banner)and southern(Alxa Right Banner)margins of the desert,an evaporation paradox was observed,with annual evaporation trending downward at rates of 162 mm/10a and 187 mm/10a,respectively,especially after 1987.The dominant factors controlling evaporation varied spatially:Average annual temperature and relative humidity influended the western margin(Dingxin),average annual temperature was the key factor for the northeastern margin(Guaizi Lake),and average wind speed was crucial for the northern(Ejina Banner)and southern(Alxa Right Banner)margins.展开更多
Dominant early heading(DEH)in rice(Oryza sativa L.)is of interest in both breeding and genetics.The genetic mechanisms underlying DEH have remained largely unclear.We have developed a near-isogenic DEH line without yi...Dominant early heading(DEH)in rice(Oryza sativa L.)is of interest in both breeding and genetics.The genetic mechanisms underlying DEH have remained largely unclear.We have developed a near-isogenic DEH line without yield drag named DEH_229 by sister-line backcross(BC)breeding with MH63,a restorer,as the genetic background.We conducted a pilot genetic investigation under both short-day(SD)and long-day(LD)conditions.The DEH line harbored only 1.06%variation in the genome sequence relative to MH63.The variants were distributed throughout the genome.Using QTL mapping by sequencing(QTL-seq)on an F_(2) population derived from a cross of MH63×DEH_229,57 loci were detected under the SD condition.Joint mapping employing a genome-wide association study with accessions from the 3000 rice genome sequencing project(3K-RG),reduced the number of QTL by 43.9%.Using Rice Functional Genomics&Breeding(RFGB)database,the number of SNP cluster regions within the QTL regions reduced by 27.3%.Further comparison of the genome variation between DEH_229 and MH63 in addition to gene annotation information revealed a new DEH allele of DTH3 with multiple variable sites as a possible major factor underlying the early-heading phenotype of DEH_229.An InDel marker,ZMEH_1,was designed based on the variation between DEH_229 and MH63 within this region.It accounted for 86.0%of heading date variation under both SD and LD conditions in 109 randomly chosen progeny derived from extreme lines of the MH63×DEH_229 population.This study reveals the genetic complexity of DEH in the near-isogenic line and may provide useful material and marker information for plant molecular breeding.展开更多
The estuarine areas are under frequent influence from freshwater intrusion and ocean currents,in which zooplankton species are diversified and variable as they are sensitive to physio-chemical variations in water.Ther...The estuarine areas are under frequent influence from freshwater intrusion and ocean currents,in which zooplankton species are diversified and variable as they are sensitive to physio-chemical variations in water.Therefore,understanding the relationships between zooplankton and environmental factors help us know the water quality.To achieve co-existence with species in similar ecological group or habit,they could inevitably alter themselves to fit the ecology and adjust the function according to the competitive exclusion in ecological theory.However,information of the co-existence of dominant species in the Changjiang(Yangtze)River estuary(CRE)and adjacent waters remains scarce.We explored the relationships between dominant zooplankton and environmental factors in the study region in spring-summer from 2016 to 2020,involving particularly the composition of dominant species,ecological groups,their relationships with environmental factors,and co-existence of important species,using the non-multidimensional scale analysis(nMDS)method and redundancy analysis.Results show that Labidocera euchaeta and Tortanus vermiculus were dominant species in the study scope.The turnover rate of dominant zooplankton was greater(>50%)in spring while the species number was higher in summer.The dominant species were estuarine,offshore,and eurytopic based on the adaptation to salinity.In spring,the ecological groups were dominated by estuarine species,while in summer by estuarine and offshore species.In addition,the nMDS showed that the dominant species in the same ecological group were more dispersed and not prominently clustered;the dominant species were staggered among different ecological groups.The temperature,salinity,pH,dissolved oxygen,and chlorophyll a were the main environmental factors on the distribution of the dominant species in spring,while in summer were dissolved oxygen,temperature,salinity,and pH.The domination of medusae of Nemopsis bachei and Pleurobrachia globosa in zooplankton community in spring,and the continuous decrease in abundance of L.euchaeta reflected the effects of local climate change.The temperature and salinity changes in different years and the subsequent response of zooplankton reflected the influence of freshwater intrusion and/or ocean currents.Zooplankton in similar ecological habits exhibited the competitive exclusion in terms of co-existence.展开更多
Over the last few decades,the ecological quality of the Qinghai–Tibet Plateau(QTP)has significantly changed due to climate warming,humidification,and increasing human activities.Thus,evaluating this region's ecol...Over the last few decades,the ecological quality of the Qinghai–Tibet Plateau(QTP)has significantly changed due to climate warming,humidification,and increasing human activities.Thus,evaluating this region's ecological quality and dominant factors is crucial for sustainable development.In this study,the changes in the ecological quality on the QTP from 2000 to 2020 were evaluated based on aggregated indices and Sen–MK trend analyses,and the dominant factors affecting the ecological quality of the QTP were quantitatively analyzed using decision tree classification.The results revealed that(1)the ecological quality of the QTP exhibited an overall high trend in the east and a low pattern in the west;(2)the ecological quality of the QTP significantly increased from 2000 to 2020,and human activities were the dominant factors causing this change;and(3)the changes in the ecological quality and dominant factors exhibited obvious spatiotemporal heterogeneity.The area with an improved ecological quality occurred mainly in the northern QTP region.It was governed by human activities and precipitation.In contrast,the area with a deteriorated ecological quality occurred largely in the southern QTP region and was dominated by human activities and temperature.The 2000–2010 period was the most significant period of heterogeneity regarding of ecological quality and its driving factors.(4)The change in the ecological quality was mainly affected by the synergistic relationship between human activities and climate change in this region,which encompassed multiple dominant factors.This study provides important information on the spatiotemporal heterogeneity of ecological quality change and its dominant factors on the QTP and offers systematic guidance for the planning and implementation of ecological protection projects.展开更多
BACKGROUND Renal cysts and diabetes(RCAD)syndrome is an autosomal dominant diabetic renal disease.Precise molecular diagnosis of RCAD syndrome has proven valuable for understanding its mechanism and personalized thera...BACKGROUND Renal cysts and diabetes(RCAD)syndrome is an autosomal dominant diabetic renal disease.Precise molecular diagnosis of RCAD syndrome has proven valuable for understanding its mechanism and personalized therapy.CASE SUMMARY A RCAD patient and her family were studied to investigate potential responsible genes by the whole exome sequencing(WES).Candidate pathogenic variants were validated by Sanger sequencing.The clinical characteristics of RCAD patient were collected from medical records.Unlike those typical RCAD patients,we observed renal manifestation and prediabetes phenotype,but not reproductive organ phenotype and hypomagnesaemia.A novel 7-bp deletion mutation in exon 4 of the hepatocyte nuclear factor 1B,NM_000458:c.882_888del(p.V294fs),was identified by WES and confirmed by Sanger sequencing.CONCLUSION This novel mutation identified in a Chinese family with RCAD syndrome might be the molecular pathogenic basis of this disorder.展开更多
Advances in molecular research in cancer have brought new therapeutic strategies into clinical usage.One new group of targets is tyrosine kinase receptors,which can be treated by several strategies,including small mol...Advances in molecular research in cancer have brought new therapeutic strategies into clinical usage.One new group of targets is tyrosine kinase receptors,which can be treated by several strategies,including small molecule tyrosine kinase inhibitors(TKIs) and monoclonal antibodies(mAbs).Aberrant activation of growth factors/receptors and their signal pathways are required for malignant transformation and progression in gastrointestinal(GI) carcinomas.The concept of targeting specif ic carcinogenic receptors has been validated by successful clinical application of many new drugs.Type I insulin-like growth factor(IGF) receptor(IGF-IR) signaling potently stimulates tumor progression and cellular differentiation,and is a promising new molecular target in human malignancies.In this review,we focus on this promising therapeutic target,IGF-IR.The IGF/IGF-IR axis is an important modifier of tumor cell proliferation,survival,growth,and treatment sensitivity in many malignant diseases,including human GI cancers.Preclinical studies demonstrated that downregulation of IGF-IR signals reversed the neoplastic phenotype and sensitized cells to anticancer treatments.These results were mainly obtained through our strategy of adenoviruses expressing dominant negative IGF-IR(IGF-IR/dn) against gastrointestinal cancers,including esophagus,stomach,colon,and pancreas.We also summarize a variety of strategies to interrupt the IGFs/IGF-IR axis and their preclinical experiences.Several mAbs and TKIs targeting IGF-IR have entered clinical trials,and early results have suggested that these agents have generally acceptable safety profiles as single agents.We summarize the advantages and disadvantages of each strategy and discuss the merits/demerits of dual targeting of IGF-IR and other growth factor receptors,including Her2 and the insulin receptor,as well as other alternatives and possible drug combinations.Thus,IGF-IR might be a candidate for a molecular therapeutic target in human GI carcinomas.展开更多
Climate change can affect wind erosion power and hence induce changes in wind erosion rates.In this study,the wind erosion climate factor(C-factor),proposed by the Food and Agriculture Organization of the United Natio...Climate change can affect wind erosion power and hence induce changes in wind erosion rates.In this study,the wind erosion climate factor(C-factor),proposed by the Food and Agriculture Organization of the United Nations,was used to assess the impact of changes in climate on wind erosion climatic erosivity.The Mann-Kendall test was employed to detect trends in the C-factor during the period of 1961–2017 in the farming-pastoral zone of northern China.Sensitivity analysis was used to determine the sensitivity of the C-factor to changes in key climate factors.Furthermore,a comparison of the contributions of different climate factors was carried out to understand their impact on changes in the C-factor.The results indicated that most of the surveyed region exhibited decreasing trends in wind speed at a confidence level of 90%,while maximum and minimum temperatures showed increasing trends throughout the study area.As a consequence of decreasing wind speed,the annual C-factor exhibited significant decreasing trends,with a mean slope of–0.58/yr.Seasonal analysis revealed that in most regions,the changes in the C-factor had significant decreasing trends in spring,winter,and autumn,while in more than two-thirds of the study area,no significant change trends in the C-factor were detected in summer at a confidence level of 90%.Sensitivity analysis showed that the C-factor was most sensitive to wind speed,and that the sensitivity coefficients from July to September were much higher than those in other months.Contribution analysis revealed that,for most stations,wind speed(with greater values of sensitivity coefficients)was the dominant factor in the change of C-factor,while for some stations,the minimum temperature made the most contribution to the C-factor’s change due to its dramatic changes during the study period.Although the minimum temperature sensitivity coefficient was the lowest of all the sensitivity coefficients,it is urgent to evaluate the expected impact of minimum temperature due to its possible changes in the future.展开更多
Reference evapotranspiration(ET_(0))is a vital component in hydrometeorological research and is widely applied to various aspects,such as water resource management,hydrological modeling,irrigation deployment,and under...Reference evapotranspiration(ET_(0))is a vital component in hydrometeorological research and is widely applied to various aspects,such as water resource management,hydrological modeling,irrigation deployment,and understanding and predicting the influence of hydrologic cycle variations on future climate and land use changes.Quantifying the influence of various meteorological variables on ET_(0) is not only helpful for predicting actual evapotranspiration but also has important implications for understanding the impact of global climate change on regional water resources.Based on daily data from 69 meteorological stations,the present study analyzed the spatiotemporal pattern of ET_(0) and major contributing meteorological variables to ET_(0) from 1960 to 2017 by the segmented re-gression model,Mann-Kendall test,wavelet analysis,generalized linear model,and detrending method.The results showed that the annual ET_(0) declined slightly because of the combined effects of the reduction in solar radiation and wind speed and the increase in vapor pressure deficit(VPD)and average air temperature in the Loess Plateau(LP)during the past 58 yr.Four change points were detected in 1972,1990,1999,and 2010,and the annual ET_(0) showed a zigzag change trend of‘increasing-decreasing-increasing-decreasing-increasing’.Wind speed and VPD played a leading role in the ET_(0) changes from 1960 to 1990 and from 1991 to 2017,respectively.This study confirms that the dominant meteorological factors affecting ET_(0) had undergone significant changes due to global climate change and vegetation greening in the past 58 years,and VPD had become the major factor controlling the ET_(0) changes on the LP.The data presented herein will contribute to increasing the accuracy of predictions on future changes in ET_(0).展开更多
文摘Weiyuan shale gas play is characterized by thin high-quality reservoir thickness,big horizontal stress difference,and big productivity differences between wells.Based on integrated evaluation of shale gas reservoir geology and well logging interpretation of more than 20 appraisal wells,a correlation was built between the single well test production rate and the high-quality reservoir length drilled in the horizontal wells,high-quality reservoir thickness and the stimulation treatment parameters in over 100 horizontal wells,the dominating factors on horizontal well productivity were found out,and optimized development strategies were proposed.The results show that the deployed reserves of high-quality reservoir are the dominating factors on horizontal well productivity.In other words,the shale gas well productivity is controlled by the thickness of the high-quality reservoir,the high-quality reservoir drilling length and the effectiveness of stimulation.Based on the above understanding,the development strategies in Weiyuan shale gas play are optimized as follows:(1)The target of horizontal wells is located in the middle and lower parts of Longyi 11(Wei202 area)and Longyi 11(Wei204 area).(2)Producing wells are drilled in priority in the surrounding areas of Weiyuan county with thick high-quality reservoir.(3)A medium to high intensity stimulation is adopted.After the implementation of these strategies,both the production rate and the estimated ultimate recovery(EUR)of individual shale gas wells have increased substantially.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences, China (Grant No. XDA20100101)the Foundation for Excellent Youth Scholars of Northwest Institute of Eco-environment and Resources, Chinese Acad emy of Sciences (Y651K91001)
文摘This research was undertaken to clarify the characteristics of vegetation change and its main influencing factors on the Qinghai-Tibet Plateau. Using the greenness rate of change(GRC) and correlation factors, we analyzed the trend of vegetation change and its dominant factors from 2000 to 2015. The results indicate that the vegetation tended to improve from 2000 to 2015 on the Qinghai-Tibet Plateau, with the improved area accounting for 39.93% of the total; and the degraded area accounting for 19.32%. The areas of degraded vegetation are mainly concentrated in the low-relief and intermediate-relief mountains of the high-altitude and extremely high-altitude areas on the Qinghai-Tibet Plateau, as the vegetation characteristics are impacted by the terrain. Temperature and precipitation have obvious response mechanisms to vegetation growth, but the effects of precipitation and temperature on vegetation degradation are not significant over a short time frame. Overgrazing and population growth are the dominant factors of vegetation degradation on the Qinghai-Tibet Plateau.
基金Funded by the National Fundamental Scientific Research Project of China (No.2009CB623201)National Natural Science Foundation of China (No.50802067)
文摘The dominant factors during early hydration process of cement paste containing 10% metakaolin replacement (MK10) and 10% kaolin replacement (K10) are investigated in comparison to neat cement paste (NCP), and X-ray Diffraction (XRD) analysis is employed to identify the crystalline phases of all specimens. Thermogravimetric (TG) and Differential Scanning Calorimetry (DSC) are used to identify the phase constituents. The amount of acid-insoluble residue (AIR) of all specimens is used to evaluate the unreacted materials. The results indicate that, after the first day, MK act as nuclei for the formation of C-S-H during hydration of C3S and C2S, densifying the microstructure of cement paste. Its contribution is mainly due to the fine nature of the MK. From 3 days to 7 days, more and more MK reacts with CH to form C-S-H, making the microstructure denser. The strength contribution is mainly due to the chemical activity of MK.
文摘This paper proposes a connected dominating set (CDS) based mobility management algorithm, CMMA, to solve the problems of node entering, exiting and movement in mobile ad hoc networks (MANETs), which ensures the connectivity and efficiency of the CDS. Compared with Wu's algorithm, the proposed algorithm can make full use of present network conditions and involves fewer nodes. Also it has better performance with regard to the approximation factor, message complexity, and time complexity.
文摘The cone penetration test(CPT)contributes to the design and analysis of piles regarding geometry,installation effect,and pile capacity(shaft and toe resistance).MiniCone,as an alternative to CPT sounding,has been used to carry outfield and laboratory investigations by physical modeling.More tests can be practically carried out through light equipment and small soil mass,involving fewer errors caused by boundary conditions.Furthermore,it can be used for in situ testing,such as quality control,assessment of ground improvement,and subgrade characterization.A database comprising MiniCone and CPT records infield and physical modeling is proposed with a variety of cone diameters.The case study records in the database have been obtained from 140 tests compiled from data from 26 sources.The sources include the results of 20 physical modelings andfield data from six sites in 10 countries.The data comprise MiniCone and CPT cone tip resistance(qc),and sleeve friction(fs).The different cones are used in sandy,silty sand,and clayey soils via simple chambers(1 g),calibration chambers,and frustum confining vessels.In addition,correlations were found in penetration records in terms of physical modeling types,cone diameters,penetration rates,and soil densities.Moreover,qc and fs are related to capacities of pile toes and shafts using proper correlation coefficients less than unity,respectively.Correlations and dominant factors in geotechnical practice between MiniCone,CPT,and pile have been reviewed and discussed.
基金supported by the National Natural Science Foundation of China [grant number 41625019]
文摘Based on three reanalysis datasets—ERA-Interim,NCAR–NCEP and JRA-55—the classification of25 commonly used indexes of the East Asian summer monsoon(EASM)was investigated.The physical nature of two categories of monsoon index,together with their circulation pattern,climate anomalies,and driving factors,were investigated.Results suggest that the selected 25 monsoon indexes can be classified into two typical categories(CategoryⅠandⅡ),which are dominated by interannual and decadal variabilities of the EASM,respectively.The anomalous circulation patterns and summer rainfall patterns related to the two categories of index also exhibit evident differences.CategoryⅠis closely linked to the low-latitude circulation system and the anomalous circulation pattern is a typical East Asia–Pacific teleconnection pattern.The summer rainfall anomaly exhibits a typical tripole pattern.However,CategoryⅡmainly reflects the impacts of the middle–high latitude circulation system on the summer monsoon and is closely linked to a typical Eurasian teleconnection pattern,which corresponds to a dipole of summer rainfall anomalies.Further analysis suggests that the underlying thermal driving factors of the two categories of monsoon are distinct.The main driving factors of CategoryⅠare the tropical sea surface temperature anomalies(SSTAs),especially ENSO-related SSTAs in the preceding winter and summer SSTAs in the tropical Indian Ocean.The winter signal of Category II summer monsoon anomalous activity mainly originates from the polar region and the middle and high latitudes of the Eurasian continent.CategoryⅡmonsoon activity is also associated with summer SSTAs in the equatorial central Pacific.
基金supported by the Natural Science Foundation of Hebei Province(D202450411)the Basic Research Programme of Chinese Academy of Geological Sciences(CAGS)(YK202302).
文摘Based on meteorological data collected over nearly 60 years(1960-2017)from four national meteorological stations along the margins of the Badain Jaran Desert,this study analyzed the spatiotemporal variations in evaporation from water surfaces and identified the dominant controlling factors.Methods used included linear trend analysis,linear tendency estimation,the departure method,the rank correlation coefficient-based method,and Multiple Linear Regression(MLR).Results indicate notable spatiotemporal differences in evaporation distribution and evolution.Spatially,average annual evaporation exhibited a pronounced altitude effect,decreasing at a rate of about 8.23 mm/m from east to west with increasing altitude.Temporally,annual evaporation showed significant upward trends after 1996 at the northeastern(Guaizi Lake)and western(Dingxin)margins,with rates of 132 mm/10a and 105 mm/10a,respectively.Conversely,along the northwestern(Ejina Banner)and southern(Alxa Right Banner)margins of the desert,an evaporation paradox was observed,with annual evaporation trending downward at rates of 162 mm/10a and 187 mm/10a,respectively,especially after 1987.The dominant factors controlling evaporation varied spatially:Average annual temperature and relative humidity influended the western margin(Dingxin),average annual temperature was the key factor for the northeastern margin(Guaizi Lake),and average wind speed was crucial for the northern(Ejina Banner)and southern(Alxa Right Banner)margins.
基金We appreciate supports from the National Key Research and Development Program of China(2016YFD0101801)the National Natural Science Foundation of China(31871715)+2 种基金the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences(ICS2020YJ07BX,1610092015003-10,and Y2020PT24)the Open Program from the Guangxi Key Laboratory of Rice Genetics and Breeding(2018-05-Z06-KF01)the“Green Super Rice”Project from Bill&Melinda Gates’Foundation(OPP1130530).
文摘Dominant early heading(DEH)in rice(Oryza sativa L.)is of interest in both breeding and genetics.The genetic mechanisms underlying DEH have remained largely unclear.We have developed a near-isogenic DEH line without yield drag named DEH_229 by sister-line backcross(BC)breeding with MH63,a restorer,as the genetic background.We conducted a pilot genetic investigation under both short-day(SD)and long-day(LD)conditions.The DEH line harbored only 1.06%variation in the genome sequence relative to MH63.The variants were distributed throughout the genome.Using QTL mapping by sequencing(QTL-seq)on an F_(2) population derived from a cross of MH63×DEH_229,57 loci were detected under the SD condition.Joint mapping employing a genome-wide association study with accessions from the 3000 rice genome sequencing project(3K-RG),reduced the number of QTL by 43.9%.Using Rice Functional Genomics&Breeding(RFGB)database,the number of SNP cluster regions within the QTL regions reduced by 27.3%.Further comparison of the genome variation between DEH_229 and MH63 in addition to gene annotation information revealed a new DEH allele of DTH3 with multiple variable sites as a possible major factor underlying the early-heading phenotype of DEH_229.An InDel marker,ZMEH_1,was designed based on the variation between DEH_229 and MH63 within this region.It accounted for 86.0%of heading date variation under both SD and LD conditions in 109 randomly chosen progeny derived from extreme lines of the MH63×DEH_229 population.This study reveals the genetic complexity of DEH in the near-isogenic line and may provide useful material and marker information for plant molecular breeding.
基金Supported by the Innovation Team Project of Ecological Environment Monitoring and Restoration of Fishery Waters in the East China Sea of the Chinese Academy of Fishery Sciences(No.2020TD14)the National Basic Research Program of China(973 Program)(No.2010CB429005)。
文摘The estuarine areas are under frequent influence from freshwater intrusion and ocean currents,in which zooplankton species are diversified and variable as they are sensitive to physio-chemical variations in water.Therefore,understanding the relationships between zooplankton and environmental factors help us know the water quality.To achieve co-existence with species in similar ecological group or habit,they could inevitably alter themselves to fit the ecology and adjust the function according to the competitive exclusion in ecological theory.However,information of the co-existence of dominant species in the Changjiang(Yangtze)River estuary(CRE)and adjacent waters remains scarce.We explored the relationships between dominant zooplankton and environmental factors in the study region in spring-summer from 2016 to 2020,involving particularly the composition of dominant species,ecological groups,their relationships with environmental factors,and co-existence of important species,using the non-multidimensional scale analysis(nMDS)method and redundancy analysis.Results show that Labidocera euchaeta and Tortanus vermiculus were dominant species in the study scope.The turnover rate of dominant zooplankton was greater(>50%)in spring while the species number was higher in summer.The dominant species were estuarine,offshore,and eurytopic based on the adaptation to salinity.In spring,the ecological groups were dominated by estuarine species,while in summer by estuarine and offshore species.In addition,the nMDS showed that the dominant species in the same ecological group were more dispersed and not prominently clustered;the dominant species were staggered among different ecological groups.The temperature,salinity,pH,dissolved oxygen,and chlorophyll a were the main environmental factors on the distribution of the dominant species in spring,while in summer were dissolved oxygen,temperature,salinity,and pH.The domination of medusae of Nemopsis bachei and Pleurobrachia globosa in zooplankton community in spring,and the continuous decrease in abundance of L.euchaeta reflected the effects of local climate change.The temperature and salinity changes in different years and the subsequent response of zooplankton reflected the influence of freshwater intrusion and/or ocean currents.Zooplankton in similar ecological habits exhibited the competitive exclusion in terms of co-existence.
基金the Qinghai Province Science and Technology Plan Basic Research Program(grant number 2022-ZJ-718)the Second Tibetan Plateau Scientific Expedition and Research Program(grant number 2019QZKK0608)。
文摘Over the last few decades,the ecological quality of the Qinghai–Tibet Plateau(QTP)has significantly changed due to climate warming,humidification,and increasing human activities.Thus,evaluating this region's ecological quality and dominant factors is crucial for sustainable development.In this study,the changes in the ecological quality on the QTP from 2000 to 2020 were evaluated based on aggregated indices and Sen–MK trend analyses,and the dominant factors affecting the ecological quality of the QTP were quantitatively analyzed using decision tree classification.The results revealed that(1)the ecological quality of the QTP exhibited an overall high trend in the east and a low pattern in the west;(2)the ecological quality of the QTP significantly increased from 2000 to 2020,and human activities were the dominant factors causing this change;and(3)the changes in the ecological quality and dominant factors exhibited obvious spatiotemporal heterogeneity.The area with an improved ecological quality occurred mainly in the northern QTP region.It was governed by human activities and precipitation.In contrast,the area with a deteriorated ecological quality occurred largely in the southern QTP region and was dominated by human activities and temperature.The 2000–2010 period was the most significant period of heterogeneity regarding of ecological quality and its driving factors.(4)The change in the ecological quality was mainly affected by the synergistic relationship between human activities and climate change in this region,which encompassed multiple dominant factors.This study provides important information on the spatiotemporal heterogeneity of ecological quality change and its dominant factors on the QTP and offers systematic guidance for the planning and implementation of ecological protection projects.
文摘BACKGROUND Renal cysts and diabetes(RCAD)syndrome is an autosomal dominant diabetic renal disease.Precise molecular diagnosis of RCAD syndrome has proven valuable for understanding its mechanism and personalized therapy.CASE SUMMARY A RCAD patient and her family were studied to investigate potential responsible genes by the whole exome sequencing(WES).Candidate pathogenic variants were validated by Sanger sequencing.The clinical characteristics of RCAD patient were collected from medical records.Unlike those typical RCAD patients,we observed renal manifestation and prediabetes phenotype,but not reproductive organ phenotype and hypomagnesaemia.A novel 7-bp deletion mutation in exon 4 of the hepatocyte nuclear factor 1B,NM_000458:c.882_888del(p.V294fs),was identified by WES and confirmed by Sanger sequencing.CONCLUSION This novel mutation identified in a Chinese family with RCAD syndrome might be the molecular pathogenic basis of this disorder.
基金Supported by Grants-in-aid from the Ministry of Education,Culture,Sports,Science,and Technology the Ministry of Health,Labour and Welfare,Japan(in part)by Foundation for Promotion of Cancer Research in Japan
文摘Advances in molecular research in cancer have brought new therapeutic strategies into clinical usage.One new group of targets is tyrosine kinase receptors,which can be treated by several strategies,including small molecule tyrosine kinase inhibitors(TKIs) and monoclonal antibodies(mAbs).Aberrant activation of growth factors/receptors and their signal pathways are required for malignant transformation and progression in gastrointestinal(GI) carcinomas.The concept of targeting specif ic carcinogenic receptors has been validated by successful clinical application of many new drugs.Type I insulin-like growth factor(IGF) receptor(IGF-IR) signaling potently stimulates tumor progression and cellular differentiation,and is a promising new molecular target in human malignancies.In this review,we focus on this promising therapeutic target,IGF-IR.The IGF/IGF-IR axis is an important modifier of tumor cell proliferation,survival,growth,and treatment sensitivity in many malignant diseases,including human GI cancers.Preclinical studies demonstrated that downregulation of IGF-IR signals reversed the neoplastic phenotype and sensitized cells to anticancer treatments.These results were mainly obtained through our strategy of adenoviruses expressing dominant negative IGF-IR(IGF-IR/dn) against gastrointestinal cancers,including esophagus,stomach,colon,and pancreas.We also summarize a variety of strategies to interrupt the IGFs/IGF-IR axis and their preclinical experiences.Several mAbs and TKIs targeting IGF-IR have entered clinical trials,and early results have suggested that these agents have generally acceptable safety profiles as single agents.We summarize the advantages and disadvantages of each strategy and discuss the merits/demerits of dual targeting of IGF-IR and other growth factor receptors,including Her2 and the insulin receptor,as well as other alternatives and possible drug combinations.Thus,IGF-IR might be a candidate for a molecular therapeutic target in human GI carcinomas.
基金Under the auspices of National Natural Science Foundation of China(No.41901355)National Key R&D Program of China(No.2021YFD1500702)。
文摘Climate change can affect wind erosion power and hence induce changes in wind erosion rates.In this study,the wind erosion climate factor(C-factor),proposed by the Food and Agriculture Organization of the United Nations,was used to assess the impact of changes in climate on wind erosion climatic erosivity.The Mann-Kendall test was employed to detect trends in the C-factor during the period of 1961–2017 in the farming-pastoral zone of northern China.Sensitivity analysis was used to determine the sensitivity of the C-factor to changes in key climate factors.Furthermore,a comparison of the contributions of different climate factors was carried out to understand their impact on changes in the C-factor.The results indicated that most of the surveyed region exhibited decreasing trends in wind speed at a confidence level of 90%,while maximum and minimum temperatures showed increasing trends throughout the study area.As a consequence of decreasing wind speed,the annual C-factor exhibited significant decreasing trends,with a mean slope of–0.58/yr.Seasonal analysis revealed that in most regions,the changes in the C-factor had significant decreasing trends in spring,winter,and autumn,while in more than two-thirds of the study area,no significant change trends in the C-factor were detected in summer at a confidence level of 90%.Sensitivity analysis showed that the C-factor was most sensitive to wind speed,and that the sensitivity coefficients from July to September were much higher than those in other months.Contribution analysis revealed that,for most stations,wind speed(with greater values of sensitivity coefficients)was the dominant factor in the change of C-factor,while for some stations,the minimum temperature made the most contribution to the C-factor’s change due to its dramatic changes during the study period.Although the minimum temperature sensitivity coefficient was the lowest of all the sensitivity coefficients,it is urgent to evaluate the expected impact of minimum temperature due to its possible changes in the future.
基金Under the auspices of the Chinese Academy of Sciences(CAS)Strategic Leading Science and Technology Project Category A(No.XDA23100203)National Natural Science Foundation of China(No.42071144,41501093,41771118)+1 种基金Key Research and Development Program of China(No.2016YFC0501601)Fundamental Research Funds for the Central Universities(No.GK202003060)。
文摘Reference evapotranspiration(ET_(0))is a vital component in hydrometeorological research and is widely applied to various aspects,such as water resource management,hydrological modeling,irrigation deployment,and understanding and predicting the influence of hydrologic cycle variations on future climate and land use changes.Quantifying the influence of various meteorological variables on ET_(0) is not only helpful for predicting actual evapotranspiration but also has important implications for understanding the impact of global climate change on regional water resources.Based on daily data from 69 meteorological stations,the present study analyzed the spatiotemporal pattern of ET_(0) and major contributing meteorological variables to ET_(0) from 1960 to 2017 by the segmented re-gression model,Mann-Kendall test,wavelet analysis,generalized linear model,and detrending method.The results showed that the annual ET_(0) declined slightly because of the combined effects of the reduction in solar radiation and wind speed and the increase in vapor pressure deficit(VPD)and average air temperature in the Loess Plateau(LP)during the past 58 yr.Four change points were detected in 1972,1990,1999,and 2010,and the annual ET_(0) showed a zigzag change trend of‘increasing-decreasing-increasing-decreasing-increasing’.Wind speed and VPD played a leading role in the ET_(0) changes from 1960 to 1990 and from 1991 to 2017,respectively.This study confirms that the dominant meteorological factors affecting ET_(0) had undergone significant changes due to global climate change and vegetation greening in the past 58 years,and VPD had become the major factor controlling the ET_(0) changes on the LP.The data presented herein will contribute to increasing the accuracy of predictions on future changes in ET_(0).