期刊文献+
共找到2,327篇文章
< 1 2 117 >
每页显示 20 50 100
Enhancing multifunctional photocatalysis with acetate-assisted cesium doping and unlocking the potential of Z-scheme solar water splitting
1
作者 Mengmeng Ma Jingzhen Li +6 位作者 Xiaogang Zhu Kong Liu Kaige Huang Guodong Yuan Shizhong Yue Zhijie Wang Shengchun Qu 《Carbon Energy》 SCIE EI CAS CSCD 2024年第3期178-195,共18页
Graphitic carbon nitride(g-C_(3)N_(4))has been extensively doped with alkali metals to enlarge photocatalytic output,in which cesium(Cs)doping is predicted to be the most efficient.Nevertheless,the sluggish diffusion ... Graphitic carbon nitride(g-C_(3)N_(4))has been extensively doped with alkali metals to enlarge photocatalytic output,in which cesium(Cs)doping is predicted to be the most efficient.Nevertheless,the sluggish diffusion and doping kinetics of precursors with high melting points,along with imprecise regulation,have raised the debate on whether Cs doping could make sense.For this matter,we attempt to confirm the positive effects of Cs doping on multifunctional photocatalysis by first using cesium acetate with the character of easy manipulation.The optimized Csdoped g-C_(3)N_(4)(CCN)shows a 41.6-fold increase in visible-light-driven hydrogen evolution reaction(HER)compared to pure g-C_(3)N_(4) and impressive degradation capability,especially with 77%refractory tetracycline and almost 100%rhodamine B degradedwithin an hour.The penetration ofCs+is demonstrated to be a mode of interlayer doping,and Cs–N bonds(especially with sp^(2) pyridine N in C═N–C),along with robust chemical interaction and electron exchange,are fabricated.This atomic configuration triggers the broadened spectral response,the improved charge migration,and the activated photocatalytic capacity.Furthermore,we evaluate the CCN/cadmium sulfide hybrid as a Z-scheme configuration,promoting the visible HER yield to 9.02 mmol g^(−1) h^(−1),which is the highest ever reported among all CCN systems.This work adds to the rapidly expanding field of manipulation strategies and supports further development of mediating served for photocatalysis. 展开更多
关键词 acetate-assisted cesium doping MULTIFUNCTIONAL PHOTOCATALYSIS Z-scheme
下载PDF
Pillar effect induced by ultrahigh phosphorous/nitrogen doping enables graphene/MXene film with excellent cycling stability for alkali metal ion storage
2
作者 Meng Qin Yiwei Yao +5 位作者 Junjie Mao Chi Chen Kai Zhu Guiling Wang Dianxue Cao Jun Yan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期146-156,I0004,共12页
Graphene's large theoretical surface area and high conductivity make it an attractive anode material for potassium-ion batteries(PIBs).However,its practical application is hindered by small interlayer distance and... Graphene's large theoretical surface area and high conductivity make it an attractive anode material for potassium-ion batteries(PIBs).However,its practical application is hindered by small interlayer distance and long ion transfer distance.Herein,this paper aims to address the issue by introducing MXene through a simple and scalable method for assembling graphene and realizing ultrahigh P doping content.The findings reveal that MXene and P-C bonds have a "pillar effect" on the structure of graphene,and the P-C bond plays a primary role.In addition,N/P co-doping introduces abundant defects,providing more active sites for K^(+) storage and facilitating K^(+) adsorption.As expected,the developed ultrahigh phosphorous/nitrogen co-doped flexible reduced graphene oxide/MXene(NPrGM) electrode exhibits remarkable reversible discharge capacity(554 mA hg^(-1) at 0.05 A g^(-1)),impressive rate capability(178 mA h g^(-1) at 2 A g^(-1)),and robust cyclic stability(0.0005% decay per cycle after 10,000 cycles at 2 A g^(-1)).Furthermore,the assembled activated carbon‖NPrGM potassium-ion hybrid capacitor(PIHC) can deliver an impressive energy density of 131 W h kg^(-1) and stable cycling performance with 98.1% capacitance retention after5000 cycles at 1 A g^(-1).Such a new strategy will effectively promote the practical application of graphene materials in PIBs/PIHCs and open new avenues for the scalable development of flexible films based on two-dimensional materials for potential applications in energy storage,thermal interface,and electromagnetic shielding. 展开更多
关键词 GRAPHENE MXene Phosphorous doping Pillar effect Potassium-ion batteries
下载PDF
Stable multi-electron reaction stimulated by W doping VS_(4)for enhancing magnesium storage performance
3
作者 Yuxin Tian Jiankang Chen +7 位作者 Guofeng Wang Bing Sun Alan Meng Lei Wang Guicun Li Jianfeng Huang Shiqi Ding Zhenjiang Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期89-98,I0004,共11页
Rechargeable magnesium batteries(RMBs)hold promise for offering higher volumetric energy density and safety features,attracting increasing research interest as the next post lithium-ion batteries.Developing high perfo... Rechargeable magnesium batteries(RMBs)hold promise for offering higher volumetric energy density and safety features,attracting increasing research interest as the next post lithium-ion batteries.Developing high performance cathode material by inducing multi-electron reaction process as well as maintaining structural stability is the key to the development and application of RMBs.Herein,multielectron reaction occurred in VS_(4)by simple W doping strategy.W doping induces valence of partial V as V^(2+)and V^(3+)in VS_(4)structure,and then stimulates electrochemical reaction involving multi-electrons in 0.5%W-V-S.The flower-like microsphere morphology as well as rich S vacancies is also modulated by W doping to neutralize structure change in such multi-electron reaction process.The fabricated 0.5%W-V-S delivers higher specific capacity(149.3 m A h g^(-1)at 50 m A g^(-1),which is 1.6 times higher than that of VS_(4)),superior rate capability(76 mA h g^(-1)at 1000 mA g^(-1)),and stable cycling performance(1500cycles with capacity retention ratio of 93.8%).Besides that,pesudocapaticance-like contribution analysis as well as galvanostatic intermittent titration technique(GITT)further confirms the enhanced Mg^(2+)storage kinetics during such multi-electron involved electrochemical reaction process.Such discovery provides new insights into the designing of multi-electron reaction process in cathode as well as neutralizing structural change during such reaction for realizing superior electrochemical performance in energy storage devices. 展开更多
关键词 Multi-electron reaction W doping Stable structure CATHODE Rechargeable magnesium batteries
下载PDF
Defect engineering on BiFeO_(3) through Na and V codoping for aqueous Na-ion capacitors
4
作者 Wenyun Wang Chao Yang +4 位作者 Shangjing Yu Daotong Han Wentao Qi Rui Ling Guangqiang Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期453-463,I0011,共12页
Sodium with low cost and high abundance is considered as a substitute element of lithium for batteries and supercapacitors,which need the appropriate host materials to accommodate the relatively large Na^(+) ions.Comp... Sodium with low cost and high abundance is considered as a substitute element of lithium for batteries and supercapacitors,which need the appropriate host materials to accommodate the relatively large Na^(+) ions.Compared to Li^(+) storage,Na^(+) storage makes higher demands on the structural optimization of perovskite bismuth ferrite(BiFeO_(3)).We propose a novel strategy of defect engineering on BiFeO_(3) through Na and V codoping for high-efficiency Na^(+) storage,to reveal the roles of oxygen vacancies and V ions played in the enhanced electrochemical energy storage performances of Na-ion capacitors.The formation of the oxygen vacancies in the Na and V codoped BiFeO_(3)(denoted as NV-BFO),is promoted by Na doping and suppressed by V doping,which can be demonstrated by XPS and EPR spectra.By the first-principles calculations,the oxygen vacancies and V ions in NV-BFO are confirmed to substantially lower the Na^(+)migration energy barriers through the space and electric field effects,to effectively promote the Na^(+) transport in the crystals.Electrochemical kinetic analysis of the NV-BFO//NV-BFO capacitors indicates the dominant capacitive-controlled capacity,which depends on fast Na^(+) deintercalation-intercalation process in the NV-BFO electrode.The NV-BFO//NV-BFO capacitors open up a new avenue for developing highperformance Na-ion capacitors. 展开更多
关键词 BiFeO_(3) Na^(+) storage V doping Oxygen vacancy CAPACITOR
下载PDF
Enhancing the stability of Ni Fe-layered double hydroxide nanosheet array for alkaline seawater oxidation by Ce doping
5
作者 Yongchao Yao Shengjun Sun +14 位作者 Hui Zhang Zixiao Li Chaoxin Yang Zhengwei Cai Xun He Kai Dong Yonglan Luo Yan Wang Yuchun Ren Qian Liu Dongdong Zheng Weihua Zhuang Bo Tang Xuping Sun Wenchuang(Walter)Hu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期306-312,共7页
Electrocatalytic hydrogen production from seawater holds enormous promise for clean energy generation.Nevertheless,the direct electrolysis of seawater encounters significant challenges due to poor anodic stability cau... Electrocatalytic hydrogen production from seawater holds enormous promise for clean energy generation.Nevertheless,the direct electrolysis of seawater encounters significant challenges due to poor anodic stability caused by detrimental chlorine chemistry.Herein,we present our recent discovery that the incorporation of Ce into Ni Fe layered double hydroxide nanosheet array on Ni foam(Ce-Ni Fe LDH/NF)emerges as a robust electrocatalyst for seawater oxidation.During the seawater oxidation process,CeO_(2)is generated,effectively repelling Cl^(-)and inhibiting the formation of Cl O-,resulting in a notable enhancement in the oxidation activity and stability of alkaline seawater.The prepared Ce-Ni Fe LDH/NF requires only overpotential of 390 m V to achieve the current density of 1 A cm^(-2),while maintaining long-term stability for 500 h,outperforming the performance of Ni Fe LDH/NF(430 m V,150 h)by a significant margin.This study highlights the effectiveness of a Ce-doping strategy in augmenting the activity and stability of materials based on Ni Fe LDH in seawater electrolysis for oxygen evolution. 展开更多
关键词 Ce doping NiFe layered double hydroxide Seawater oxidation Electrocatalysis Cl^(-) repulsion
下载PDF
Surface doping manipulation of the insulating ground states in Ta_(2)Pd_(3)Te_(5) and Ta_(2)Ni_(3)Te_(5)
6
作者 江北 姚静宇 +8 位作者 闫大禹 郭照芃 屈歌星 邓修同 黄耀波 丁洪 石友国 王志俊 钱天 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期88-93,共6页
Manipulating emergent quantum phenomena is a key issue for understanding the underlying physics and contributing to possible applications.Here we study the evolution of insulating ground states of Ta_(2)Pu_(3)Te_(5) a... Manipulating emergent quantum phenomena is a key issue for understanding the underlying physics and contributing to possible applications.Here we study the evolution of insulating ground states of Ta_(2)Pu_(3)Te_(5) and Ta_(2)Ni_(3)Te_(5) under in-situ surface potassium deposition via angle-resolved photoemission spectroscopy.Our results confirm the excitonic insulator character of Ta_(2)d_(3)Te_(5).Upon surface doping,the size of its global gap decreases obviously.After a deposition time of more than 7 min,the potassium atoms induce a metal-insulator phase transition and make the system recover to a normal state.In contrast,our results show that the isostructural compound Ta_(2)Ni_(3)Te_(5) is a conventional insulator.The size of its global gap decreases upon surface doping,but persists positive throughout the doping process.Our results not only confirm the excitonic origin of the band gap in Ta_(2)Pd_(3)Te_(5),but also offer an effective method for designing functional quantum devices in the future. 展开更多
关键词 excitonic insulator metal–insulator phase transition surface doping angle-resolved photoemission spectroscopy
下载PDF
Mott Gap Filling by Doping Electrons through Depositing One Sub-Monolayer Thin Film of Rb on Ca_(2)CuO_(2)Cl_(2)
7
作者 李寒 王朝晖 +3 位作者 范圣泰 李华州 杨欢 闻海虎 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第5期90-96,共7页
Understanding the doping evolution from a Mott insulator to a superconductor probably holds the key to resolve the mystery of unconventional superconductivity in copper oxides. To elucidate the evolution of the electr... Understanding the doping evolution from a Mott insulator to a superconductor probably holds the key to resolve the mystery of unconventional superconductivity in copper oxides. To elucidate the evolution of the electronic state starting from the Mott insulator, we dose the surface of the parent phase Ca_(2)CuO_(2)Cl_(2) by depositing Rb atoms, which are supposed to donate electrons to the CuO_(2) planes underneath. We successfully achieved the Rb sub-monolayer thin films in forming the square lattice. The scanning tunneling microscopy or spectroscopy measurements on the surface show that the Fermi energy is pinned within the Mott gap but close to the edge of the charge transfer band. In addition, an in-gap state appears at the bottom of the upper Hubbard band(UHB), and the Mott gap will be significantly diminished. Combined with the Cl defect and the Rb adatom/cluster results, the electron doping is likely to increase the spectra weight of the UHB for the double occupancy. Our results provide information to understand the electron doping to the parent compound of cuprates. 展开更多
关键词 doping holds Electron
下载PDF
Enhanced stability of FA-based perovskite:Rare-earth metal compound EuBr_(2) doping
8
作者 候敏娜 郭旭 +6 位作者 韩梅斗雪 赵均陶 王志元 丁毅 侯国付 张宗胜 韩小平 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期669-675,共7页
It is highly desirable to enhance the long-term stability of perovskite solar cells(PSCs)so that this class of photovoltaic cells can be effectively used for the commercialization purposes.In this contribution,attempt... It is highly desirable to enhance the long-term stability of perovskite solar cells(PSCs)so that this class of photovoltaic cells can be effectively used for the commercialization purposes.In this contribution,attempts have been made to use the two-step sequential method to dope EuBr_(2)into FAMAPbI_(3)perovskite to promote the stability.It is shown that the device durability at 85℃in air with RH of 20%-40%is improved substantially,and simultaneously the champion device efficiency of 23.04%is achieved.The enhancement in stability is attributed to two points:(ⅰ)EuBr_(2)doping effectively inhibits the decomposition andα-δphase transition of perovskite under ambient environment,and(ⅱ)EuBr_(2)aggregates in the oxidized format of Eu(BrO_(3))_(3)at perovskite grain boundaries and surface,hampering humidity erosion and mitigates degradation through coordination with H_(2)O. 展开更多
关键词 EuBr_(2) doping inhibited phase transition and decomposition STABILITY perovskite solar cell
下载PDF
Progress in efficient doping of Al-rich AlGaN
9
作者 Jiaming Wang Fujun Xu +14 位作者 Lisheng Zhang Jing Lang Xuzhou Fang Ziyao Zhang Xueqi Guo Chen Ji Chengzhi Ji Fuyun Tan Xuelin Yang Xiangning Kang Zhixin Qin Ning Tang Xinqiang Wang Weikun Ge Bo Shen 《Journal of Semiconductors》 EI CAS CSCD 2024年第2期10-20,共11页
The development of semiconductors is always accompanied by the progress in controllable doping techniques.Taking AlGaN-based ultraviolet(UV)emitters as an example,despite a peak wall-plug efficiency of 15.3%at the wav... The development of semiconductors is always accompanied by the progress in controllable doping techniques.Taking AlGaN-based ultraviolet(UV)emitters as an example,despite a peak wall-plug efficiency of 15.3%at the wavelength of 275 nm,there is still a huge gap in comparison with GaN-based visible light-emitting diodes(LEDs),mainly attributed to the inefficient doping of AlGaN with increase of the Al composition.First,p-doping of Al-rich AlGaN is a long-standing challenge and the low hole concentration seriously restricts the carrier injection efficiency.Although p-GaN cladding layers are widely adopted as a compromise,the high injection barrier of holes as well as the inevitable loss of light extraction cannot be neglected.While in terms of n-doping the main issue is the degradation of the electrical property when the Al composition exceeds 80%,resulting in a low electrical efficiency in sub-250 nm UV-LEDs.This review summarizes the recent advances and outlines the major challenges in the efficient doping of Al-rich AlGaN,meanwhile the corresponding approaches pursued to overcome the doping issues are discussed in detail. 展开更多
关键词 AlGaN-based UV-LEDs Al-rich AlGaN doping
下载PDF
Photodoping-Modified Charge Density Wave Phase Transition in WS_(2)/1T-TaS_(2) Heterostructure
10
作者 王瑞 丁建伟 +2 位作者 孙飞 赵继民 裘晓辉 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第5期144-170,共27页
Controlling collective electronic states hold great promise for development of innovative devices. Here, we experimentally detect the modification of the charge density wave(CDW) phase transition within a 1T-TaS_(2) l... Controlling collective electronic states hold great promise for development of innovative devices. Here, we experimentally detect the modification of the charge density wave(CDW) phase transition within a 1T-TaS_(2) layer in a WS_(2)/1T-TaS_(2) heterostructure using time-resolved ultrafast spectroscopy. Laser-induced charge transfer doping strongly suppresses the commensurate CDW phase, which results in a significant decrease in both the phase transition temperature(T_(c)) and phase transition stiffness. We interpret the phenomenon that photoinduced hole doping, when surpassing a critical threshold value of ~ 10^(18)cm^(-3), sharply decreases the phase transition energy barrier. Our results provide new insights into controlling the CDW phase transition, paving the way for optical-controlled novel devices based on CDW materials. 展开更多
关键词 doping TRANSITION TRANSITION
下载PDF
Foodborne doping and supervision in sports 被引量:1
11
作者 Wei Chen Xiaoyu Cheng +1 位作者 Yingnan Ma Ning Chen 《Food Science and Human Wellness》 SCIE CSCD 2023年第6期1925-1936,共12页
Cases of foodborne doping are frequently reported in sports events and can cause severe consequences for athletes.The foodborne doping can be divided into natural endogenous and artifi cially added foods according to ... Cases of foodborne doping are frequently reported in sports events and can cause severe consequences for athletes.The foodborne doping can be divided into natural endogenous and artifi cially added foods according to the sources,including anabolic agents,stimulants,diuretics,β-blockers,β2 agonists and others.In order to control foodborne doping,chromatographic technique,immunoassay,nuclear magnetic resonance,biosensor technology,pyrolytic spectroscopy,comprehensive analysis and electrochemical analysis have usually used as analytical and inspection strategies.Meanwhile,the legislation of anti-doping,the improvement of testing standard and technology,and the prevention and control of food safety,as well as the improvement of risk perception of athletes are highly necessary for achieving the effective risk control and supervision of foodborne doping,which will be benefi cial for athletes,doctors and administrators to avoid the risks of foodborne doping test and reduce foodborne doping risks for the health of athletes. 展开更多
关键词 Foodborne doping doping control ATHLETES ANTI-doping SUPERVISION
下载PDF
Doping sites modulation of T-Nb_(2)O_(5) to achieve ultrafast lithium storage 被引量:1
12
作者 Xiaobo Ding Huiying Huang +4 位作者 Qianhui Huang Benrui Hu Xiaokang Li Xiangdong Ma Xunhui Xiong 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期280-289,I0008,共11页
Heteroatoms doping has been regarded as a promising route to modulate the physiochemical properties of electrode materials,in which the doping sites greatly influence the electrochemical performances.However,very few ... Heteroatoms doping has been regarded as a promising route to modulate the physiochemical properties of electrode materials,in which the doping sites greatly influence the electrochemical performances.However,very few reports focus on enhancing the lithium storage performances of Nb_(2)O_(5) via heteroatoms doping,yet the effect of different doping sites remains unclear.Herein,nitrogen doping has been proposed to improve the fast-charging capability of orthorhombic Nb_(2)O_(5)(T-Nb_(2)O_(5))via a urea-assisted annealing process.Experimental data and theoretical calculation demonstrate that the N doping sites in T-Nb_(2)O_(5) can be tuned by the heating rate,in which substitutional N can increase the spacing of the Li^(+)transport layer as well as reduce the band gap,while interstitial N can provide an electron-rich environment for Li^(+)transport layer and then reduce the Li^(+)diffusion barrier.Arising from the synergistic effect of N doping at different sites,the N-doped T-Nb_(2)O_(5) without carbon coating delivers impressive rate performance(104.6 mA h g^(-1) at 25 C)as well as enhanced cycle stability with a retention of 70.5%over1000 cycles at 5 C.In addition,the assembled lithium ion capacitor exhibits a high energy density of46.6 Wh kg^(-1) even at high power density of 8.4 kW kg^(-1). 展开更多
关键词 Niobium oxide Nitrogen doping doping site Lithium-ion capacitor
下载PDF
Self-Catalyzed Rechargeable Lithium-Air Battery by in situ Metal Ion Doping of Discharge Products: A Combined Theoretical and Experimental Study 被引量:3
13
作者 Mengwei Yuan Zemin Sun +6 位作者 Han Yang Di Wang Qiming Liu Caiyun Nan Huifeng Li Genban Sun Shaowei Chen 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第1期129-137,共9页
Lithium-air battery has emerged as a viable electrochemical energy technology;yet a substantial overpotential is typically observed,due to the insulating nature of the discharge product Li_(2)O_(2) that hinders the re... Lithium-air battery has emerged as a viable electrochemical energy technology;yet a substantial overpotential is typically observed,due to the insulating nature of the discharge product Li_(2)O_(2) that hinders the reaction kinetics and device performance.Furthermore,finite solid–solid/-liquid interfaces are formed between Li_(2)O_(2) and catalysts and limit the activity of the electrocatalysts in battery reactions,leading to inadequate electrolytic efficiency.Herein,in-situ doping of Li_(2)O_(2) by select metal ions is found to significantly enhance the lithium-air battery performance,and Co^(2+)stands out as the most effective dopant among the series.This is ascribed to the unique catalytic activity of the resulting Co-O_(x) sites towards oxygen electrocatalysis,rendering the lithium-air battery self-catalytically active.Theoretical studies based on density functional theory calculations show that structural compression occurs upon Co^(2+)doping,which lowers the energy barrier of Li_(2)O_(2) decomposition.Results from this study highlight the significance of in situ electrochemical doping of the discharge product in enhancing the performance of lithium-air battery. 展开更多
关键词 Co^(2+)-doped Li_(2)O_(2) density functional theory in situ electrochemical doping lithium-air battery self-catalysis
下载PDF
Realizing high-performance Na_(3)V_(2)(PO_(4))_(2)O_(2)F cathode for sodium-ion batteries via Nb-doping
14
作者 Jie Wang Yifeng Yuan +6 位作者 Xianhui Rao Min’an Yang Doudou Wang Ailing Zhang Yan Chen Zhaolin Li Hailei Zhao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第10期1859-1867,共9页
Na_(3)V_(2)(PO_(4))_(2)O_(2)F(NVPOF)has received considerable interest as a promising cathode material for sodium-ion batteries because of its high working voltage and good structural/thermal stability.However,the slu... Na_(3)V_(2)(PO_(4))_(2)O_(2)F(NVPOF)has received considerable interest as a promising cathode material for sodium-ion batteries because of its high working voltage and good structural/thermal stability.However,the sluggish electrode reaction resulting from its low intrinsic electronic conductivity significantly restricts its electrochemical performance and thus its practical application.Herein,Nb-doped Na_(3)V_(2-x)Nb_(x)(PO_(4))_(2)O_(2)F/graphene(rGO)composites(x=0,0.05,0.1)were prepared using a solvothermal method followed by calcination.Compared to the un-doped NVPOF/r GO,doping V-site with high-valence Nb element(Nb^(5+))(Na_(3)V_(1.95)Nb_(0.05)(PO_(4))_(2)O_(2)F/r GO(NVN05POF/rGO))can result in the generated V4^(+)/V3^(+)mixed-valence,ensuring the lower bandgap and thus the increased intrinsic electronic conductivity.Besides,the expanded lattice space favors the Na^(+)migration.With the structure feature where NVN05POF particles are attached to the rGO sheets,the electrode reaction kinetics is further accelerated owing to the well-constructed electron conductive network.As a consequence,the as-prepared NVN05POF/r GO sample exhibits a high specific capacity of~72 m Ah·g^(-1)at 10C(capacity retention of 65.2%(vs.0.5C))and excellent long-term cycling stability with the capacity fading rate of~0.099%per cycle in 500 cycles at 5C. 展开更多
关键词 sodium vanadium fluorophosphate CATHODE doping rate capability sodium-ion batteries
下载PDF
Anomalous metastable hcp Ni nanocatalyst induced by non-metal N doping enables promoted ammonia borane dehydrogenation
15
作者 Ping Li Yuqi Huang +3 位作者 Quhua Huang Ran Chen Jixin Li Shuanghong Tian 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期72-82,共11页
Developing high-performing non-noble transition metal catalysts for H_(2) evolution from chemical hydrogen storage materials is of great significance for the hydrogen economy system, yet challenging. Herein,we present... Developing high-performing non-noble transition metal catalysts for H_(2) evolution from chemical hydrogen storage materials is of great significance for the hydrogen economy system, yet challenging. Herein,we present for the first time that anomalous metastable hexagonal close-packed Ni nanoparticles induced by heteroatom N doping encapsulated in carbon(N-hcp-Ni/C) can exhibit admirable catalytic performance for ammonia borane(AB) dehydrogenation, prominently outperforming conventional fcc Ni counterpart with similar morphology and favorably presenting the state-of-the-art level.Comprehensive experimental and theoretical studies unravel that unusual hcp phase engineering of Ni together with N doping could induce charge redistribution and modulate electronic structure, thereby facilitating H_(2)O adsorption and expediting H_(2)O dissociation(rate-determining step). As a result, AB dehydrogenation can be substantially boosted with the assistance of N-hcp-Ni/C. Our proposed strategy highlights that unconventional crystal phase engineering coupled with non-metal heteroatom doping is a promising avenue to construct advanced transition metal catalysts for future renewable energy technologies. 展开更多
关键词 Hcp Ni Non-metal doping Phase engineering Electronic regulation Ammonia borane dehydrogenation
下载PDF
Doping of group IVB elements for nickel-rich cobalt-free cathodes
16
作者 Shengnan Guo Xincheng Lei +9 位作者 Jiayi Wang Jie Su Yingying Wang Xiaozhi Liu Pengxiang Ji Kangning Zhao Xuefeng Wang Lin Gu Zhenpeng Yao Dong Su 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第11期559-568,I0012,共11页
Hetero-element doping is a promising strategy to improve the cycling stability of nickel-rich cobalt-free cathodes for the next-generation high energy-density Li ion batteries.To make doping effective,it is important ... Hetero-element doping is a promising strategy to improve the cycling stability of nickel-rich cobalt-free cathodes for the next-generation high energy-density Li ion batteries.To make doping effective,it is important to understand the mechanism of how the dopants regulate the electronic band,lattice parameter adjusting,or hetero-phase formation to achieve high stability.In this study,we investigate LiNi_(0.9)Mn_(0.1)O_(2)cathodes doped with IVB grouping elements via multiple characterization techniques.By utilizing in situ XRD and TEM methods,we found that the stronger Ti-O bond effectively improves the cathode stability via a dual protection mechanism.Specifically,the bulk lattice of cathode is wellpreserved during cycling as a result of the suppressed H_(2)-H_(3)phase transition,while a in situ formed Ti-rich surface layer can prevent continuous surface degradation.As a result,the 5%Ti doped LiNi_(0.9)Mn_(0.1)O_(2)cathode exhibits a high capacity retention of 96%after 100 cycles.Whereas,despite IVB group elements Zr and Hf have stronger bonding energy with oxygen,their larger ionic radii actually impede their diffusion into the cathode,thereby they can not improve the cycling stability.Our findings uncover the functional origin of doped elements with their dynamic modification on cathode structure,providing mechanistic insights into the design of nickel-rich cobalt-free cathodes. 展开更多
关键词 Li ion battery Layered cathode Cycling stability doping effect In situXRD
下载PDF
Multiferroic monolayers VOX(X = Cl, Br, I): Tunable ferromagnetism via charge doping and ferroelastic switching
17
作者 杨洪超 刘鹏程 +3 位作者 穆鎏羽 李英德 韩锴 邱潇乐 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第6期602-607,共6页
The fascinating properties arising from the interaction between different ferroic states of two-dimensional(2D) materials have inspired tremendous research interest in the past few years.Under the first-principles cal... The fascinating properties arising from the interaction between different ferroic states of two-dimensional(2D) materials have inspired tremendous research interest in the past few years.Under the first-principles calculations,we predict the coexistence of antiferromagnetic and ferroelastic states in VOX(X=Cl,Br,I) monolayers.The results illustrate that the VOX monolayers exhibit indirect bandgap characteristics,i.e.,their gaps decrease with the halide elements changing from Cl to I.The ground states of all these VOX monolayers are antiferromagnetic(AFM) with the magnetic moments contributed by the V 3d electrons.Furthermore,the magnetic ground state changing from AFM to ferromagnetism(FM) can be realized by doping carriers.In addition,the moderate ferroelastic transition barrier and reversible switching signal ensure their high performances of nonvolatile memory devices.Our findings not only offer an ideal platform for investigating the multiferroic properties,but also provide candidate materials for potential applications in spintronics. 展开更多
关键词 ANTIFERROMAGNETIC FERROELASTIC carrier doping multiferroic states
下载PDF
Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y_(3)Fe_(5)O_(12)(111) films
18
作者 贾云鹏 梁正国 +7 位作者 潘昊霖 王庆 吕崎鸣 严轶非 金锋 侯达之 王凌飞 吴文彬 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第2期27-33,共7页
Y_(3)Fe_(5)O_(12)(YIG) and Bi Y_(3)Fe_(5)O_(12)(Bi:YIG) films were epitaxially grown on a series of(111)-oriented garnet substrates using pulsed laser deposition. Structural and ferromagnetic resonance characterizatio... Y_(3)Fe_(5)O_(12)(YIG) and Bi Y_(3)Fe_(5)O_(12)(Bi:YIG) films were epitaxially grown on a series of(111)-oriented garnet substrates using pulsed laser deposition. Structural and ferromagnetic resonance characterizations demonstrated the high epitaxial quality, extremely low magnetic loss and coherent strain state in these films. Using these epitaxial films as model systems, we systematically investigated the evolution of magnetic anisotropy(MA) with epitaxial strain and chemical doping. For both the YIG and Bi:YIG films, the compressive strain tends to align the magnetic moment in the film plane while the tensile strain can compete with the demagnetization effect and stabilize perpendicular MA. We found that the strain-induced lattice elongation/compression along the out-of-plane [111] axis is the key parameter that determines the MA. More importantly, the strain-induced tunability of MA can be enhanced significantly by Bi doping;meanwhile, the ultralow damping feature persists. We clarified that the cooperation between strain and chemical doping could realize an effective control of MA in garnet-type ferrites, which is essential for spintronic applications. 展开更多
关键词 yttrium iron garnet strain engineering doping magnetic anisotropy
下载PDF
Doping-enhanced robustness of anomaly-related magnetoresistance in WTe_(2±α)flakes
19
作者 孟建超 陈鑫祥 +6 位作者 邵婷娜 刘明睿 姜伟民 张子涛 熊昌民 窦瑞芬 聂家财 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期634-638,共5页
We study systematically the negative magnetoresistance(MR)effect in WTe_(2±α)flakes with different thicknesses and doping concentrations.The negative MR is sensitive to the relative orientation between electrica... We study systematically the negative magnetoresistance(MR)effect in WTe_(2±α)flakes with different thicknesses and doping concentrations.The negative MR is sensitive to the relative orientation between electrical-/magnetic-field and crystallographic orientation of WTe_(2±α).The analysis proves that the negative MR originates from chiral anomaly and is anisotropic.Maximum entropy mobility spectrum is used to analyze the electron and hole concentrations in the flake samples.It is found that the negative MR observed in WTe_(2±α)flakes with low doping concentration is small,and the high doping concentration is large.The doping-induced disorder obviously inhibits the positive MR,so the negative MR can be more easily observed.In a word,we introduce disorder to suppress positive MR by doping,and successfully obtain the negative MR in WTe_(2±α)flakes with different thicknesses and doping concentrations,which indicates that the chiral anomaly effect in WTe_(2)is robust. 展开更多
关键词 Weyl semimetal WTe_(2±α)flakes doping chiral anomaly ROBUSTNESS
下载PDF
One-step electrochemical in-situ Li doping and LiF coating enable ultra-stable cathode for sodium ion batteries
20
作者 Jiameng Feng Chaoliang Zheng +1 位作者 De Fang Jianling Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第7期228-238,I0005,共12页
Despite of the higher energy density and inexpensive characteristics,commercialization of layered oxide cathodes for sodium ion batteries(SIBs)is limited due to the lack of structural stability at the high voltage.Her... Despite of the higher energy density and inexpensive characteristics,commercialization of layered oxide cathodes for sodium ion batteries(SIBs)is limited due to the lack of structural stability at the high voltage.Herein,the one-step electrochemical in-situ Li doping and LiF coating are successfully achieved to obtain an advanced Na0.79Lix[Li_(0.13)Ni_(0.20)Mn_(0.67)]O_(2)@LiF(NaLi-LNM@LiF)cathode with superlattice structure.The results demonstrate that the Li^(+)doped into the alkali metal layer by electrochemical cycling act as"pillars"in the form of Li-Li dimers to stabilize the layered structure.The supplementation of Li to the superlattice structure inhibits the dissolution of transition metal ions and lattice mismatch.Furthermore,the in-situ LiF coating restrains side reactions,reduces surface cracks,and greatly improves the cycling stability.The electrochemical in-situ modification strategy significantly enhances the electrochemical performance of the half-cell.The NaLi-LNM@LiF exhibits high reversible specific capacity(170.6 m A h g^(-1)at 0.05 C),outstanding capacity retention(92.65%after 200 cycles at 0.5 C)and excellent rate performance(80 mA h g^(-1)at 7 C)in a wide voltage range of 1.5-4.5 V.This novel method of in-situ modification by electrochemical process will provide a guidance for the rational design of cathode materials for SIBs. 展开更多
关键词 Sodium ion batteries Layered oxides In-situ Li doping In-situ LiF coating Superlattice structure
下载PDF
上一页 1 2 117 下一页 到第
使用帮助 返回顶部