A Y-band frequency doubler is analyzed and designed with GaAs planar Schottky diode, which is flip-chip solded into a 50 μm thick quartz substrate. Diode embedding impedance is found by full- wave analysis with lumpe...A Y-band frequency doubler is analyzed and designed with GaAs planar Schottky diode, which is flip-chip solded into a 50 μm thick quartz substrate. Diode embedding impedance is found by full- wave analysis with lumped port to model the nonlinear junction for impedance matching without the need of diode equivalent circuit model. All the matching circuit is designed "on-chip" and the mul- tiplier is self-biasing. To the doubler, a conversion efficiency of 6.1% and output power of 5.4mW are measured at 214GHz with input power of 88mW, and the typical measured efficiency is 4.5% in 200 - 225 GHz.展开更多
It is common practice in the offshore industry to solve the punching shear problem due to compression by using doubler plate. The finite-element method is a useful tool for studying this problem. The aim of this paper...It is common practice in the offshore industry to solve the punching shear problem due to compression by using doubler plate. The finite-element method is a useful tool for studying this problem. The aim of this paper is to study the static strength of doubler plate reinforced Y-joints subjected to compression loading. The finite-element method is adopted in numerical parametric studies. The individual influences of the geometric parameters βand τd (doubler plate to chord wall thickness ratio) and ld/d1(dubler plate length to brace diameter ratio) on the ultimate strength are made clear. The results show the size of plate may have important effects on the strength of reinforced joints. It is found that the ultimate strength of Y-joints reinforced with appropriately proportioned doubler plates can be greatly improved nearly up tothree times to un-reinforced Y-joints.展开更多
We report on the generation of self-oscillations from a continuously pumped singly resonant frequency doubler based on a periodically poled potassium titanyl phosphate crystal (PPKTP). The sustained square-wave and ...We report on the generation of self-oscillations from a continuously pumped singly resonant frequency doubler based on a periodically poled potassium titanyl phosphate crystal (PPKTP). The sustained square-wave and staircase curve of self-oscillations are obtained when the incident pump powers are below and above the threshold of subharmonic-pumped parametric oscillation (SPO), respectively. The self-oscillations can be explained by the competition between the phase shifts induced by cascading nonlinearity and thermal effect, and the influence of fundamental nonlinear phase shift by the generation of SPO. The simulation results are in good agreement with the experiment data.展开更多
Conjugated polymers with well-balanced ambipolar charge transport is essential for organic circuits at low cost and large area with simplified fabrication techniques.Aiming at this point,herein,a novel asymmetric thio...Conjugated polymers with well-balanced ambipolar charge transport is essential for organic circuits at low cost and large area with simplified fabrication techniques.Aiming at this point,herein,a novel asymmetric thiophene/pyridine-flanked diketopyrrolopyrrole-based copolymer(PPyTDPP-2FBT)is designed and synthesized.Due to the effect of incorporating F atoms on molecular energy alignment and conjugation conformation,the PPyTDPP-2FBT copolymer exhibits typical V-shaped ambipolar field-effect transfer characteristics with well-balanced hole and electron mobilities of 0.64 and 0.46 cm^(2)V^(−1)s^(−1),respectively.Furthermore,organic digital and analog circuits such as inverters and frequency doublers are successfully constructed based on solution-processed films of the PPyTDPP-2FBT copolymers which show a typical circuit operating mode with a high gain of 133 due to the well-balanced electrical properties.In addition,PPyTDPP-2FBT-based devices also demonstrate good stability and batch repeatability,suggesting their great potential applications in organic integrated electronic circuits.展开更多
A W-band frequency doubler MMIC is designed and fabricated using 1-μm InP DHBT technology. Ac tive halun is employed to transform the single-ended signal into differential output. Push-push configuration loaded with ...A W-band frequency doubler MMIC is designed and fabricated using 1-μm InP DHBT technology. Ac tive halun is employed to transform the single-ended signal into differential output. Push-push configuration loaded with harmonic resonant network is utilized to acquire the second harmonic frequency. A multi-stage differential structure improves the conversion gain and suppresses the fundamental frequency. The MMIC occupies an area of 0.55 x 0.5 mm2 with 18 DHBTs integrated. Measurements show that the output power is above 5.8 dBm with the suppression of fundamental frequency below -16 dBc and the conversion Rain above 4.7 dB over 75-80 GHz.展开更多
The nanohardness is from 1.44 to 2.61 GPa,the Vickers hardness is from 127 to 252 Vickers,and elastic modulus is from 52 to 123 GPa by the nanoindentation experiments on the doubler plane of KDP crystal. An indentatio...The nanohardness is from 1.44 to 2.61 GPa,the Vickers hardness is from 127 to 252 Vickers,and elastic modulus is from 52 to 123 GPa by the nanoindentation experiments on the doubler plane of KDP crystal. An indentation size effect is observed on the doubler plane in the test as the nanohardness and elastic modulus decreases with the increase of the maximum load.Slippage is identified as the major mode of plastic deformation, and pop-in events are attributed to the initiation of slippage.And the variation of unloading curve end is the result of stick effects between the indenter and the contact surface.The depth of the elastic deformation,which is between 40 and 75 nm,is responsible for the elastic deformation.The doubler plane of KDP crystal has anisotropy,and the relative anisotropy of nanohardness is 8.2%and the relative anisotropy of elastic modulus is 8.0%.展开更多
We present a semimonolithic frequency-doubler from 1080 to 540 nm with 80% doubling efficiency and up to 849-mW output power of green light. A frequency-stabilized laser diode (LD) pumped continuous wave (CW) Nd:YAP l...We present a semimonolithic frequency-doubler from 1080 to 540 nm with 80% doubling efficiency and up to 849-mW output power of green light. A frequency-stabilized laser diode (LD) pumped continuous wave (CW) Nd:YAP laser is used as the pump source of the doubler consisting of an α-cut KTP crystal and an input mirror. The frequency stabilities of the output second harmonic wave are better than ±246 kHz and ±2.3 MHz in 1 and 30 minutes, respectively, and the intensity fluctuation is less than ±0.65%.展开更多
A broadband frequency doubler using left-handed nonlinear transmission lines(LH NLTLs) based on MMIC technology is reported for the first time.The second harmonic generation on LH NLTLs was analyzed theoretically. A...A broadband frequency doubler using left-handed nonlinear transmission lines(LH NLTLs) based on MMIC technology is reported for the first time.The second harmonic generation on LH NLTLs was analyzed theoretically. A four-section LH NLTL which has a layout of 5.4×0.8 mm^2 was fabricated on GaAs semi-insulating substrate. With 20-dBm input power,the doubler obtained 6.33 dBm peak output power at 26.8 GHz with 24-43 GHz—6 dBm bandwidth.The experimental results were quite consistent with the simulated results.The compactness and the broad band characteristics of the circuit make it well suit for GaAs RF/MMIC application.展开更多
W-band quartz based high output power fix-tuned doublers are analyzed and designed with planar Schot- tky diodes. Full-wave analysis is carried out to find diode embedding impedances with a lumped port to model the no...W-band quartz based high output power fix-tuned doublers are analyzed and designed with planar Schot- tky diodes. Full-wave analysis is carried out to find diode embedding impedances with a lumped port to model the nonlinear junction. Passive networks of the circuit, such as the low pass filter, the E-plane waveguide to strip transitions, input and output matching networks, and passive diode parts are analyzed by using electromagnetic simulators, and the different parts are then combined and optimized together. The exported S-parameters of the doubler circuit are used for multiply efficiency analysis. The highest measured output power is 29.5 mW at 80 GHz and higher than 15 mW in 76-94 GHz. The highest measured efficiency is 11.5% at 92.5 GHz, and the typical value is 6.0% in 70-100 GHz.展开更多
This paper presents the design and performance of a broadband millimeter-wave frequency doubler MMIC using active 0.15 μm GaAs PHEMT and operating at output frequencies from 20 to 44 GHz. This chip is composed of a s...This paper presents the design and performance of a broadband millimeter-wave frequency doubler MMIC using active 0.15 μm GaAs PHEMT and operating at output frequencies from 20 to 44 GHz. This chip is composed of a single ended-into differential-out active Balun, balanced FETs in push-push configuration, and a distributed amplifier. The MMIC doubler exhibits more than 4 dB conversion gain with 12 dBm of output power, and the fundamental frequency suppression is typically -20 dBc up to 44 GHz. The MMIC works at VDD = 3.5 V, Vss = -3.5 V, Id = 200 mA and the chip size is 1.5× 1.8 mm^2.展开更多
基金Supported by the 12th Five-year Defense Pre-research Fund of China(No.51308030509)
文摘A Y-band frequency doubler is analyzed and designed with GaAs planar Schottky diode, which is flip-chip solded into a 50 μm thick quartz substrate. Diode embedding impedance is found by full- wave analysis with lumped port to model the nonlinear junction for impedance matching without the need of diode equivalent circuit model. All the matching circuit is designed "on-chip" and the mul- tiplier is self-biasing. To the doubler, a conversion efficiency of 6.1% and output power of 5.4mW are measured at 214GHz with input power of 88mW, and the typical measured efficiency is 4.5% in 200 - 225 GHz.
文摘It is common practice in the offshore industry to solve the punching shear problem due to compression by using doubler plate. The finite-element method is a useful tool for studying this problem. The aim of this paper is to study the static strength of doubler plate reinforced Y-joints subjected to compression loading. The finite-element method is adopted in numerical parametric studies. The individual influences of the geometric parameters βand τd (doubler plate to chord wall thickness ratio) and ld/d1(dubler plate length to brace diameter ratio) on the ultimate strength are made clear. The results show the size of plate may have important effects on the strength of reinforced joints. It is found that the ultimate strength of Y-joints reinforced with appropriately proportioned doubler plates can be greatly improved nearly up tothree times to un-reinforced Y-joints.
基金supported by the National Basic Research Program of China (Grant No. 2010CB923101)the National Natural Science Foundation of China (Grant Nos. 61227015 and 61121064)
文摘We report on the generation of self-oscillations from a continuously pumped singly resonant frequency doubler based on a periodically poled potassium titanyl phosphate crystal (PPKTP). The sustained square-wave and staircase curve of self-oscillations are obtained when the incident pump powers are below and above the threshold of subharmonic-pumped parametric oscillation (SPO), respectively. The self-oscillations can be explained by the competition between the phase shifts induced by cascading nonlinearity and thermal effect, and the influence of fundamental nonlinear phase shift by the generation of SPO. The simulation results are in good agreement with the experiment data.
基金This work is financially supported by the Ministry of Science and Technology of China(2018YFA0703200,2017YFA0204503)the National Natural Science Foundation of China(91833306,61890943,51725304,22021002)Beijing National Laboratory for Molecular Sciences(BNLMS-CXXM-202012),the Youth Innovation Promotion Association of the Chinese Academy of Sciences,and the National Program for Support of Top-notch Young Professionals.
文摘Conjugated polymers with well-balanced ambipolar charge transport is essential for organic circuits at low cost and large area with simplified fabrication techniques.Aiming at this point,herein,a novel asymmetric thiophene/pyridine-flanked diketopyrrolopyrrole-based copolymer(PPyTDPP-2FBT)is designed and synthesized.Due to the effect of incorporating F atoms on molecular energy alignment and conjugation conformation,the PPyTDPP-2FBT copolymer exhibits typical V-shaped ambipolar field-effect transfer characteristics with well-balanced hole and electron mobilities of 0.64 and 0.46 cm^(2)V^(−1)s^(−1),respectively.Furthermore,organic digital and analog circuits such as inverters and frequency doublers are successfully constructed based on solution-processed films of the PPyTDPP-2FBT copolymers which show a typical circuit operating mode with a high gain of 133 due to the well-balanced electrical properties.In addition,PPyTDPP-2FBT-based devices also demonstrate good stability and batch repeatability,suggesting their great potential applications in organic integrated electronic circuits.
基金supported by the National Basic Research Program of China(No.2010CB327502)
文摘A W-band frequency doubler MMIC is designed and fabricated using 1-μm InP DHBT technology. Ac tive halun is employed to transform the single-ended signal into differential output. Push-push configuration loaded with harmonic resonant network is utilized to acquire the second harmonic frequency. A multi-stage differential structure improves the conversion gain and suppresses the fundamental frequency. The MMIC occupies an area of 0.55 x 0.5 mm2 with 18 DHBTs integrated. Measurements show that the output power is above 5.8 dBm with the suppression of fundamental frequency below -16 dBc and the conversion Rain above 4.7 dB over 75-80 GHz.
基金supported by the National Natural Science Foundation of China(No.51135002)the Natural Science Foundation of Liaoning Province of China(No.20102027)the Open Foundation of State Key Laboratory of Tribology of Tsinghua University(No. SKLTKF09B03)
文摘The nanohardness is from 1.44 to 2.61 GPa,the Vickers hardness is from 127 to 252 Vickers,and elastic modulus is from 52 to 123 GPa by the nanoindentation experiments on the doubler plane of KDP crystal. An indentation size effect is observed on the doubler plane in the test as the nanohardness and elastic modulus decreases with the increase of the maximum load.Slippage is identified as the major mode of plastic deformation, and pop-in events are attributed to the initiation of slippage.And the variation of unloading curve end is the result of stick effects between the indenter and the contact surface.The depth of the elastic deformation,which is between 40 and 75 nm,is responsible for the elastic deformation.The doubler plane of KDP crystal has anisotropy,and the relative anisotropy of nanohardness is 8.2%and the relative anisotropy of elastic modulus is 8.0%.
基金This research was supported by the Major State Ba- sic Research Project of China (No. 2001CB3099304) the National Natural Science Foundation of China (No. 60238010, 60178012, 60378014) Shanxi Provincial Science Foundation (No. 20041038).
文摘We present a semimonolithic frequency-doubler from 1080 to 540 nm with 80% doubling efficiency and up to 849-mW output power of green light. A frequency-stabilized laser diode (LD) pumped continuous wave (CW) Nd:YAP laser is used as the pump source of the doubler consisting of an α-cut KTP crystal and an input mirror. The frequency stabilities of the output second harmonic wave are better than ±246 kHz and ±2.3 MHz in 1 and 30 minutes, respectively, and the intensity fluctuation is less than ±0.65%.
基金Project supported by the National Natural Science Foundation of China(No.60806024)the International Collaboration Program of the Ministry of Science and Technology(No.2009DFA12130)
文摘A broadband frequency doubler using left-handed nonlinear transmission lines(LH NLTLs) based on MMIC technology is reported for the first time.The second harmonic generation on LH NLTLs was analyzed theoretically. A four-section LH NLTL which has a layout of 5.4×0.8 mm^2 was fabricated on GaAs semi-insulating substrate. With 20-dBm input power,the doubler obtained 6.33 dBm peak output power at 26.8 GHz with 24-43 GHz—6 dBm bandwidth.The experimental results were quite consistent with the simulated results.The compactness and the broad band characteristics of the circuit make it well suit for GaAs RF/MMIC application.
文摘W-band quartz based high output power fix-tuned doublers are analyzed and designed with planar Schot- tky diodes. Full-wave analysis is carried out to find diode embedding impedances with a lumped port to model the nonlinear junction. Passive networks of the circuit, such as the low pass filter, the E-plane waveguide to strip transitions, input and output matching networks, and passive diode parts are analyzed by using electromagnetic simulators, and the different parts are then combined and optimized together. The exported S-parameters of the doubler circuit are used for multiply efficiency analysis. The highest measured output power is 29.5 mW at 80 GHz and higher than 15 mW in 76-94 GHz. The highest measured efficiency is 11.5% at 92.5 GHz, and the typical value is 6.0% in 70-100 GHz.
文摘This paper presents the design and performance of a broadband millimeter-wave frequency doubler MMIC using active 0.15 μm GaAs PHEMT and operating at output frequencies from 20 to 44 GHz. This chip is composed of a single ended-into differential-out active Balun, balanced FETs in push-push configuration, and a distributed amplifier. The MMIC doubler exhibits more than 4 dB conversion gain with 12 dBm of output power, and the fundamental frequency suppression is typically -20 dBc up to 44 GHz. The MMIC works at VDD = 3.5 V, Vss = -3.5 V, Id = 200 mA and the chip size is 1.5× 1.8 mm^2.