High-alkali treatment using sodium hydroxide(NaOH)injection can be a therapeutic approach for killing tumor cells.Alkalization can damage cellular structures and lead to cell death.Increased alkalinity can also enhanc...High-alkali treatment using sodium hydroxide(NaOH)injection can be a therapeutic approach for killing tumor cells.Alkalization can damage cellular structures and lead to cell death.Increased alkalinity can also enhance the efficacy of certain chemotherapeutic drugs such as doxorubicin(DOX).In this study,NaOH-loaded starch implants(NST implants)were used to induce hyperalkalization(increase pH)in the tumor environment,thereby inducing necrosis and enhancing the effects of DOX.NaOH is a strongly alkaline substance that can increase the pH when injected into a tumor.However,the administration of NaOH can have toxic side effects because it increases the pH of the entire body,not just at the tumor site.To overcome this problem,we developed an injectable NST implant,in which NaOH can be delivered directly into the tumor.This study showed that NST implants could be easily administered intratumorally in mice bearing 4T1 tumors and that most of the NaOH released from the NST implants was delivered to the tumors.Although some NaOH from NST implants can be systemically absorbed,it is neutralized by the body’s buffering effect,thereby reducing the risk of toxicity.This study also confirmed both in vitro and in vivo that DOX is more effective at killing 4T1 cells when alkalized.It has been shown that administration of DOX after injection of an NST implant can kill most tumors.Systemic absorption and side effects can be reduced using an NST implant to deliver NaOH to the tumor.In addition,alkalinization induced by NST implants not only exerts anticancer effects but can also enhance the effect of DOX in killing cancer cells.Therefore,the combination of NaOH-loaded starch implants and DOX treatment has the potential to be a novel therapy for tumors.展开更多
Doxorubicin is an anthracycline antibiotic.As a broad-spectrum antitumor drug,it is widely used in clinic.However,doxorubicin is dose-dependent and shows obvious cardiotoxicity,which limits its clinical application.At...Doxorubicin is an anthracycline antibiotic.As a broad-spectrum antitumor drug,it is widely used in clinic.However,doxorubicin is dose-dependent and shows obvious cardiotoxicity,which limits its clinical application.At present,the mechanism of doxorubicin induced cardiotoxicity has not been fully clarified.Reducing cardiotoxicity and improving the scope of clinical application have become the focus of research in recent years.This paper reviews the mechanism of doxorubicin cardiotoxicity and the prevention and treatment of doxorubicin cardiotoxicity with traditional Chinese medicine,in order to provide reference for the combined application of doxorubicin.展开更多
Objective:To explore whether thrombopoietin can exert a protective effect against doxorubicin-induced cardiotoxicity by modulating the sirtuin 1(SIRT1)signaling pathway.Methods:H9c2 cell viability was determined by CC...Objective:To explore whether thrombopoietin can exert a protective effect against doxorubicin-induced cardiotoxicity by modulating the sirtuin 1(SIRT1)signaling pathway.Methods:H9c2 cell viability was determined by CCK-8 and cardiomyocyte apoptosis was detected by TUNEL assay.The protein expressions of SIRT1 and p38 MAPK were measured by Western blot.RT-qPCR was also used to determine SIRT1 mRNA expression.In addition,intracellular reactive oxygen species levels and antioxidant enzyme activities were evaluated.Results:Thrombopoietin treatment reversed doxorubicin-induced decline in H9c2 cell viability.It also increased SIRT1 and decreased p-p38 MAPK protein expressions.In addition,thrombopoietin significantly attenuated doxorubicin-induced apoptosis and oxidative stress,and enhanced antioxidant enzyme activities.However,silencing SIRT1 abrogated the protective effects of thrombopoietin,as evidenced by reduced cell viability and increased oxidative stress and reactive oxygen species levels.Conclusions:Thrombopoietin alleviates doxorubicin-induced cardiomyocyte injury by reducing oxidative stress and apoptosis via the SIRT1/p38 MAPK pathway.However,its protective effects need to be further verified in animal tests.展开更多
文摘星基广播式自动相关监视(ADS-B,automatic dependent surveillance-broadcast)系统是一种新型的航空器监视技术,在未来空中交通管理系统中具有广阔的应用前景。为了深入研究星基ADS-B系统中航空器到卫星的空天链路通信性能,将专业软件Matlab和STK(system tool kit)有效联合,构建符合国际标准的星基ADS-B空天链路完整模型;通过离散事件动态交互模拟ADS-B消息的发送与接收全过程,最后统计得出体现星基ADS-B空天链路通信性能的消息识别概率(POI,possibility of identify)、消息检测概率(POD,possibility of detective)、信号接收功率、信号冲突概率、卫星覆盖范围等指标。仿真结果表明,随着区域内航空器数量上升,POI、POD下降,消息冲突概率上升。
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(2021R1F1A1047799)supported by the Dongguk University Research Fund of 2021
文摘High-alkali treatment using sodium hydroxide(NaOH)injection can be a therapeutic approach for killing tumor cells.Alkalization can damage cellular structures and lead to cell death.Increased alkalinity can also enhance the efficacy of certain chemotherapeutic drugs such as doxorubicin(DOX).In this study,NaOH-loaded starch implants(NST implants)were used to induce hyperalkalization(increase pH)in the tumor environment,thereby inducing necrosis and enhancing the effects of DOX.NaOH is a strongly alkaline substance that can increase the pH when injected into a tumor.However,the administration of NaOH can have toxic side effects because it increases the pH of the entire body,not just at the tumor site.To overcome this problem,we developed an injectable NST implant,in which NaOH can be delivered directly into the tumor.This study showed that NST implants could be easily administered intratumorally in mice bearing 4T1 tumors and that most of the NaOH released from the NST implants was delivered to the tumors.Although some NaOH from NST implants can be systemically absorbed,it is neutralized by the body’s buffering effect,thereby reducing the risk of toxicity.This study also confirmed both in vitro and in vivo that DOX is more effective at killing 4T1 cells when alkalized.It has been shown that administration of DOX after injection of an NST implant can kill most tumors.Systemic absorption and side effects can be reduced using an NST implant to deliver NaOH to the tumor.In addition,alkalinization induced by NST implants not only exerts anticancer effects but can also enhance the effect of DOX in killing cancer cells.Therefore,the combination of NaOH-loaded starch implants and DOX treatment has the potential to be a novel therapy for tumors.
基金National Natural Science Foundation of China(No.82074419)"Double First-Class"Key Research Project of Gansu Provincial Education Department(No.GSSYLxM-05)。
文摘Doxorubicin is an anthracycline antibiotic.As a broad-spectrum antitumor drug,it is widely used in clinic.However,doxorubicin is dose-dependent and shows obvious cardiotoxicity,which limits its clinical application.At present,the mechanism of doxorubicin induced cardiotoxicity has not been fully clarified.Reducing cardiotoxicity and improving the scope of clinical application have become the focus of research in recent years.This paper reviews the mechanism of doxorubicin cardiotoxicity and the prevention and treatment of doxorubicin cardiotoxicity with traditional Chinese medicine,in order to provide reference for the combined application of doxorubicin.
基金supported by the Natural Science Foundation of Hainan Province High-level Talent Project(grant number 820RC644)Innovative Research Projects for Postgraduate Students at Hainan Medical University(grant number HYYS2022B08).
文摘Objective:To explore whether thrombopoietin can exert a protective effect against doxorubicin-induced cardiotoxicity by modulating the sirtuin 1(SIRT1)signaling pathway.Methods:H9c2 cell viability was determined by CCK-8 and cardiomyocyte apoptosis was detected by TUNEL assay.The protein expressions of SIRT1 and p38 MAPK were measured by Western blot.RT-qPCR was also used to determine SIRT1 mRNA expression.In addition,intracellular reactive oxygen species levels and antioxidant enzyme activities were evaluated.Results:Thrombopoietin treatment reversed doxorubicin-induced decline in H9c2 cell viability.It also increased SIRT1 and decreased p-p38 MAPK protein expressions.In addition,thrombopoietin significantly attenuated doxorubicin-induced apoptosis and oxidative stress,and enhanced antioxidant enzyme activities.However,silencing SIRT1 abrogated the protective effects of thrombopoietin,as evidenced by reduced cell viability and increased oxidative stress and reactive oxygen species levels.Conclusions:Thrombopoietin alleviates doxorubicin-induced cardiomyocyte injury by reducing oxidative stress and apoptosis via the SIRT1/p38 MAPK pathway.However,its protective effects need to be further verified in animal tests.