期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
FREEZE PROFILE AND HEAT BALANCE CALCULATION OF THE 160kA DRAINED CELL 被引量:5
1
作者 X.P. Li J. Li +2 位作者 Y.Q. Lai H.Q.Zhao Y.X.Liu School of Metallurgical Science and Engineering, Central South University, Changsha 410083, China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2004年第2期215-220,共6页
A 2D full cell thermo-electric model of 160kA drained cell was set up using finiteelement code to calculate its freeze profile, then the drained cell model was modifiedaccording to the freeze profile computed and its ... A 2D full cell thermo-electric model of 160kA drained cell was set up using finiteelement code to calculate its freeze profile, then the drained cell model was modifiedaccording to the freeze profile computed and its heat balance was calculated. Comparedwith that of a 160kA conventional Hall-Heroult cell (H-H cell), though the melts vol-ume of the drained cell reduced greatly, the whole heat loss from it didn't drop downapparently, and an analysis was presented in the paper. On the other hand, the anode-cathode distance (ACD) of a drained cell was much less than that of a H-H cell, sothe voltage drop on it and heat produced decreased too, steps should be taken to keepa workable heat balance on a drained cell. 展开更多
关键词 drained cell freeze profile heat balance finite element code
下载PDF
2D finite element analysis of thermal balance for drained aluminum reduction cells 被引量:3
2
作者 刘伟 李劼 +1 位作者 赖延清 刘业翔 《Journal of Central South University of Technology》 EI 2007年第6期783-787,共5页
Based on the principle of energy conservation,the applicable technique for drained cell retrofitted from conventional one was analyzed with 2D finite element model. The model employed a 1D heat transfer scheme to comp... Based on the principle of energy conservation,the applicable technique for drained cell retrofitted from conventional one was analyzed with 2D finite element model. The model employed a 1D heat transfer scheme to compute iteratively the freeze profile until the thickness variable reached the terminating requirement. The calculated 2D heat dissipation from the cell surfaces was converted into the overall 3D heat loss. The potential drop of the system, freeze profile and heat balance were analyzed to evaluate their variation with technical parameters when designing the 150 kA conventional cell based drained cell. The simulation results show that the retrofitted drained cell is able to keep thermal balance under the conditions that the current is 190 kA, the anodic current density is 0.96 A/cm2, the anode-cathode distance is 2.5 cm, the alumina cover is 16 cm thick with a thermal conductivity of 0.20 W/(m·℃ ) and the electrolysis temperature is 946 ℃ . 展开更多
关键词 drained cell thermo-electric field thermal balance finite element analysis
下载PDF
Numerical simulation on electrolyte flow field in 156 kA drained aluminum reduction cells 被引量:6
3
作者 周乃君 夏小霞 王富强 《Journal of Central South University of Technology》 EI 2007年第1期42-46,共5页
Based on the commercial CFD software CFX-4.3, two-phase flow of electrolyte in 156 kA drained aluminum reduction cells with a new structure was numerically simulated by multi-fluid model and k-ε turbulence model. The... Based on the commercial CFD software CFX-4.3, two-phase flow of electrolyte in 156 kA drained aluminum reduction cells with a new structure was numerically simulated by multi-fluid model and k-ε turbulence model. The results show that the electrolyte flow in the drained cells is more even than in the conventional cells. Corresponding to center point feeding, the electrolyte flow in the drained cells is more advantageous to the release of anode gas, the dissolution and diffusion of alumina, and the gradient reduction of the electrolyte density and temperature. The average velocity of the electrolyte is 8.3 cm/s, and the maximum velocity is 59.5 cm/s. The average and maximum velocities of the gas are 23.2 cm/s and 61.1 cm/s, respectively. The cathode drained slope and anode cathode distance have certain effects on the electrolyte flow. 展开更多
关键词 drained aluminum reduction cells ELECTROLYTE two-phase flow numerical simulation
下载PDF
Electric field distribution in 75 kA drained aluminum reduction cell 被引量:2
4
作者 李相鹏 李劼 +3 位作者 赖延清 陈江 高增梁 刘业翔 《Journal of Central South University》 SCIE EI CAS 2010年第1期62-67,共6页
Current distribution in a drained aluminum reduction cell is critical due to its influence on the current efficiency, electrolysis stability, anodes and cathodes integrity. A finite element model was developed to simu... Current distribution in a drained aluminum reduction cell is critical due to its influence on the current efficiency, electrolysis stability, anodes and cathodes integrity. A finite element model was developed to simulate the electric field in a 75 kA drained aluminum reduction cell. The current distribution and influences of the cathode inclination angle and anode-cathode distance (ACD) were studied. The results show that relatively large horizontal current density appears in the aluminum film, and the maximum value reaches 600 kA/m2. As the cathode inclination angle increases from 2° to 15°, the maximum current density of the metal pad increases by 15%, while the maximum current density of the aluminum-wettable coating layer decreases by 27%. The influence of the ACD on the current distribution is not obvious. 展开更多
关键词 drained aluminum reduction cell electric field finite element model cathode inclination angle anode-cathode distance
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部