The utilization of arsenic-containing gold dressing tailings is an urgent issue faced by gold production companies worldwide.The thermodynamic analysis results indicate that ferrous arsenate(FeAsO_(4)),pyrite(FeS_(2))...The utilization of arsenic-containing gold dressing tailings is an urgent issue faced by gold production companies worldwide.The thermodynamic analysis results indicate that ferrous arsenate(FeAsO_(4)),pyrite(FeS_(2))and sodium cyanide(NaCN)in the arsenic-containing gold metallurgical tailings can be effectively removed using straight grate process,and the removal of pyrite and sodium cyanide is basically completed during the preheating stage,while the removal of ferrous arsenate requires the roasting stage.The pellets undergo a transformation from magnetite to hematite during the preheating process,and are solidified through micro-crystalline bonding and high-temperature recrystallization of hematite(Fe_(2)O_(3))during the roasting process.Ultimately,pellets with removal rates of 80.77% for arsenic,88.78% for sulfur,and 99.88% for cyanide are obtained,as well as the iron content is 61.1% and the compressive strength is 3071 N,meeting the requirements for blast furnace burden.This study provides an industrially feasible method for treating arsenic-containing gold smelting tailings,benefiting gold production enterprises.展开更多
Inspired by the skin structure,an asymmetric wettability tri-layer nanofiber membrane(TNM)consisting of hydrophilic inner layer loaded with lidocaine hydrochloride(LID),hydrophobic middle layer with ciprofloxacin(CIP)...Inspired by the skin structure,an asymmetric wettability tri-layer nanofiber membrane(TNM)consisting of hydrophilic inner layer loaded with lidocaine hydrochloride(LID),hydrophobic middle layer with ciprofloxacin(CIP)and hydrophobic outer layer has been created.The hydrophobic outer layer endows the TNM with waterproof function and anti-adhesion from contaminants.The hydrophobic middle layer with CIP preserves long-term inhibition of bacteria growth and the hydrophilic inner layer with LID possesses optimal waterabsorbing capacity and air permeability.The TNM dramatically elevates the water contact angles from 10°(inner layer)to 120(outer layer),indicating an asymmetric wettability,which could directionally transport wound exudate within the materials and meanwhile maintain a comfortable and moist environment to promote wound healing.Furthermore,the sequential release of LID and CIP could relieve pain rapidly and achieve antibacterial effect in the long run,respectively.In addition,the TNM shows superior biocompatibility towards L929 cells.The in vivo results show the TNM could prevent infection,accelerate epithelial regeneration and significantly accelerate wound healing.This study indicates the developed TNM with asymmetrical wettability and synergetic drug release shows great potential as a wound dressing in clinical application.展开更多
BACKGROUND Pressure ulcer(PU)are prevalent among critically ill trauma patients,posing substantial risks.Bundled care strategies and silver nanoparticle dressings offer potential solutions,yet their combined effective...BACKGROUND Pressure ulcer(PU)are prevalent among critically ill trauma patients,posing substantial risks.Bundled care strategies and silver nanoparticle dressings offer potential solutions,yet their combined effectiveness and impact on patient satisfaction remain insufficiently investigated.AIM To assess the impact of bundled care along with silver nanoparticle dressing on PUs management and family satisfaction in critically ill trauma patients.METHODS A total of 98 critically ill trauma patients with PUs in intensive care unit(ICU)were included in this study.Patients were randomly assigned to either the control group(conventional care with silver nanoparticle dressing,n=49)or the intervention group(bundled care with silver nanoparticle dressing,n=49).The PU Scale for Healing(PUSH)tool was used to monitor changes in status of pressure injuries over time.Assessments were conducted at various time points:Baseline(day 0)and subsequent assessments on day 3,day 6,day 9,and day 12.Family satisfaction was assessed using the Family Satisfaction ICU 24 ques-tionnaire.RESULTS No significant differences in baseline characteristics were observed between the two groups.In the intervention group,there were significant reductions in total PUSH scores over the assessment period.Specifically,surface area,exudate,and tissue type parameters all showed significant improvements compared to the control group.Family satisfaction with care and decision-making was notably higher in the intervention group.Overall family satisfaction was significantly better in the intervention group.CONCLUSION Bundled care in combination with silver nanoparticle dressings effectively alleviated PUs and enhances family satisfaction in critically ill trauma patients.This approach holds promise for improving PUs management in the ICU,benefiting both patients and their families.展开更多
Background:Skin,being a vital organ that regulates physiological responses in the human body,is prone to injury from external environmental factors.Healing full-thickness skin defects becomes especially challenging wh...Background:Skin,being a vital organ that regulates physiological responses in the human body,is prone to injury from external environmental factors.Healing full-thickness skin defects becomes especially challenging when infections and vascular injuries are involved.Traditional wound dressings with single functions,such as antibacterial or angiogenic properties,fall short in achieving rapid wound healing.To address this,there is a need to develop wound dressing materials that possess both effective antibacterial and angiogenic properties.Methods:In this study,we utilized electrospinning technology to fabricate hyaluronic acid-cellulose acetate fibrous membrane dressings,incorporating poly(ionic liquid)as an antibacterial polymer and deferoxamine as an angiogenic agent.Results:The resulting fibrous membrane dressing contained poly(ionic liquid)and deferoxamin showcased a microporous structure,drug-releasing capabilities,and excellent air permeability.It not only demonstrated highly effective antibacterial properties but also exhibited remarkable angiogenesis,thereby promoting the healing of full-thickness skin defect wounds in both in vitro and in vivo assays.Conclusion:These findings highlight the immense potential of this wound dressing material for future clinical applications.展开更多
Background:Excessive exudate secreted from chronic wounds often leads to overhydration and infection.Although a variety of dressings are currently available in clinical applications,they frequently fail to provide mul...Background:Excessive exudate secreted from chronic wounds often leads to overhydration and infection.Although a variety of dressings are currently available in clinical applications,they frequently fail to provide multifunction to promote chronic wound healing.The dressings with a Janus structure,featuring distinct properties on each side,are potential to improve wound healing.Methods:Composite dressings with a Janus structure were fabricated,comprising freeze-dried polycaprolactone(PCL)electrospun membrane and alginate-based hydrogel.The PCL fibrous membrane provided air permeability,while the hydrogel loaded with Deferoxamine,composed of alginate and poly(N-isopropylacrylamide)(PNIPAM),exhibited hygroscopic properties.The inclusion of PNIPAM imparted thermo-responsivity.Results:The hydrogel(thickness of 2.778±0.082 mm)exhibited a robust adhesion to the fiber membrane(thickness of 0.261±0.041 mm).For ANDC(Alginate-PNIPAM hydrogel with Deferoxamine/PCL membrane)samples,the water vapor transmission rate(WVTR)was measured to be 3364.80±23.23 g∙m−2∙day−1 and the swelling ratio at 2 h was determined to be 1179±125%.The thermo-responsivity of ANDC samples manifested in an increased swelling rate,escalating from 797±189%at 37°C to 1132±147%at 4°C.The elastic modulus was assessed for lyophilized and rehydrated ANDC sample.When theωof the rheometer rotor was decreased from 10 rad/s to 0.1 rad/s,the lyophilized dressing exhibited a decrease from 2.65±0.01 MPa to 1.80±0.90 MPa,while the rehydrated dressing demonstrated an increase from 133.65±55.68 Pa to 264.23±141.71 Pa.The pro-healing properties of the dressings were evaluated using full-thickness skin defect model on SD rats,and a circular wound of diameter 10 mm healed completely by day 12.Conclusion:The dressings not only protected the wound and absorbed excess exudate,but also demonstrated nondestructive peelability upon cooling,providing a novel approach for accelerating wound healing and management.展开更多
Four groups of field experiments including REEs foliage dressing, soil dressing, triple amounts of soil dressing and control were carried out. Contents of REEs in wheat in different growing stages were measured by ICP...Four groups of field experiments including REEs foliage dressing, soil dressing, triple amounts of soil dressing and control were carried out. Contents of REEs in wheat in different growing stages were measured by ICP-MS. The results show that REEs amount in leaves increases significantly with foliage dressing in jointing stage, in addition to REEs accumulation with soil dressing method in jointing stage. Either using foliage dressing or soil dressing, there is no significant accumulation in mature stage. Comparison of the two methods shows that lower amount of REEs with foliage dressing can be highly absorbed in jointing stage.展开更多
Magnetizing roasting of oolitic hematite ore from western Hubei Province was investigated.The mechanism for reduction roasting of oolitic hematite ore was discussed and analyzed.It is found that flash magnetizing roas...Magnetizing roasting of oolitic hematite ore from western Hubei Province was investigated.The mechanism for reduction roasting of oolitic hematite ore was discussed and analyzed.It is found that flash magnetizing roasting-magnetic separation process is a promising approach for the processing of oolitic hematite ore from western Hubei Province.展开更多
Diabetes is one of the most prevalent diseases in the world with high-mortality and complex complications including diabetic foot ulcer(DFU). It has been reported that the difficulties in repairing the wound related t...Diabetes is one of the most prevalent diseases in the world with high-mortality and complex complications including diabetic foot ulcer(DFU). It has been reported that the difficulties in repairing the wound related to DFU has much relationship with the wound infection,change of inflammatory responses, lack of extracellular matrix(ECM), and the failure of angiogenesis. Following the development of medical materials and pharmaceutical technology, nanofibers has been developed by electrospinning with huge porosity, excellent humidity absorption, a better oxygen exchange rate, and some antibacterial activities. That is to say, as a potential material, nanofibers must be a wonderful candidate for the DFU treatment with so many benefits. Careful selection of polymers from natural resource and synthetic resource can widen the nanofibrous application. Popular methods applied for the nanofibrous fabrication consist of uniaxial electrospinning and coaxial electrospinning. Furthermore, nanofibers loading chemical, biochemical active pharmaceutical ingredient(API)or even stem cells can be wonderful dosage forms for the treatment of DFU. This review summarizes the present techniques applied in the fabrication of nanofibrous dressing(ND)that utilizes a variety of materials and active agents to offer a better health care for the patients suffering from DFU.展开更多
Bacterial infection and the ever-increasing bacterial resistance have imposed severe threat to human health.And bacterial contamination could significantly menace the wound healing process.Considering the sophisticate...Bacterial infection and the ever-increasing bacterial resistance have imposed severe threat to human health.And bacterial contamination could significantly menace the wound healing process.Considering the sophisticated wound healing process,novel strategies for skin tissue engineering are focused on the integration of bioactive ingredients,antibacterial agents included,into biomaterials with different morphologies to improve cell behaviors and promote wound healing.However,a comprehensive review on antibacterial wound dressing to enhance wound healing has not been reported.In this review,various antibacterial biomaterials as wound dressings will be discussed.Different kinds of antibacterial agents,including antibiotics,nanoparticles(metal and metallic oxides,lightinduced antibacterial agents),cationic organic agents,and others,and their recent advances are summarized.Biomaterial selection and fabrication of biomaterials with different structures and forms,including films,hydrogel,electrospun nanofibers,sponge,foam and three-dimension(3D)printed scaffold for skin regeneration,are elaborated discussed.Current challenges and the future perspectives are presented in thismultidisciplinary field.We envision that this review will provide a general insight to the elegant design and further refinement of wound dressing.展开更多
Polyurethane foam dressings for dermal wounds were formulated with natural polyols in order to improve the foam characteristics and the release of 2 active agents,silver and asiaticoside(AS)as an antimicrobial agent a...Polyurethane foam dressings for dermal wounds were formulated with natural polyols in order to improve the foam characteristics and the release of 2 active agents,silver and asiaticoside(AS)as an antimicrobial agent and an herbal wound healing agent,respectively.The foam was instantly formed by interaction of polyols and diisocyanate.Hydroxypropyl methylcellulose,chitosan and sodium alginate were individually mixed with themain polyols,polypropylene glycol,in the formulation while the active componentswere impregnated into the obtained foam dressing sheets.Although the type and amount of the natural polyols slightly affected the pore size,water sorption-desorption profile and compression strength of the obtained foam sheets,a prominent effect was found in the release of both active components.Among natural polyols formulations,foam sheets with alginate showed the highest silver and AS release.Non-cytotoxicity of these foam sheets to human fibroblast cells was confirmed.Antimicrobial testing on four bacteria strains showed that 1mg/cm^2 silver in formulations with 6%of natural polyols and without natural polyols had sufficient content of the silver release with comparable inhibition zone and significantly larger zone than other formulations.In pig study,the foam dressing with 6%alginate,1mg/cm^2 silver and 5%AS could improve wound healing in both the percentage of the wound closure and histological parameters of the dermal wound without any dermatologic reactions.In conclusion,this innovative foam dressing had potential to be a good candidate for wound treatment.展开更多
With the changes in the modern disease spectrum,pressure ulcers,diabetic feet,and vascular-derived diseases caused refractory wounds is increasing rapidly.The development of wound dressings has partly improved the eff...With the changes in the modern disease spectrum,pressure ulcers,diabetic feet,and vascular-derived diseases caused refractory wounds is increasing rapidly.The development of wound dressings has partly improved the effect of wound management.However,traditional wound dressings can only cover the wound and block bacteria,but are generally powerless to recurrent wound infection and tissue healing.There is an urgent need to develop a new type of wound dressing with comprehensive performance to achieve multiple effects such as protecting the wound site from the external environment,absorbing wound exudate,anti-inflammatory,antibacterial,and accelerating wound healing process.Hydrogel wound dressings have the aforementioned characteristics,and can keep the wound in a moist environment because of the high water content,which is an ideal choice for wound treatment.This review introduces the wound healing process and the development and performance advantages of hydrogel wound dressings.The choice of different preparation materials gives the particularities of different hydrogel wound dressings.It also systematically explains the main physical and chemical crosslinking methods for hydrogel synthesis.Besides,in-depth discussion of four typical hydrogel wound dressings including double network hydrogels,nanocomposite hydrogels,drug-loaded hydrogels and smart hydrogels fully demonstrates the feasibility of developing hydrogels as wound dressing products and their future development trends.展开更多
In the grinding of high quality fused silica parts with complex surface or structure using ball-headed metal bonded diamond wheel with small diameter,the existing dressing methods are not suitable to dress the ball-he...In the grinding of high quality fused silica parts with complex surface or structure using ball-headed metal bonded diamond wheel with small diameter,the existing dressing methods are not suitable to dress the ball-headed diamond wheel precisely due to that they are either on-line in process dressing which may causes collision problem or without consideration for the effects of the tool setting error and electrode wear.An on-machine precision preparation and dressing method is proposed for ball-headed diamond wheel based on electrical discharge machining.By using this method the cylindrical diamond wheel with small diameter is manufactured to hemispherical-headed form.The obtained ball-headed diamond wheel is dressed after several grinding passes to recover geometrical accuracy and sharpness which is lost due to the wheel wear.A tool setting method based on high precision optical system is presented to reduce the wheel center setting error and dimension error.The effect of electrode tool wear is investigated by electrical dressing experiments,and the electrode tool wear compensation model is established based on the experimental results which show that the value of wear ratio coefficient K’ tends to be constant with the increasing of the feed length of electrode and the mean value of K’ is 0.156.Grinding experiments of fused silica are carried out on a test bench to evaluate the performance of the preparation and dressing method.The experimental results show that the surface roughness of the finished workpiece is 0.03 μm.The effect of the grinding parameter and dressing frequency on the surface roughness is investigated based on the measurement results of the surface roughness.This research provides an on-machine preparation and dressing method for ball-headed metal bonded diamond wheel used in the grinding of fused silica,which provides a solution to the tool setting method and the effect of electrode tool wear.展开更多
BACKGROUND Aplasia cutis congenita (ACC) in newborns is a condition in which congenital defects or hypoplasia is present in part of the epidermis,dermis and even subcutaneous tissue (including muscle and bones).First ...BACKGROUND Aplasia cutis congenita (ACC) in newborns is a condition in which congenital defects or hypoplasia is present in part of the epidermis,dermis and even subcutaneous tissue (including muscle and bones).First reported by Cordon in 1767,ACC is a rare disease with a low incidence of 1/100000 to 3/10000.Currently,there are 500 cases reported worldwide.ACC can be accompanied by other malformations.The onset mechanism of the disease remains unknown but is thought to be correlated to factors such as genetics,narrow uterus,foetal skin and amniotic membrane adhesion,use of teratogenic drugs in early pregnancy and viral infection.CASE SUMMARY In August 2018,we treated a newborn with ACC on the left lower limbs using a combination of ionic silver dressing and moist exposed burn ointment (MEBO) and achieved a satisfactory treatment outcome.The skin defects were observed on the external genitals and on areas from the left foot to 3/4 of the upper left side.Subcutaneous tissue and blood vessels were observed in the regions with skin defects.The following treatments were provided.First,the wound was rinsed with 0.9% sodium chloride solution followed by disinfection with povidone-iodine twice.And then MEBO was applied to the wound at a thickness of approximately 1 mm.After applying ionic silver dressing,the wound was covered with sterile gauze.The wound dressing was replaced every 2-3 d.At the 4-mo follow-up,the treatment outcome was satisfactory.There was minimal scar tissue formation,and limb function was not impaired.CONCLUSION The combination of ionic silver dressing and MEBO to ACC is helpful.展开更多
An application for achieving on-machine truing/dressing and monitoring of diamond wheel is dealt with in dry grinding. A dry electrical discharge (ED) assisted truing and dressing method is adopted in preparation of...An application for achieving on-machine truing/dressing and monitoring of diamond wheel is dealt with in dry grinding. A dry electrical discharge (ED) assisted truing and dressing method is adopted in preparation of diamond grinding wheels. Effective and precise truing/dressing of a diamond wheel is carried out on a CNC curve grinding machine by utilizing an ED assisted diamond dresser. The dressed wheel is monitored online by a CCD vision system. It detects the topography changes of a wheel surface. The wear condition is evaluated by analyzing the edge deviation of a wheel image. The benefits of the proposed methods are confirmed by the grinding experiments. The designed truing/dressing device has high material removal rate, low dresser wear, and hence guarantees a desired wheel surface. Real-time monitoring of the wheel profile facilitates determining the optimum dressing amount, dressing interval, and the compensation error.展开更多
The variety of wound types has resulted in a wide range of wound dressings, with new products frequently being introduced to target different aspects of the wound healing process. The ideal wound dressing should achie...The variety of wound types has resulted in a wide range of wound dressings, with new products frequently being introduced to target different aspects of the wound healing process. The ideal wound dressing should achieve rapid healing at a reasonable cost, with minimal inconvenience to the patient. Microcurrent dressing, a novel wound dressing with inherent electric activity, can generate low-level microcurrents at the device-wound contact surface in the presence of moisture and can provide an advanced wound healing solution for managing wounds. This article offers a review of the effects and mechanisms of the microcurrent dressing on the healing of skin wounds.展开更多
A series of hydrogels with different ratios of chitosan and licorice polysaccharide(LP)were prepared by crosslinking to different concentrations of genipin(gp).They were characterized by FTIR(Fourier transform infra...A series of hydrogels with different ratios of chitosan and licorice polysaccharide(LP)were prepared by crosslinking to different concentrations of genipin(gp).They were characterized by FTIR(Fourier transform infrared spectroscopy),SEM(Scanning electron microscope),swelling ratio,rheological measurements,degradation with time,cytotoxicity,and antibacterial efficacy.Results show that the hydrogels have porous structures.With an increase in LP content,the swelling rate grows in the early stage of immersion in buffer and drops later.The swelling ratio ranged from 986%to 1677%,and stiffness varied from 777 Pa to 1792 Pa.The addition of LP reduced the mechanical strength and delayed gelation and degradation of the hydrogels.However,the most important discovery was that gp increases the viability of NIH 3T3 cells from 94%to 137%,and LP raises the bacteriostatic efficacy from 51%to 78%.Hydrogels synthesized from 1%genipin,3%chitosan,and 4%licorice polysaccharide showed the best antibacterial and fibroblast proliferation promoting activities.They exhibited moderate swelling and degradation rates over time,while being more suitable to affect healing of chronic wound infections.These results provide a new strategy to improve the antibacterial effectiveness and cyto-compatibility of chitosan hydrogels with water soluble active LPs from Glycyrrhiza that derive from traditional Chinese medicine.展开更多
Most of the mechanical dressing technologies for resin bonded superabrasive grinding wheels are time consumingand costly. Based on the outcomes of the simulations in the previous study, this paper demonstrates the com...Most of the mechanical dressing technologies for resin bonded superabrasive grinding wheels are time consumingand costly. Based on the outcomes of the simulations in the previous study, this paper demonstrates the comprehensive researches on the laser-assisted dressing process control, grinding wheel topography reconfiguration by 3Dlaser scanning technology and analyses of grinding temperature. The synthesized parameter incorporates the laserdressing process parameters and can be used to the process control. In order to evaluate the laser-assisted dressingeffectiveness, the newly developed non-contact laser measuring system based on the principle of the triangulationwas used. Grain protrusion height and intergrain spacing can characterize the grinding wheel surface. A series ofgrinding tests with the laser-assisted dressed grinding wheel and mechanically dressed grinding wheel were conductedfor comparison. The results proved the feasibility of laser-assisted dressing for resin bonded superabrasive grindingwheels and revealed the importance of choosing appropriate laser dressing parameters.展开更多
Background: Wounded personnel who work at sea often encounter a plethora of difficulties. The most important of these difficulties is seawater immersion. Common medical dressings have little effect when the affected a...Background: Wounded personnel who work at sea often encounter a plethora of difficulties. The most important of these difficulties is seawater immersion. Common medical dressings have little effect when the affected area is immersed in seawater, and only rarely dressings have been reported for the treatment of seawater-immersed wounds. The objective of this study is to develop a new dressing which should be suitable to prevent the wound from seawater immersion and to promote the wound healing.Methods: Shark skin collagen(SSC) was purified via ethanol de-sugaring and de-pigmentation and adjusted for p H. A shark skin collagen sponge(SSCS) was prepared by freeze-drying. SSCS was attached to an anti-seawater immersion polyurethane(PU) film(SSCS+PU) to compose a new dressing. The biochemical properties of SSC and physicochemical properties of SSCS were assessed by standard methods. The effects of SSCS and SSCS+PU on the healing of seawaterimmersed wounds were studied using a seawater immersion rat model. For the detection of SSCS effects on seawaterimmersed wounds, 12 SD rats, with four wounds created in each rat, were divided into four groups: the 3 rd day group, 5 th day group, 7 th day group and 12 th day group. In each group, six wounds were treated with SSCS, three wounds treated with chitosan served as the positive control, and three wounds treated with gauze served as the negative control. For the detection of the SSCS+PU effects on seawater-immersed wounds, 36 SD rats were divided into three groups: the gauze(GZ)+PU group, chitosan(CS)+PU group and SSCS+PU group, with 12 rats in each group, and two wounds in each rat. The wound sizes were measured to calculate the healing rate, and histomorphology and the immunohistochemistry of the CD31 and TGF-β expression levels in the wounded tissues were measured by standard methods.Results: The results of Ultraviolet-visible(UV-vis) spectrum, Fourier-transform infrared(FTIR) spectrum, circular dichroism(CD) spectra, sodium dodecyl sulfate polyacrylamide gel electrophoresis(SDS-PAGE), and amino acid composition analyses of SSC demonstrated that SSC is type I collagen. SSCS had a homogeneous porous structure of approximately 200μm, porosity rate of 83.57%±2.64%, water vapor transmission ratio(WVTR) of 4500 g/m2, tensile strength of 1.79±0.41 N/mm, and elongation at break of 4.52%±0.01%. SSCS had significant beneficial effects on seawater-immersed wound healing. On the 3 rd day, the healing rates in the GZ negative control, CS positive control and SSCS rats were 13.94%±5.50%, 29.40%±1.10% and 47.24%±8.40%, respectively. SSCS also enhanced TGF-in the initial stage of the healing period. The SSCS+PU dressing effectively protected woundsβ and CD31 expression from seawater immersion for at least 4 h, and accelerated re-epithelialization, vascularization and granulation formation of seawater-immersed wounds in the earlier stages of wound healing, and as well as significantly promoted wound healing. The SSCS+PU dressing also enhanced expression of TGF-n and gauze dressings.β and CD31. The effects of SSCS and SSCS+PU were superior to those of both the chitosaConclusion: SSCS has significant positive effects on the promotion of seawater-immersed wound healing, and a SSCS+PU dressing effectively prevents seawater immersion, and significantly promotes seawater-immersed wound healing.展开更多
The existing studies, concerning the dressing process, focus on the major influence of the dressing conditions on the grinding response variables. However, the choice of the dressing conditions is often made, based on...The existing studies, concerning the dressing process, focus on the major influence of the dressing conditions on the grinding response variables. However, the choice of the dressing conditions is often made, based on the experience of the qualified staff or using data from reference books. The optimal dressing parameters, which are only valid for the particular methods and dressing and grinding conditions, are also used. The paper presents a methodology for optimization of the dressing parameters in cylindrical grinding. The generalized utility function has been chosen as an optimization parameter. It is a complex indicator determining the economic, dynamic and manufacturing characteristics of the grinding process. The developed methodology is implemented for the dressing of aluminium oxide grinding wheels by using experimental diamond roller dressers with different grit sizes made of medium- and high-strength synthetic diamonds type AC32 and AC80. To solve the optimization problem, a model of the generalized utility function is created which reflects the complex impact of dressing parameters. The model is built based on the results from the conducted complex study and modeling of the grinding wheel lifetime, cutting ability, production rate and cutting forces during grinding. They are closely related to the dressing conditions (dressing speed ratio, radial in-feed of the diamond roller dresser and dress-out time), the diamond roller dresser grit size/grinding wheel grit size ratio, the type of synthetic diamonds and the direction of dressing. Some dressing parameters are determined for which the generalized utility fimction has a maximum and which guarantee an optimum combination of the following: the lifetime and cutting ability of the abrasive wheels, the tangential cutting force magnitude and the production rate of the grinding process. The results obtained prove the possibility of control and optimization of grinding by selecting particular dressing parameters.展开更多
基金Project(52274343)supported by the National Natural Science Foundation of ChinaProjects(2023YFC3903900,2023YFC3903904)supported by the National Key R&D Program of China。
文摘The utilization of arsenic-containing gold dressing tailings is an urgent issue faced by gold production companies worldwide.The thermodynamic analysis results indicate that ferrous arsenate(FeAsO_(4)),pyrite(FeS_(2))and sodium cyanide(NaCN)in the arsenic-containing gold metallurgical tailings can be effectively removed using straight grate process,and the removal of pyrite and sodium cyanide is basically completed during the preheating stage,while the removal of ferrous arsenate requires the roasting stage.The pellets undergo a transformation from magnetite to hematite during the preheating process,and are solidified through micro-crystalline bonding and high-temperature recrystallization of hematite(Fe_(2)O_(3))during the roasting process.Ultimately,pellets with removal rates of 80.77% for arsenic,88.78% for sulfur,and 99.88% for cyanide are obtained,as well as the iron content is 61.1% and the compressive strength is 3071 N,meeting the requirements for blast furnace burden.This study provides an industrially feasible method for treating arsenic-containing gold smelting tailings,benefiting gold production enterprises.
文摘Inspired by the skin structure,an asymmetric wettability tri-layer nanofiber membrane(TNM)consisting of hydrophilic inner layer loaded with lidocaine hydrochloride(LID),hydrophobic middle layer with ciprofloxacin(CIP)and hydrophobic outer layer has been created.The hydrophobic outer layer endows the TNM with waterproof function and anti-adhesion from contaminants.The hydrophobic middle layer with CIP preserves long-term inhibition of bacteria growth and the hydrophilic inner layer with LID possesses optimal waterabsorbing capacity and air permeability.The TNM dramatically elevates the water contact angles from 10°(inner layer)to 120(outer layer),indicating an asymmetric wettability,which could directionally transport wound exudate within the materials and meanwhile maintain a comfortable and moist environment to promote wound healing.Furthermore,the sequential release of LID and CIP could relieve pain rapidly and achieve antibacterial effect in the long run,respectively.In addition,the TNM shows superior biocompatibility towards L929 cells.The in vivo results show the TNM could prevent infection,accelerate epithelial regeneration and significantly accelerate wound healing.This study indicates the developed TNM with asymmetrical wettability and synergetic drug release shows great potential as a wound dressing in clinical application.
文摘BACKGROUND Pressure ulcer(PU)are prevalent among critically ill trauma patients,posing substantial risks.Bundled care strategies and silver nanoparticle dressings offer potential solutions,yet their combined effectiveness and impact on patient satisfaction remain insufficiently investigated.AIM To assess the impact of bundled care along with silver nanoparticle dressing on PUs management and family satisfaction in critically ill trauma patients.METHODS A total of 98 critically ill trauma patients with PUs in intensive care unit(ICU)were included in this study.Patients were randomly assigned to either the control group(conventional care with silver nanoparticle dressing,n=49)or the intervention group(bundled care with silver nanoparticle dressing,n=49).The PU Scale for Healing(PUSH)tool was used to monitor changes in status of pressure injuries over time.Assessments were conducted at various time points:Baseline(day 0)and subsequent assessments on day 3,day 6,day 9,and day 12.Family satisfaction was assessed using the Family Satisfaction ICU 24 ques-tionnaire.RESULTS No significant differences in baseline characteristics were observed between the two groups.In the intervention group,there were significant reductions in total PUSH scores over the assessment period.Specifically,surface area,exudate,and tissue type parameters all showed significant improvements compared to the control group.Family satisfaction with care and decision-making was notably higher in the intervention group.Overall family satisfaction was significantly better in the intervention group.CONCLUSION Bundled care in combination with silver nanoparticle dressings effectively alleviated PUs and enhances family satisfaction in critically ill trauma patients.This approach holds promise for improving PUs management in the ICU,benefiting both patients and their families.
基金support from National Natural Science Foundation of China(Grant No 52105295)the Natural Science Foundation of Jiangsu Province(Grant No BK20210082)+3 种基金Natural Science of Foundation of the Jiangsu Higher Education Institutions of China(Grant No 21KJB460003)Basic Research Project of Changzhou Medical Center of Nanjing Medical University(CMCB202314),Qinghai Province Health System Guidance Plan Project(2022-wjzdx-106 and 2023-wjzdx-104)Top Talent of Changzhou“The 14th Five-Year Plan”High-Level Health Talents Training Project(2022CZBJ059 and 2022CZBJ061)Nursing research project of the Second People's Hospital of Changzhou(2022HZD002).
文摘Background:Skin,being a vital organ that regulates physiological responses in the human body,is prone to injury from external environmental factors.Healing full-thickness skin defects becomes especially challenging when infections and vascular injuries are involved.Traditional wound dressings with single functions,such as antibacterial or angiogenic properties,fall short in achieving rapid wound healing.To address this,there is a need to develop wound dressing materials that possess both effective antibacterial and angiogenic properties.Methods:In this study,we utilized electrospinning technology to fabricate hyaluronic acid-cellulose acetate fibrous membrane dressings,incorporating poly(ionic liquid)as an antibacterial polymer and deferoxamine as an angiogenic agent.Results:The resulting fibrous membrane dressing contained poly(ionic liquid)and deferoxamin showcased a microporous structure,drug-releasing capabilities,and excellent air permeability.It not only demonstrated highly effective antibacterial properties but also exhibited remarkable angiogenesis,thereby promoting the healing of full-thickness skin defect wounds in both in vitro and in vivo assays.Conclusion:These findings highlight the immense potential of this wound dressing material for future clinical applications.
基金supported by the Shenzhen Basic Research Project,No.JCYJ20190807155805818the Foundation of Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument,No.2020B1212060077the Sun Yat-sen University Training Program of Research for Undergraduates,No.76190-51200001.
文摘Background:Excessive exudate secreted from chronic wounds often leads to overhydration and infection.Although a variety of dressings are currently available in clinical applications,they frequently fail to provide multifunction to promote chronic wound healing.The dressings with a Janus structure,featuring distinct properties on each side,are potential to improve wound healing.Methods:Composite dressings with a Janus structure were fabricated,comprising freeze-dried polycaprolactone(PCL)electrospun membrane and alginate-based hydrogel.The PCL fibrous membrane provided air permeability,while the hydrogel loaded with Deferoxamine,composed of alginate and poly(N-isopropylacrylamide)(PNIPAM),exhibited hygroscopic properties.The inclusion of PNIPAM imparted thermo-responsivity.Results:The hydrogel(thickness of 2.778±0.082 mm)exhibited a robust adhesion to the fiber membrane(thickness of 0.261±0.041 mm).For ANDC(Alginate-PNIPAM hydrogel with Deferoxamine/PCL membrane)samples,the water vapor transmission rate(WVTR)was measured to be 3364.80±23.23 g∙m−2∙day−1 and the swelling ratio at 2 h was determined to be 1179±125%.The thermo-responsivity of ANDC samples manifested in an increased swelling rate,escalating from 797±189%at 37°C to 1132±147%at 4°C.The elastic modulus was assessed for lyophilized and rehydrated ANDC sample.When theωof the rheometer rotor was decreased from 10 rad/s to 0.1 rad/s,the lyophilized dressing exhibited a decrease from 2.65±0.01 MPa to 1.80±0.90 MPa,while the rehydrated dressing demonstrated an increase from 133.65±55.68 Pa to 264.23±141.71 Pa.The pro-healing properties of the dressings were evaluated using full-thickness skin defect model on SD rats,and a circular wound of diameter 10 mm healed completely by day 12.Conclusion:The dressings not only protected the wound and absorbed excess exudate,but also demonstrated nondestructive peelability upon cooling,providing a novel approach for accelerating wound healing and management.
文摘Four groups of field experiments including REEs foliage dressing, soil dressing, triple amounts of soil dressing and control were carried out. Contents of REEs in wheat in different growing stages were measured by ICP-MS. The results show that REEs amount in leaves increases significantly with foliage dressing in jointing stage, in addition to REEs accumulation with soil dressing method in jointing stage. Either using foliage dressing or soil dressing, there is no significant accumulation in mature stage. Comparison of the two methods shows that lower amount of REEs with foliage dressing can be highly absorbed in jointing stage.
文摘Magnetizing roasting of oolitic hematite ore from western Hubei Province was investigated.The mechanism for reduction roasting of oolitic hematite ore was discussed and analyzed.It is found that flash magnetizing roasting-magnetic separation process is a promising approach for the processing of oolitic hematite ore from western Hubei Province.
基金financially supported by the National Natural Science Foundation of China(No.81600353)the Career Development Program for Young Teachers in Shenyang Pharmaceutical University
文摘Diabetes is one of the most prevalent diseases in the world with high-mortality and complex complications including diabetic foot ulcer(DFU). It has been reported that the difficulties in repairing the wound related to DFU has much relationship with the wound infection,change of inflammatory responses, lack of extracellular matrix(ECM), and the failure of angiogenesis. Following the development of medical materials and pharmaceutical technology, nanofibers has been developed by electrospinning with huge porosity, excellent humidity absorption, a better oxygen exchange rate, and some antibacterial activities. That is to say, as a potential material, nanofibers must be a wonderful candidate for the DFU treatment with so many benefits. Careful selection of polymers from natural resource and synthetic resource can widen the nanofibrous application. Popular methods applied for the nanofibrous fabrication consist of uniaxial electrospinning and coaxial electrospinning. Furthermore, nanofibers loading chemical, biochemical active pharmaceutical ingredient(API)or even stem cells can be wonderful dosage forms for the treatment of DFU. This review summarizes the present techniques applied in the fabrication of nanofibrous dressing(ND)that utilizes a variety of materials and active agents to offer a better health care for the patients suffering from DFU.
基金supported by the National Natural Science Foundation of China (grant numbers: 51973172)Natural Science Foundation of Shaanxi Province (No. 2020JC03 and 2019TD-020)+2 种基金State Key Laboratory for Mechanical Behavior of Materials, and Opening Project of Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University (No. 2019LHM-KFKT008)the World-Class Universities (Disciplines)the Characteristic Development Guidance Funds for the Central Universities
文摘Bacterial infection and the ever-increasing bacterial resistance have imposed severe threat to human health.And bacterial contamination could significantly menace the wound healing process.Considering the sophisticated wound healing process,novel strategies for skin tissue engineering are focused on the integration of bioactive ingredients,antibacterial agents included,into biomaterials with different morphologies to improve cell behaviors and promote wound healing.However,a comprehensive review on antibacterial wound dressing to enhance wound healing has not been reported.In this review,various antibacterial biomaterials as wound dressings will be discussed.Different kinds of antibacterial agents,including antibiotics,nanoparticles(metal and metallic oxides,lightinduced antibacterial agents),cationic organic agents,and others,and their recent advances are summarized.Biomaterial selection and fabrication of biomaterials with different structures and forms,including films,hydrogel,electrospun nanofibers,sponge,foam and three-dimension(3D)printed scaffold for skin regeneration,are elaborated discussed.Current challenges and the future perspectives are presented in thismultidisciplinary field.We envision that this review will provide a general insight to the elegant design and further refinement of wound dressing.
基金supported by the Yeungnam University research grant in 2017。
文摘Polyurethane foam dressings for dermal wounds were formulated with natural polyols in order to improve the foam characteristics and the release of 2 active agents,silver and asiaticoside(AS)as an antimicrobial agent and an herbal wound healing agent,respectively.The foam was instantly formed by interaction of polyols and diisocyanate.Hydroxypropyl methylcellulose,chitosan and sodium alginate were individually mixed with themain polyols,polypropylene glycol,in the formulation while the active componentswere impregnated into the obtained foam dressing sheets.Although the type and amount of the natural polyols slightly affected the pore size,water sorption-desorption profile and compression strength of the obtained foam sheets,a prominent effect was found in the release of both active components.Among natural polyols formulations,foam sheets with alginate showed the highest silver and AS release.Non-cytotoxicity of these foam sheets to human fibroblast cells was confirmed.Antimicrobial testing on four bacteria strains showed that 1mg/cm^2 silver in formulations with 6%of natural polyols and without natural polyols had sufficient content of the silver release with comparable inhibition zone and significantly larger zone than other formulations.In pig study,the foam dressing with 6%alginate,1mg/cm^2 silver and 5%AS could improve wound healing in both the percentage of the wound closure and histological parameters of the dermal wound without any dermatologic reactions.In conclusion,this innovative foam dressing had potential to be a good candidate for wound treatment.
基金Authors acknowledged the funding supports from the National Key R&D Program of China(2019YFA0905200).
文摘With the changes in the modern disease spectrum,pressure ulcers,diabetic feet,and vascular-derived diseases caused refractory wounds is increasing rapidly.The development of wound dressings has partly improved the effect of wound management.However,traditional wound dressings can only cover the wound and block bacteria,but are generally powerless to recurrent wound infection and tissue healing.There is an urgent need to develop a new type of wound dressing with comprehensive performance to achieve multiple effects such as protecting the wound site from the external environment,absorbing wound exudate,anti-inflammatory,antibacterial,and accelerating wound healing process.Hydrogel wound dressings have the aforementioned characteristics,and can keep the wound in a moist environment because of the high water content,which is an ideal choice for wound treatment.This review introduces the wound healing process and the development and performance advantages of hydrogel wound dressings.The choice of different preparation materials gives the particularities of different hydrogel wound dressings.It also systematically explains the main physical and chemical crosslinking methods for hydrogel synthesis.Besides,in-depth discussion of four typical hydrogel wound dressings including double network hydrogels,nanocomposite hydrogels,drug-loaded hydrogels and smart hydrogels fully demonstrates the feasibility of developing hydrogels as wound dressing products and their future development trends.
基金supported by National Natural Science Foundation of China(Grant No.50935003)National Numerical Control Major Projects of China(Grant No.2013ZX04001000-215)
文摘In the grinding of high quality fused silica parts with complex surface or structure using ball-headed metal bonded diamond wheel with small diameter,the existing dressing methods are not suitable to dress the ball-headed diamond wheel precisely due to that they are either on-line in process dressing which may causes collision problem or without consideration for the effects of the tool setting error and electrode wear.An on-machine precision preparation and dressing method is proposed for ball-headed diamond wheel based on electrical discharge machining.By using this method the cylindrical diamond wheel with small diameter is manufactured to hemispherical-headed form.The obtained ball-headed diamond wheel is dressed after several grinding passes to recover geometrical accuracy and sharpness which is lost due to the wheel wear.A tool setting method based on high precision optical system is presented to reduce the wheel center setting error and dimension error.The effect of electrode tool wear is investigated by electrical dressing experiments,and the electrode tool wear compensation model is established based on the experimental results which show that the value of wear ratio coefficient K’ tends to be constant with the increasing of the feed length of electrode and the mean value of K’ is 0.156.Grinding experiments of fused silica are carried out on a test bench to evaluate the performance of the preparation and dressing method.The experimental results show that the surface roughness of the finished workpiece is 0.03 μm.The effect of the grinding parameter and dressing frequency on the surface roughness is investigated based on the measurement results of the surface roughness.This research provides an on-machine preparation and dressing method for ball-headed metal bonded diamond wheel used in the grinding of fused silica,which provides a solution to the tool setting method and the effect of electrode tool wear.
文摘BACKGROUND Aplasia cutis congenita (ACC) in newborns is a condition in which congenital defects or hypoplasia is present in part of the epidermis,dermis and even subcutaneous tissue (including muscle and bones).First reported by Cordon in 1767,ACC is a rare disease with a low incidence of 1/100000 to 3/10000.Currently,there are 500 cases reported worldwide.ACC can be accompanied by other malformations.The onset mechanism of the disease remains unknown but is thought to be correlated to factors such as genetics,narrow uterus,foetal skin and amniotic membrane adhesion,use of teratogenic drugs in early pregnancy and viral infection.CASE SUMMARY In August 2018,we treated a newborn with ACC on the left lower limbs using a combination of ionic silver dressing and moist exposed burn ointment (MEBO) and achieved a satisfactory treatment outcome.The skin defects were observed on the external genitals and on areas from the left foot to 3/4 of the upper left side.Subcutaneous tissue and blood vessels were observed in the regions with skin defects.The following treatments were provided.First,the wound was rinsed with 0.9% sodium chloride solution followed by disinfection with povidone-iodine twice.And then MEBO was applied to the wound at a thickness of approximately 1 mm.After applying ionic silver dressing,the wound was covered with sterile gauze.The wound dressing was replaced every 2-3 d.At the 4-mo follow-up,the treatment outcome was satisfactory.There was minimal scar tissue formation,and limb function was not impaired.CONCLUSION The combination of ionic silver dressing and MEBO to ACC is helpful.
基金Research Fund for the Doctoral Program of Higher Education,China(No.20060248031)National Natural Science Foundation of China(No.50775143)
文摘An application for achieving on-machine truing/dressing and monitoring of diamond wheel is dealt with in dry grinding. A dry electrical discharge (ED) assisted truing and dressing method is adopted in preparation of diamond grinding wheels. Effective and precise truing/dressing of a diamond wheel is carried out on a CNC curve grinding machine by utilizing an ED assisted diamond dresser. The dressed wheel is monitored online by a CCD vision system. It detects the topography changes of a wheel surface. The wear condition is evaluated by analyzing the edge deviation of a wheel image. The benefits of the proposed methods are confirmed by the grinding experiments. The designed truing/dressing device has high material removal rate, low dresser wear, and hence guarantees a desired wheel surface. Real-time monitoring of the wheel profile facilitates determining the optimum dressing amount, dressing interval, and the compensation error.
基金supported by the National Science Foundation of China(81301345)
文摘The variety of wound types has resulted in a wide range of wound dressings, with new products frequently being introduced to target different aspects of the wound healing process. The ideal wound dressing should achieve rapid healing at a reasonable cost, with minimal inconvenience to the patient. Microcurrent dressing, a novel wound dressing with inherent electric activity, can generate low-level microcurrents at the device-wound contact surface in the presence of moisture and can provide an advanced wound healing solution for managing wounds. This article offers a review of the effects and mechanisms of the microcurrent dressing on the healing of skin wounds.
基金This work was financially supported by the National Natural Science Foundation of China for support for this research(Nos.81560737 and 31860250)We also thank the Natural Science Foundation of Gansu Province through Grant 18JR3RA148+1 种基金the Fundamental Research Funds for Key Laboratory of Drug Screening and Deep Processing for Traditional Chinese and Tibetan Medicine of Gansu Province Grant(No.20180801)Distinguished Young Cultivation Project(No.JQ2020)of Lanzhou University of Technology.
文摘A series of hydrogels with different ratios of chitosan and licorice polysaccharide(LP)were prepared by crosslinking to different concentrations of genipin(gp).They were characterized by FTIR(Fourier transform infrared spectroscopy),SEM(Scanning electron microscope),swelling ratio,rheological measurements,degradation with time,cytotoxicity,and antibacterial efficacy.Results show that the hydrogels have porous structures.With an increase in LP content,the swelling rate grows in the early stage of immersion in buffer and drops later.The swelling ratio ranged from 986%to 1677%,and stiffness varied from 777 Pa to 1792 Pa.The addition of LP reduced the mechanical strength and delayed gelation and degradation of the hydrogels.However,the most important discovery was that gp increases the viability of NIH 3T3 cells from 94%to 137%,and LP raises the bacteriostatic efficacy from 51%to 78%.Hydrogels synthesized from 1%genipin,3%chitosan,and 4%licorice polysaccharide showed the best antibacterial and fibroblast proliferation promoting activities.They exhibited moderate swelling and degradation rates over time,while being more suitable to affect healing of chronic wound infections.These results provide a new strategy to improve the antibacterial effectiveness and cyto-compatibility of chitosan hydrogels with water soluble active LPs from Glycyrrhiza that derive from traditional Chinese medicine.
基金This work was supported by the National Natural Science Foundation of China under grant No.59705014 and No.50275095.
文摘Most of the mechanical dressing technologies for resin bonded superabrasive grinding wheels are time consumingand costly. Based on the outcomes of the simulations in the previous study, this paper demonstrates the comprehensive researches on the laser-assisted dressing process control, grinding wheel topography reconfiguration by 3Dlaser scanning technology and analyses of grinding temperature. The synthesized parameter incorporates the laserdressing process parameters and can be used to the process control. In order to evaluate the laser-assisted dressingeffectiveness, the newly developed non-contact laser measuring system based on the principle of the triangulationwas used. Grain protrusion height and intergrain spacing can characterize the grinding wheel surface. A series ofgrinding tests with the laser-assisted dressed grinding wheel and mechanically dressed grinding wheel were conductedfor comparison. The results proved the feasibility of laser-assisted dressing for resin bonded superabrasive grindingwheels and revealed the importance of choosing appropriate laser dressing parameters.
基金supported by a Major Project of the Ministry of National Science and Technology of China(Grant No.2014ZX09J14103-09C).
文摘Background: Wounded personnel who work at sea often encounter a plethora of difficulties. The most important of these difficulties is seawater immersion. Common medical dressings have little effect when the affected area is immersed in seawater, and only rarely dressings have been reported for the treatment of seawater-immersed wounds. The objective of this study is to develop a new dressing which should be suitable to prevent the wound from seawater immersion and to promote the wound healing.Methods: Shark skin collagen(SSC) was purified via ethanol de-sugaring and de-pigmentation and adjusted for p H. A shark skin collagen sponge(SSCS) was prepared by freeze-drying. SSCS was attached to an anti-seawater immersion polyurethane(PU) film(SSCS+PU) to compose a new dressing. The biochemical properties of SSC and physicochemical properties of SSCS were assessed by standard methods. The effects of SSCS and SSCS+PU on the healing of seawaterimmersed wounds were studied using a seawater immersion rat model. For the detection of SSCS effects on seawaterimmersed wounds, 12 SD rats, with four wounds created in each rat, were divided into four groups: the 3 rd day group, 5 th day group, 7 th day group and 12 th day group. In each group, six wounds were treated with SSCS, three wounds treated with chitosan served as the positive control, and three wounds treated with gauze served as the negative control. For the detection of the SSCS+PU effects on seawater-immersed wounds, 36 SD rats were divided into three groups: the gauze(GZ)+PU group, chitosan(CS)+PU group and SSCS+PU group, with 12 rats in each group, and two wounds in each rat. The wound sizes were measured to calculate the healing rate, and histomorphology and the immunohistochemistry of the CD31 and TGF-β expression levels in the wounded tissues were measured by standard methods.Results: The results of Ultraviolet-visible(UV-vis) spectrum, Fourier-transform infrared(FTIR) spectrum, circular dichroism(CD) spectra, sodium dodecyl sulfate polyacrylamide gel electrophoresis(SDS-PAGE), and amino acid composition analyses of SSC demonstrated that SSC is type I collagen. SSCS had a homogeneous porous structure of approximately 200μm, porosity rate of 83.57%±2.64%, water vapor transmission ratio(WVTR) of 4500 g/m2, tensile strength of 1.79±0.41 N/mm, and elongation at break of 4.52%±0.01%. SSCS had significant beneficial effects on seawater-immersed wound healing. On the 3 rd day, the healing rates in the GZ negative control, CS positive control and SSCS rats were 13.94%±5.50%, 29.40%±1.10% and 47.24%±8.40%, respectively. SSCS also enhanced TGF-in the initial stage of the healing period. The SSCS+PU dressing effectively protected woundsβ and CD31 expression from seawater immersion for at least 4 h, and accelerated re-epithelialization, vascularization and granulation formation of seawater-immersed wounds in the earlier stages of wound healing, and as well as significantly promoted wound healing. The SSCS+PU dressing also enhanced expression of TGF-n and gauze dressings.β and CD31. The effects of SSCS and SSCS+PU were superior to those of both the chitosaConclusion: SSCS has significant positive effects on the promotion of seawater-immersed wound healing, and a SSCS+PU dressing effectively prevents seawater immersion, and significantly promotes seawater-immersed wound healing.
文摘The existing studies, concerning the dressing process, focus on the major influence of the dressing conditions on the grinding response variables. However, the choice of the dressing conditions is often made, based on the experience of the qualified staff or using data from reference books. The optimal dressing parameters, which are only valid for the particular methods and dressing and grinding conditions, are also used. The paper presents a methodology for optimization of the dressing parameters in cylindrical grinding. The generalized utility function has been chosen as an optimization parameter. It is a complex indicator determining the economic, dynamic and manufacturing characteristics of the grinding process. The developed methodology is implemented for the dressing of aluminium oxide grinding wheels by using experimental diamond roller dressers with different grit sizes made of medium- and high-strength synthetic diamonds type AC32 and AC80. To solve the optimization problem, a model of the generalized utility function is created which reflects the complex impact of dressing parameters. The model is built based on the results from the conducted complex study and modeling of the grinding wheel lifetime, cutting ability, production rate and cutting forces during grinding. They are closely related to the dressing conditions (dressing speed ratio, radial in-feed of the diamond roller dresser and dress-out time), the diamond roller dresser grit size/grinding wheel grit size ratio, the type of synthetic diamonds and the direction of dressing. Some dressing parameters are determined for which the generalized utility fimction has a maximum and which guarantee an optimum combination of the following: the lifetime and cutting ability of the abrasive wheels, the tangential cutting force magnitude and the production rate of the grinding process. The results obtained prove the possibility of control and optimization of grinding by selecting particular dressing parameters.