A novel dual-directional silicon controlled rectifier(DDSCR) device with embedded PNP structure(DDSCR-PNP) is proposed for electrostatic discharge(ESD) protection, which has greatly reduced latch-up risk owing t...A novel dual-directional silicon controlled rectifier(DDSCR) device with embedded PNP structure(DDSCR-PNP) is proposed for electrostatic discharge(ESD) protection, which has greatly reduced latch-up risk owing to the improved holding voltage(V_h/. Firstly, the working mechanism of the DDSCR-PNP is analyzed. The theoretical analysis indicates that the proposed device possesses good voltage clamp ability due to the embedded PNP(PNP_2). Then, experimental devices are fabricated in a 0.35 m bipolar-CMOS-DMOS process and measured with a Barth 4002 transmission line pulse testing system. The results show that the V_h of DDSCR-PNP is much higher than that of the conventional DDSCR, and can be further increased by adjusting the P well width.However, the reduced leakage current(I_L/ of the DDSCR-PNP shows obvious fluctuations when the P well width is increased to more than 12 m. Finally, the factors influencing V_h and I_L are investigated by Sentaurus simulations. The results verify that the lateral PNP_2 helps to increase V_h and decrease I_L. When the P well width is further increased, the effect of the lateral PNP_2 is weakened, causing an increased I_L. The proposed DDSCR-PNP provides an effective and attractive ESD protection solution for high-voltage integrated circuits.展开更多
基金supported by the Fundamental Research Funds for the Central Universities(No.JUSRP51323B)the Joint Innovation Project of Jiangsu Province(No.BY2013015-19)+2 种基金the Summit of the Six Top Talents Program of Jiangsu Province(No.DZXX-053)the Graduate Student Innovation Program for Universities of Jiangsu Province(Nos.KYLX_1119SJZZ_0148)
文摘A novel dual-directional silicon controlled rectifier(DDSCR) device with embedded PNP structure(DDSCR-PNP) is proposed for electrostatic discharge(ESD) protection, which has greatly reduced latch-up risk owing to the improved holding voltage(V_h/. Firstly, the working mechanism of the DDSCR-PNP is analyzed. The theoretical analysis indicates that the proposed device possesses good voltage clamp ability due to the embedded PNP(PNP_2). Then, experimental devices are fabricated in a 0.35 m bipolar-CMOS-DMOS process and measured with a Barth 4002 transmission line pulse testing system. The results show that the V_h of DDSCR-PNP is much higher than that of the conventional DDSCR, and can be further increased by adjusting the P well width.However, the reduced leakage current(I_L/ of the DDSCR-PNP shows obvious fluctuations when the P well width is increased to more than 12 m. Finally, the factors influencing V_h and I_L are investigated by Sentaurus simulations. The results verify that the lateral PNP_2 helps to increase V_h and decrease I_L. When the P well width is further increased, the effect of the lateral PNP_2 is weakened, causing an increased I_L. The proposed DDSCR-PNP provides an effective and attractive ESD protection solution for high-voltage integrated circuits.